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Abstract: Wooden breast barriers the development of broiler industry, and traditional detection methods are time-
consuming and inefficient. To investigate the feasibility of the hyperspectral imaging (HSI) technique for the detection of
wooden breasts, four different grades of white feather chicken breast were selected and their HSI information of 400~
1000 and 1000~2000 nm was collected. After spectral preprocessing and spectral variable selection, partial least squares
discriminant (PLS-DA) models and support vector machine (SVM) models were developed based on full wavelength and
characteristic spectral variables, as well as their fused HSI data. The results showed that SVM models showed better results
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than PLS-DA models to discriminate woody grades of chicken breasts. The overall discrimination rates based on the full
HSI bands and selected spectral variables in 1000~2000 nm were higher than those of models in 400~1000 nm. Besides, the
discrimination models based on fused HSI data of HSI bands and selected spectral variables provided the best results, with

the overall discrimination rate of 96.7% for four different woody grades, and the accuracy of the four grades could reach

more than 90%. The research results provided technical support for HSI to achieve rapid and non-destructive detection of

wooden chicken breasts.

Key words: wooden breast; visible-near infrared hyperspectral; short-wave infrared hyperspectral; spectral data fusion;

discriminant model
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AR i FHUTZT 4 HSI g5 & 1k2Fi A i
ST T T X By PR BORE 1 IR e /s 3 1] U5 (partial
least squares regression, PLSR) AR AU, Fi il 42 4H 5¢ 5
%% ( correlation coefficient of prediction, Rp) K T
0.90, SZER T G P BB 1 BT TTAbL ARG 5 fr] g2 4520141
FLF HSI A5 B A EE T TR0 RS PR 7 7K P 2 SR 0 i
PLSR #& %I (Rp=0.97), 32 W] HSI FJ ¥ 7E Hb S5 XS A
T K AR ISR Y PR T . Yoon ZEMS fFSE T YT IER
Je2EWTZFHE RN HST HARAE P TeHA I A 4315 A
J ARG fif A 7 1T B ¥ 00, IE B 400~1000 nm N Y
HSI A5 20T A IR 5 AR BT AL PSS i A . HST AE
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den breast, MILD) . H £ A Jii £k (moderate wooden
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Table 1 Grading standard of chicken breast
F filiid
IEEG Py (NB) XM PR AR 43 3K, SR L AN, FETE T rh i PR P s 1 K T A
BOR Bk (MILD) A2 S v 7 T DX, T PR R AT —RE B R R
AL (MOD) R S v 7 T T P S DX, G AR T 2R 8, IR BB 2 Ml DLtk
S EABUL(SEV) R A R A, TIE S IR, R AT A LR A

1 A RSERA XS P

Fig.1 Different grades of wooded chicken breast
TE: NB: IEH MG A s MILD: F230AR B fk; MOD: AR 4k
SEV: JZH A F{k; ROL: HOGERIX Jk o

SEV)4 459 (El 1), B 15590 60 DM B REAR
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R XE b PR & OS2 D) A v ST S . Tl DL-3T 4T
A G R R ST (B 2a) IR G 1 5y PEER N
2.8 nm. A T EEGRHE BYTHEN L, KA EIR R Y
D 30 ecm AZbLL 45° S AR BE [T 2 TAEALEI, AH
MUE SEEM Z [AIRIERS A 26 cm, YEIFGRE S 45 W,
BRGHITRIZA 3 ms, 3G E N 7 mm/s. K
LT A 6 AR & g (& 2b) i FH D% 43 R N
6.2 nm P ARG GIHAY, SEIEAE IR BSAE & 31 cm 4b LA
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Fig.2 Physical images of visible-near (a) and short-wave
infrared (b) hyperspectral imaging systems
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OISR ALY, OB RE AR B ST 3T T FAR
30 min, LARRGEYGIR . ARG R SR /K 43, B
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B ARMLIE L A OISO S5 2 52 ma G iE R AR,
I %o R Y SR R G TS MR (R o) #EA T R IR IE LA
HERTCAR P E BN, Hory, PR IEAd ] S 45 322k
99.99% 1 1 €4, 2R VU G £ Jis M 3R HUbR v 1 RS 1 AR
(W), WERZ IE SR o 4 F A wa Sk AR R TE ]
1R (B), LA (D) AT PRI IE S 1 = Y EUR (R

