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Research Progress of Cold Plasma-induced Inactivation
of Bacterial Spores

NIU Liyuan'?, ZHANG Dianhe'?*, MA Yunfang'?, XIANG Qisen"*>"

(1.College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China;
2.Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, China)

Abstract: Spores are the main dormant forms of some bacteria under harsh environment conditions, which are widely
distributed in nature. Bacterial spores have a rigid structure, which helps resist to environmental stresses such as heat and
ultraviolet radiation. At present, it is difficult to inactivate bacterial spores by the conventional sterilization methods used in
the food industry. Therefore, bacterial spores are one of the most important factors influencing the food safety. In recent
years, the application of non-thermal processing technologies in killing spores has received great deal of attention. Cold
plasma is a novel non-thermal physical sterilization technology, which has a broad application prospect in the food industry
due to its various advantages such as high bactericidal efficiency, low energy consumption, and secondary pollution-free. In
this paper, the application of cold plasma in the inactivation of bacterial spores in foods is reviewed, and the underlying
mechanisms are also summarized in detail. Moreover, the effects of diverse factors on cold plasma-induced spores
inactivation are analyzed, and the future research direction is also prospected. This article provides important theoretical
basis for the practical application of cold plasma in food safety and quality control.

Key words: cold plasma; bacterial spores; inactivation; mechanism; influencing factors
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Fig.1 Schematic diagram of the cold plasma generating devices

2.3 kV. Ji%k 29 kHz =42 19 DBD 45 2§ F {44t
B 6 min J5, f#UERY ZFE AT B (Bacillus amylolique-
Sfaciens) ZFFREWILE R 8.7 1g CFU/mL B A BR
LIF o Reineke 888 AF5Y T ¥4 46 BS T4 e X B2 P
- JIC PR 3 5 5% 3% L 3% 18 (9 A B 2F FFF T8 (Bacillus
subtilis ) FNZE48 2F KT B (Bacillus atrophaeus ) %1
(WILR1EA 5.0 1g CFU/em?) PSR R . g SR,
ZELLNGR R AUAR, A%k 27.1 MHz, J1%2h 30 W
PV S5 B T AL BE 5 min /5, B. subtilis F B. atrop-
haeus ZEH4T AR T 2.4 F1 3.1 1g CFU/ecm?, % I
FITIR, V55 BS AT 25 Fh A1 B ZFH BT B4 2 K 3K
R, HAKCR S 2R R0 s | A PRAR455A G
1.3 AEFESTFENRMPFAEIRKIER

BRI, WS BT IARXTBY) . Arkl SEU1R
BRAFTS YL M 2R BT R AT R KRR, IFRets iy
b A LA | BIA S S TR AR (ER 2) o i,
Kim ZEPY W8 T B B FR v 45 28 TR i B T 3R oy
900 W, 413k 2.5 GHz, il HL ARy 200 XHFh -+
LTARUA R T I AE ZE AT I8 (B. cereus) ZEHLIY R KEL
o £ 0.3 Wem? IRERIIRR S5 B T-ALL L 20 min
J&, PEERERIA B. cereus ZFHIFEAILT 1.5 1g CFU/cm’;
ESARACFRL AL S AH L, ¥ 55 B AR BREZAAE S I 80
WA PLEEATEE . CIESEL(LT. o™ F0 b7) | BIAEE FiI

1 BEE TR AN S R KA

Table 1 Cold plasma-induced inactivation of bacterial spores
AT 2 e T AR A A RRBR EZ PG
WS HURF I (B, subrilis) 44 REGHTH Her0,(0.2%),75 W, 13.6 MHz, 2min 5 subtilis dIIHIEIO0 e CFUML )
WEECEHURT I (B, subiilis) 348 DBDE Tk 255,20 kV, 60 kHz, 25 s B. S”b”"iggfgg? ngCgFSUS/;quCF UmL o)
R LT (B. subtilis) 41 DBDZ BTk 285,35 W, 10 kHz, 84 s B. S“”"‘”’gﬁé@ g@? lﬁgﬂc"JF%Z/;quCFU/mL 1]
WELS TR (B. coagulans) 3 DBD&E Tk %873, 3.5 W, 10 kHz, 84 s Bcg‘if/ﬁluﬁ‘%@ gﬁﬂ%ﬁ%ﬁiﬁg [21]
RREAIFFEE (B, subtilis) 2EA SMD%: 5 F{A 25, 1.1 W, 10 kHz, 7 min B. S“b””ggg@ iﬂg? {Igﬁg’ﬂ;U%gLCFU/mL [22]
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Table 2 Cold plasma-induced inactivation of bacterial spores in foods

S DA 278 BAF B AR A FRS A RKBR EZDUN
w0 fﬁ%@%& SMDHEFK %%, 10kHz 13 W, Smin 20 ?J%gﬁfggﬁéﬁﬁg?ggbﬂg?}%imﬁ [22]
e WLIOERT eeowaEe aosowama e 6]
SRR ﬁfﬁ;ﬁg‘i‘;@(ﬂ MW4EFIA 25,25 GHz 1.2KV, 30 min 21 i%ﬁg%fﬁgg% %‘Z_’g’fﬁfgﬁgmﬁé% [27]
R %ﬁfjfﬂ%% MWZHES TR 2573, 2.5 GHz, 1.2 kV, 30 min %ﬁg;%fgﬁ%@@gﬁf‘ﬁgﬁﬁ? L
INE %fff ﬁj’fg%ﬁ% DBD%: A 25, 80kV, 50 Hz, 20 min LA F ?gjfifﬁggéﬁcggugi }EFE%E ity [28]
spopR B jfﬂ%% MW24B Tk %5%,2.5GHz, L1 kW, 7s %ﬂ?ﬁwif?%ﬁ ?E%F”{;‘;”hae”ﬁ B )

TEARER S R R A 38 MK . Butscher S5
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FEAK T 5.0 g CFU/em’. b4l 15 oA Ab 3 20 A it A
Lt, DBD &5 25 A BILEZH /N2 i ] 4 1) 1 AT R 1
R 2 T, IF BB AR ASF a- DER B TS
o 25 BRTR, Y558 TR BERBIS A RCR KB
S LS AR B 2L (RIS, B KRR RS M PR A B 17
FEFUBE T,
2 REBEFERRIFEIERNLE

FH T A0 B 2F A A R I ELY 45 B TR,
IIARCRIE 4%, H RIS B AR K AN A 2RV BIL
il AR SE AT B . H TR BTFE e DA v 45 B AR
THCHEL AR R A R PR I L R M B AN A
AEAE SN 2 A — R AN A, T ECHAE
(& 2),
2.1 SEMYIRMENLGRENE
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(0;) 45 2 £ 3 19 3 M 5 (reactive oxygen species,
ROS) A LA T A& (N) . —%H LA (NO) . AL A
(NO,) Flid S iR 1R (ONOO ) 25 AR FR TR A
(reactive nitrogen species, RNS) P, [ 3Ry 44 Jix
HEAE 5T 4 DA 25 A AL Bl e A 15, 3 M
TR RN EAL, I ZI IS, TS e f A
ZEFL, AU NI, B B TR RSB T . )
an, nkRE 2,6- R4S (DPA-Ca) S 41 B 2R A% 00 19
RS, FORSICR W 2 A N RN 25 22 se Rt iy ke
Jo Tseng 5P A, L8 LIS SRS SE
BRSNS, B. subtilis 2F4H DPA BYRICE:
i Az PR ] AR SE R 2 T i . RV A S AR
ALPE 20 min J5, B. subtilis ZF 3 DPA Bl =TH =
Z 43.0 pg/mL, BEE T ARLHLH (N 8.0 pg/mL).
Liu 2P SR SYTO 16/P1 XYL Ak iF o8 TR S5 5
TG AK B. cereus ZEFAMVEFABLEI, WASE T
ISR .