R,—B
W-B

P R GRS IE R R S22 5 ah oGk &
18 B PRHERRACIE S W AR E A EEIR
1.2.3 SEIEE SR RS S3F 52 O ik PR
A LRSS T S AR RIS AR BT
HARSCHNE B, WS R AE AT X i P Sk a2
VE A 4R X 38 (region of interest, ROI), F:~g%2%
R X314 /N Sy 900(30x30) 15 2 (& 1) o 3 o
MATLAB R2016a {4 (MathWorks 2\ 7], 3% H) ifF
17 ROI FYHBIFT ROT NG Eds i 52 B, ZRIOTI 1
FAFEEL ROL XN -GS, DA S(EAE
SRR R S R DG
1.3 HiEasE
1.3.1 JGigfisatE R A8 shtrifk (Autoscale) |
HRUETE 2548 - 7% (standard normal variate, SNV) | 1F
225 5 1F. # (orthogonal signal correction, OSC) .
ST (Smoothing) . — ¥ 54432 (first derivative, 1-
st) AL I TGS AL F], DAY/ 1% R AL e ph M
B LA N RR LR IS AR AP LA DR R i AN R
SN, FEROGIE TUAR L, P S AN o A e
1.3.2 FRAEDEICIRE  HST %5 Pe A, AS ol fo bt
TR AR B TR E B, R TR e AT
R JC AR 2., PRt 5 AR BT R E SR AH DG I AP I
K, IXAERAAR Y g R i AT P m A R a1 3 B R
HEBA R AS SR E L4552 5507 (successive projec-
tions algorithm, SPA) . 3a 4P B & B 5 INAL A %
( competitive adaptive reweighted sampling, CARS)
VI K JeAs B AE &5 7 Bk % (uninformative variable
elimination, UVE)3 F i iE PB4 p b K o
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1.3.3 By 59 R HST Edait
FrPiabFR, #E57 FTF 400~1000 nm F1 1000~2500 nm
P4 I | RN D 1 R P I B s il I R A
X 159 PR 4 2% 1) A e /s 3 K1) 531 43 AT (partial least
squares-discriminant analysis, PLS-DA) Fll 37 3F [7] &
#L(support vector machine, SVM) F ALY F38 3
S AT A R T 0 A2 4 ) ) T A R AR A M g A T
PP
1.3.4 HPEA-HEERE i MATLAB R2016a 4144
AT IR AL BE; {3 Origin 2020b FX 442K
2 HBRESH
2.1 HIESDH

] -3 T A NE D G ANE LT A M G i R AR '
% 6 Bl 43 %) & 383~1011 nm FH 982~2526 nm. X
R AR 75 S ), DS BR AT S #1843 I B, B 4 HL 400~
1000 nm 1 1000~2000 nm i BeFEATE% 500, K 3
SRS [R) A A B AR i) PRAASE S A E PR AU B T 19 S S
Y1, BRSO GIEA G R A B — A EGHR X I N 5
Bo 4 DEEYR ARG H PRV 5 1 AR A 3R
FOFELL, XA GG AR R S SR Bt 5 A B AL AR B (3
ST b5, TE B XS ) PAASE & 118 P35 I S 3 e AT

£ 400~1000 nm PN, TE 5 G A& PR 4 FH ) i 5 32
AT A AL g P (18] 3a Fil b)), 33X 1] GESE AT ALY
BoY R 9 2H 3 AR A B0 IS h S i 3228 ) e B R A
T ARk, 4 420, 550, 760 F1 970 nm Ak H FL T %5 AH
A EGERE RIS . 420 FI 550 nm BRHUT BS'GIEI IAciig
ETESIMLTE A MALLE A5 T LA 21 3R ks
K, WX i) PRI (2 T A SR 0 . AR B AR XS ) PR 1)
JILET A, T 5 | PLLT AR 1 B B ek, X8 i )
JEAS Y T FULT-4ERE Ry 1 BILTF4E, 760 nm BT A9 I
WAL C-H A DU KO, 1 980 nm
R 3T R AT 27K 43T HP O-H B — R AE A0 o hr A
PRBh5 | A AR

£ 1000~2000 nm PN, Bifi 35 A BT 10 55 2% i 4,
T b OGS S S 5 B A B AR B & i i A8 T (] 3¢
Fl d), £ 1190, 1420 Fl 1940 nm AbH B T % HH B A9
SCREMZ IR . BFSE &R, 1190 nm Ak ki 5 g Bt
H C-H B A Y 1420 nm Ab g W i
T N-H 8 A99R 312 1940 nm &b i W 50 5559 1A
{5 A B RERT C-H S — AR, T
A ARXEG ) PR 5 IL R LH A SR ALl & A ik 2, ki
ZEE/KRSEA RN G RETIFHG, B R/KESEH L,
P AT UL, AN [RIAS B AR PR R0 Bl PR 2H 53 AN [R]85
HAE 400~1000 F1 1000~2000 nm PN B4 D61 0 A 77
TEZE 5, X 3T HST U4 739 i) P A S A0 2 3] 531
BEE T A
2.2 BT 2FERRARBRUBIEA AR ENL

K FH Autoscale, SNV, Smoothing., 1st, OSC %5
Bk TR AL B, A4 LT 400~1000 F1 1000~
2000 nm G B ABALXS M P 9 PLS-DA Fl SVM
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1000~2000 nm(c. d) P %) SR AR 6T A1 350 ik 1]

Fig.3 Original and mean spectra of different grades of wooden
chicken breast in 400~1000 nm (a, b) and 1000~2000 nm (c, d)

F AR g8 B4R 2 FiEk 3 BTk, 400~1000 nm
N, OGS WAL PLS-DA 43 2R AR TR (1 A5 45 1F
BRI AR GRS Pt e, Hoh 28 SNV Fikb 3
PLS-DA 57 ) AR AN TR A5 1 23R40 ) it v T
12.8% F1 5.0%, FIRNRCRIAE . XTF SVM A, FE
TR ARG EE ST AR R DG, 33 T RS PR A JT EASE
T 3ok T 187 PR, TG IR B b 2 ) B P AU RR AR RO, 22
SNV HilAbHE 5, SVM AR K A R BE A5 31— a2
3, AR TN AL 1Y IEAA 453518 98.3% F11 88.3%,

LEROVTE RS
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Table 2  Classification models for the grades of wooden chicken breast in 400~1000 nm
) R ER (%) TR EA 5 (%)
JELE R oAk HE
NB MILD MOD SEV YL NB MILD MOD SEV JEYES
Raw 86.7 75.6 51.1 91.1 76.1 86.7 73.3 533 86.7 75.0
Autoscale 86.7 88.9 60.0 91.1 81.7 93.3 66.7 60.0 80.0 75.0
PLS-DA SNV 93.3 82.2 84.4 95.6 88.9 933 73.3 60.0 93.3 80.0
Smoothing 88.9 75.6 68.9 93.3 81.7 80.0 73.3 66.7 86.7 76.7
1-st 91.1 73.3 62.2 93.3 80.0 80.0 73.3 533 93.3 75.0
0SC 86.7 91.1 82.2 97.8 89.4 73.3 60.0 80.0 86.7 75.0
Raw 100 100 93.3 97.8 97.8 933 80.0 66.7 60.0 75.0
Autoscale 100 100 95.6 97.8 98.3 93.3 80.0 66.7 80.0 80.0
SVM SNV 100 97.8 95.6 100 98.3 86.7 86.7 86.7 93.3 88.3
Smoothing 84.4 91.1 86.7 93.3 88.9 80.0 73.3 80.0 60.0 73.3
1-st 73.3 71.1 60.0 84.4 72.2 73.3 66.7 46.7 80.0 66.7
OSC 97.8 97.8 95.6 91.1 95.6 93.3 80.0 66.7 66.7 76.7
# 3 BT 1000~2000 nm PEBAIA TR i A SRR 3 S AR
Table 3 Classification models for the grades of wooden chicken breast in 1000~2000 nm
) AL (%) TS IEA 3 (%)
L E iR oAk #
NB MILD MOD SEV YL NB MILD MOD SEV PEYES
Raw 93.3 86.7 82.2 93.3 89.4 933 73.3 66.7 93.3 81.7
Autoscale 97.8 88.9 91.1 95.6 93.3 100 86.7 80.0 93.3 90.0
PLS-DA SNV 95.6 86.7 88.9 91.1 90.6 933 80.0 80.0 93.3 86.7
Smoothing 84.4 77.8 82.2 95.6 85.0 86.7 80.0 73.3 100 85.0
1-st 93.3 91.1 86.7 95.6 91.7 933 80.0 80.0 93.3 86.7
0SC 93.3 93.3 93.3 91.1 92.8 86.7 80.0 86.7 93.3 86.7
Raw 97.8 93.3 93.3 91.1 93.9 100 80.0 93.3 100 93.3
Autoscale 97.8 95.6 95.6 95.6 96.1 100 93.3 86.7 100 95.0
SVM SNV 97.8 100 100 100 99.4 93.3 80.0 100 86.7 90.0
Smoothing 97.8 93.3 93.3 97.8 95.6 100 93.3 86.7 100 95.0
1-st 97.8 82.2 97.8 93.3 92.8 100 86.7 93.3 100 95.0
0OSC 91.1 95.6 95.6 95.6 94.4 80.0 86.7 86.7 60.0 78.3