A, ROS . RNS S57EMH:4) 0T e A8 s i i 4
NELRSEHE A B 2P AL N 3B, O 58115 DNA 45EY)
RI3FReH—FNIZ AN, A7 AN AT 3 i
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Fig.2 Possible mechanism underlying cold plasma-induced inactivation of bacterial spores
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R, W% IR RS # 55 T Re ke, SRR BTk .
Wang %P B, 2508 F 5 TR 6 min J5, JEEF
ZEHLAT BRI (4. contaminans) ZE T M TN M R
2.5 umol/L; AP HREFIR]AEH 2= 9 min B, 7% P4 5T
75 R L, Y R TR 2 3.2 pmol/L; fE L
AR AT AR GHE LS SRR A, ¥ 48 B TR AL B2 27
TE 1535 il 1656 cm™' AbMIE(E N %, FRUIE L5
a-BR RS K AR AR A, 3R] BB Vs T BT A I )
ZH A ARLE A 2R PN T 1 A B 1 AR R O .

LA BT, ¥ 85 B T AR 7R A 1 T P R
SITEAR KM S B T R T EEAEA . B7E
A JE BT, A ER 2L RN RIS R AR R
S5 B TR A P AR T R R A5, A 1S
SR R R R R, DABE SR v 85 B TN ZEHT I A K
3 O
2.2 HERATFHERETIER

V85 B AT FL T AR A A R B T REfIS 2
ZEMILFRA, IR 455 A0 40 M RE A4 A, AR A
Jii. DNA ENEYIIER, T3 HEIET-PY, #ildn,
Shi 850 3@ ik 75 5 HL 7 WA LS DBD 45 B Ak
AT B. subtilis ZFHLNTRIESARb, 455 3RH,
ARAL R ZE AR R, SRIAGH, K FREKR, Jh7eis
JE, BT R, A X B, BT S, Misss
B TARANFE 35 s Ji, B. subtilis ZFAANEIRRBARTE, 1
IR, BRI, FHMI e 45 B AR FE B S T AR
FERL RS R TR 2 BT i B 2 AR
2.3 ERIMEERSTRENS

BT R IR, ¥ S5 B T L i TR R R g T A 5
Sk, EFE AT UVA(320~400 nm) . UVB(290~
320 nm) A1 UVC(200 nm LLF)B, AR 4R BT HENE
5T 2 R A T EARVE R, DT E A A I
IR4H i DNA &l LA X AR T BB BT, P80
FETP, lan, BRI /1N 25 (small acid soluble
proteins, SASP) J& 4341 T4 T 2R FAZ 0 v i) — Pl ke
AP ER . SASP J&5 DNA XUEGEEELE & 1I5E
BN Sy, HA IE e A 2 SR s LB S5y T FL T B XL
5 DNA RAEAEFF R4S G, I B S R A A%
1k B Y, PATT PR IESES IR IE 5 A 52 i AN s ivd sl I
PRI ZE DNA 321, T3 frg Fib 4 o 45
W R E . Hertwig 2558 & B DL &M R <A
IS5 B TARXT SASP FLREiA 228 R B. cereus 2
I EAT R O ER, 3X AT BRS= B Sl Fe e AR 541
L5 A5 T 20 DNA 3455, i S 20861, 4R
T, —SERIFST I A A5 B TAAB R T 7= A IR 58 A M55
BRI, ST SRR RN iIAN, Van 25057 fF
FER I, 28 ARSI AR 1 45 5 AR St b 2
20 min &, BEEEEEFRNLAY B. cereus ZFALEMR (WA
{E} 6.0 1g CFU/mL)#AIK T 3.7 1g CFU/mL. [HAF,
TEPE RS |5 2 35 A 9s P I (e S84 o, i e

ERH IR A 3k B, AR SE A T Y
BEEE TS, REEE] B, cereus ZF 114 2K
Whio B, TS5BS I A 1 58 NSO AN TR 2518
P RIS A Ge— P45, T i TR AT S

ZFE TR, VAR B AT AN B 2R AL Y SR RAE A
AT e 5 AR T AR TE R BT L AT HORL T AR
SR L. TES TS IIEE . NgsGis T H BTgH
2F AU 25 R S 2i A 35 S IR HOR, RN 53+
TRV R G4 7R S5 B TR SR A T 2RV P A5
AL o
3 EILFEBFHRRNARFAERABRN
FSES