FEET SNV-PLS-DA BRI IERG 3, S8R
. A, 7E 400~1000 nm N SNV-SVM HR I 4325
R A

1000~2000 nm PN, Autoscale., SNV 1-st, OSC
LESERE WAL BRI AR T PLS-DA AR EAR AL R
I £E 1Y IE B 3%, HL AP £ Autoscale Tl &b B (1Y) PLS-
DA FERIXS 4 455 9% R BT A0 XS g P %) 1E 1 22 258
85.0% LU I, T LK 80.0% Lh F o XFTF SVM 4
%1, OSC-SVM FEBIRLIR i 22, SNV-SVM #5474 (1) 7
55 AR E 1 22 (99.4%) v &, H L T 4R OF B &R
(90.0% )T Raw-SVM i, £Z% Autoscale. Smoo-
thing. 1-st FALFE Y SVM AR TR F 0 £ 1F 6 5 34 oy
95.0%, H 1 1-st-SVM A5 #I 7 455 45 1F 1y 811G,
Smoothing-SVM 15 U 1% 157, Autoscale-SVM A5 FU £y
1o Autoscale-SVM 57U LA AL FI T 42 1 6 >R 47
BN 96.1% Fl1 95.0%, EH.XF 4 AN )5 4% 1y i AR 4
F) B IE AR IR T 95.0% LA b, BMAEIR 85.0% L
o BT UL, 3T 1000~2000 nm 37 B (Y Auto-
scale-SVM ARG B/

Fe 3 H T 400~1000 Fil 1000~2000 nm P 4= i
B AR BTG i8] PRI 552 90 53 IS 1 e AR AR, T A4S L
1000~2000 nm PN 4= % B (19 53 S AU IE 16 3R =

400~1000 nm N 4= B, 3X =B 1000~2000 nm
VBT eI w5 22 SR SR USSR AH DG {5 8., B
WA H TP AR 425 . [, 3t
F 400~1000 F1 1000~2000 nm PN 4= % B (4 A ST 4k
X ity ) ) e A A3 AR AN A ofy SVML AR, PRl IE fR 624
FEST IETRAEIBIAY SVM 43245
2.3 ETHHERERARBRAGHEF BEE A ENL
HSI B £ A ¥ )5, 435l id SPA. CARS
1 UVE FEHkERENE P BE (& 4), e @sr 5 th i
FLTFRPNE IR B 19 A SR A XS i) PR S5 2 1) SVML A 1A
HI(F 4), 7E 400~1000 nm PN, F3ETF SPA B2
IS TE R B AR, EAREE TP AR 1Y B AR IE A 2 5y
A 84.4% I 76.7%, iX Al BESZ FH T SPA F AN i
BEH 9 MNERIEAS i, fi— 28 5K B b LS AH S AT
AR EERE NG, SRR AR, CARS kLI
T 25 MRRIEBEAS, T ) A R AR AL RN T £ L
I T AP B RS BRI AT T T [, 43 AR 3.9% FI
6.6%, H IR TERHREHIR, RIS . UVE 5k
T B IE P K B e 22 (43 ), FIrids i R i g
FTFFIN AL 1E AR ZR 5 B2, 43528 87.8% F 85.0%,
BRI e . SHEET 400~1000 nm N4 Bt
LS AR b, UVE-SVM BEAUER RIS A [, 1] HE
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Fig.4 Specific characteristic wavelengths filtered based on
different algorithms

EAEPRBGI AR A A B RS, sl PRI AR
WAATEI GG A RFT T, S B (R KA
{ESRIBARFER S AT LAVS AR B8 H, [R]As SR FER

By sZ ), $2 A 8 04 TS s R ik, UVE-
SVM J& 400~1000 nm % B P9 e

TE 1000~2000 nm N, 2T SPA, CARS Fll UVE
SRR FRRNE I 04 F ISR T A2 AR TE A 232
HET 2B ESEMEF, ¥ 95.0%. UVE-
SVM AR SR EAfR 5 A AR 2, $1°4 96.1%;
CARS Fk B TRV, {H CARS-SVM #5i#1
AR IEH3R(95.6% ) TF 4 PRI A fik; SPA Bk
TR T S/ YRR AR I, JHD S 58 4 1 B SR
1000~2000 nm IR E T 0.6%, [FIRTHET 7
BT, i, 35T SPA BN 1000~2000 nm
FRAEAE I BE A SV ML AR 1] S0 408 it PR A o AL 22 1)
R UF, P6T 400~1000 nm B HY UVE-SVM
PR, AT WL, A A 5 RS BRI AR B b R R
1000~2000 nm [t 400~1000 nm P B4R 1E iz B 58 5L
P, X 55T i By g SR —k.
2.4 ETHKEHEMENARRLIGHAH FIRE A
[=5va

Fe T AT DL -3t 21 41 (400~1000 nm) F1 %5 3 21 41
(1000~2000 nm) /= GHEEAE LG 1A BT ARG il PN 45
e SVM HFIIRIANI S 5 B, ST 5dmm A a0
EAll i - o SR ) WA 14 14 Nl ey o b 2 A I M=
JGIEEF B SVM AR, HE AR R T4 AR TE B
FITHIH 98.9% Hl 96.7%. FETH—y HSI {5 B 1Y

K4 T SVM FIERYA TS i Y AR5 AR AR IR A AT

Table 4 Full wavelength range and characteristic wavelength prediction models for wooden chicken breast based on SVM algorithm

} o o R IE R (%) AR 1R (%)
WK (nm) PRI RN R — —
NB MILD MOD  SEV ERIN NB MILD MOD  SEV SEEN
S B 420 100 97.8 95.6 100 98.3 86.7 86.7 86.7 93.3 88.3
4001000 SPA 9 88.9 82.2 80.0 86.7 84.4 86.7 66.7 80.0 733 76.7
CARS 25 97.8 933 91.1 95.6 94.4 86.7 86.7 60.0 93.3 81.7
UVE 43 91.1 88.9 75.6 95.6 87.8 93.3 86.7 66.7 93.3 85.0
Eelidd 144 97.8 95.6 95.6 95.6 96.1 100 93.3 86.7 100 95.0
1000-2000 SPA 11 97.8 95.6 95.6 97.8 96.7 100 93.3 86.7 100 95.0
- CARS 16 95.6 933 95.6 97.8 95.6 100 86.7 93.3 100 95.0
UVE 15 97.8 933 95.6 97.8 96.1 100 86.7 93.3 100 95.0
£ 5 FETAIL-IEL4MN(400~1000 nm) AT LT 1000~2000 nm ) (&SGR RLA AR BEALAS I P SVM 43254575

Table 5 SVM model classification for wooden chicken breast based on fusion of visible-near infrared (400~1000 nm) hyperspectral
and short-wave infrared (1000~2000 nm) hyperspectral data

N o HERE 2% H B 2%
AR A (nm) RS ER 2% B IERZR(%) BURIERZR(%)
NB MILD MOD SEV MILD MOD SEV
NB a3 2 0 71 0 0
MILD 2 4 4 o !
400~1000 4 0 0 87.8 3 0 85.0
MOD 2 2 ¥ 2 0 1 01
SEV 0 0 5 0@ 0 0 4 14
NB 4 0 0 0 51 0o 0
MILD 1 43 2 0 0 14 2 0
1000~2000 1 96.7 95.0
MOD 0 2 431 0 0 3 0
SEV 0 0 0 44 0 0 015
NB 50 0o 0 51 0o 0
400~10007F11000~2000 MILD 0 44 ! 0 0 1 o0
~ ~ 54 MOD 0 ! 4 0 98.9 0 0 5 1 9.7
SEV 0 0 0 45 0 0 0 14
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PR T B R SR, T T P U BEE S ml 50
PRI 2 RS IRA, BRI Bk
b AR A S5 2 (A A AH EL SR FE AL b
[RIRE B 2 PR SR I O, 53 )2 PR R oAb gk
TR Ay T X b PRI R HE AR S A 158 Sy v AR S
1t EPamh SRR 4 A ESF G0 A RCRARAE:, 7E
FRATLAE HR X T X b PR R B A S5 AR X0 ik A 1) A4
FBNIERRE L3155 100%.

FE HJE A, 400~1000 nm PN Y HST G5 & Al
DAz e T I 2T 2 45 S 300 X ik P (0 R AR AR 28,
1000~2000 nm PN 1% HST 15 .8 7T LLUAR 4y Hh 57 1938 ik
PR NER B S i AR AR S AP R A i )
ST 585575 1T XS R NS Ak E AR Ak,
NMALE T AMB ARG B, E G B G
AT ARSI AT L A b XCE XS B P AS S A A T A
m, B, XoF s s — AR BRI — 5 B A T
ISR, Bl AR R 5 1 )8 B B S X it PRLAS B 1 b
B4FAERO
3 #Hig

A WSS SE COUEBA T YIS H AR B
b PRGN B AT A7V o Yoon £S5 % BRI BR 'GA% T
JZ2FAF#FT 400~1000 nm /=G AR AT FH T A ATt
Al X8 g A Li 2580 {di A 1000~2500 nm ¥t £L4M6G1%
B AN X W) PR 53 A TE H A AL XS B8] PR P IS . AR SC
PRELT 4 A T Ak 45 2 B RS i) P A8 T DL -3 21 46
(400~1000 nm) F1%E I £T AR (1000~2000 nm) P~
BEPI Y HST Hedis, 38 1 AN 5] 14 ' 1 A 357 ARy
AE Y B 156 T2 53 ) 321 P U B3 P ) 4 0 B TR AIE
P BT T FIRIRG e R AL AF % ) PLS-DA 4517
1 SVM FY, B 55T 400~1000 F1 1000~2000 nm
PRI BE PN HST 08 fil-A B9 A S AL I AR 7 3 47 X5k
b, REXS R PR A0SR TR | Rtk v RE R EE DU AR,
SEERL T ERERAAY SIS, L5 IR, XYM RREAS (1
S 5 E 23 B A T AR B B i v, O H R i A
FE O 0238 S5 R e AR . & 400~1000 FT 1000~
2000 nm PN 4= B 1 AR BT Ak B A3 R I ASE 78U 43 5]
SNV-SVM #5 B K1 Autoscale-SVM A5L AU | T ] £E &4
R IETH 3R 5352k 88.3% Fl 95.0%; Xt W (1% Ik F4R1iE
P B A 5 Ak ] 551 7 53 53] & UVE-SVM 5 U Fil
SPA-SVM A8 10 45 A4 1E 7l 3R 43 591 85.0%
F1 95.0%. FHT 400~1000 FI 1000~2000 nm P 7 Bt
Fl-A i HST A5 B0 SVM 4325 R Fi 42 244 1E A
A 96.7%, RERLUT-HL X 43t 4 DARJFARAE S, HH)
) 1 X6 A 4 AR IE A 3R AT 3R 3] 100% 6

£ TR, BT HSI A5 840 51 X8 it P A o fh A
BE B} SVM A% Al {f; F PLS-DA £ &, £ F 1000~
2000 nm PN 4357 B FIRRAE I B 1) e AAEAS 25U T 2 6
A TE B R 34 5 T 400~1000 nm PN B9 AR TR, 1 2 B
1000~2000 nm F] BE{M 25 55 2 5 A 7 £k WUk 35 5 AH
KB B, BiE A T M N AR TS 5r2E. ik

Hh, TP B HST Z08a m -G i A T 4k 4] S AL AU
TFIET B B (LG Al BRI AE I B ) pAsEAY, mT
SERRG it R A TR B AR VRS L D . DG

AR SRy R i) PRAS S A A B 1) PR e A ) S B
TOEUEES . ik, RIS HST HARAEXS i Y A Tifk
K dh g AR T e S . RN, T
400~1000 nm PN HSI 5 B ALY A T AR 51 8 R AH
X2 IR TS AS BA B, ATt —H 17 XS it PRAE &
A HSI EUGH S BATFRA S .
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