I NESE, V45 25 TR X 41 B 25 9 i 5% RAER:
Z ZF R RPN, EAFE A R PSRN S 4
(FE . FETE . T4 | i AR (L. ek . AR
L) | AAFRSHO I 2 (] Befhor =05 L%
PESRARRIE (B L BRI ILAE) &5
3.1 REBTEHRFEREXBNSY

Vo 85 B A A U 2 SR AT F SR i L
AR FHAEHBOR EZ N ZE . Hertwig 4507
b3 T RF S5 5 TARF MW 45 2 AR 25 T B
MUURL R T B. subtilis F1 B. atrophaeus ZF IR K
A, RF 45 3 7 A G < (10 L/min) , B3 N
27.1 MHz; MW 2§ B AR 25 (15 L/min), 43
A 2.5 GHz. 453K W], RF 858 AKX B. subtilis
1 B. atrophacus ZFH104 3 KR H BT MW 45
B, X AT RES SR FH B P A S5 B A e A TR
BB SAAASTR], 3 T AR Vs P B B RIS A
FAAERE R 255, FETREA T X4 B 2E A R KRR

IHeAb, ¥4 G5 B AT 4 R 2R I A KRR — ik
R FL B SR B R A T T 5 . 04, Deng 452047
PR, SR F LR SR 3.5 A 6.5 KV Y DBD 255
FARALFH 10 min Ji5, B. subtilis ZFF53BIFEAK T 1.8
F1 4.0 Ilg CFU/mL. Yang 2= BF57 &% B, % MW
LEBL AR B. stearothermophilus 21 2% KR
R 5 EL T 258 114 1 0 T 8 5 5 50 R T 3R 45531 2R 600
F1 800 W i) MW &5 2] 144 (it v, A Sy N,) b B
120 s J&, B. stearothermophilus “Ff3 R #IIREY 7.0 1g
CFU/mL 5y BB T 4.0 Fi1 5.1 g CFU/mL., % |
REE R R A ] G2, S R D3 f R i 5,
B RR U= AE ) ROS . RNS S50 PR B ik 2
W TS, AT SR T V8 45 55 AT Al B 20 A%
REGIRE , ABAESZBRR FH P, $2 5 F R AN SR AR
ST, IO T5 25 B A T REFE . 0 A MR il
JBT A5 M) S5 [ R,
3.2 MBS

HHT, 77 A ¥ 85 B A1 I UK 2 2 4625
AR EACRE AR . T IESE, i AUAR
FRJZEL RS . AT T A2 R X VA B 46k S R M) vA A B AR X
AT ZEALI R K BOER . BN, Patil 2502 L3 T AN H]
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S AR T e A= DBD 485 AKX B. atrophaeus %
AR BR . G5REW], L2357 90% N,+10%
0, Fl1 65% 0,~+30% CO,+5% N, Fir=4#J DBD 45
BRI R 40 WHALHE 30 s J&, B. atrophaeus %
AT HIBEAR T 2.2, 1.1 1 6.2 lg CFU/mL. Hertwig
SEPS R B LA N, AR AR T 2 A 7R AR S AR
*F B. subtilis ZFFIHI A KBRS, O, IRZ, 25Tk
25, BASRL Oy FIl N, 7= 2E 178 5558 AR 4 Sl b
B 7 min J&, B. subtilis ZEHI5T BT 3.5, 4.0 Fl
5.3 1g CFU/mL. & FiRgh SR ad s R ] Gk A RS
PARTE R L R P T = A B TG P E ) S R A A 25 5,
PR T 2 R 2R A KR . eah, Ao &
I, AEVR A BRI O AR TP S I SR AT R e
FLXT2H PR 2R 8 KRR, X AT e U S e R
TREAL /M2 O5. «OH Il O, Z3H P4y, T4
TR B TR 2R AR IS, . (R )
g, MAER I REA RS R, BRI R r A
TR SR B, RPSS SRR, R an Ak
BRI ANAR, B & S0, AN gk smid
S BT RR R R R

HEAR, SR SRR A /NS, s R A
PEY) TR AT BEJCIS B 4 PR ZE A 2 T, M-S 3O 2
FEA KRS 318 P AR T n] B G P ot
55 4 DA A AR, SR AR KRR . (A —
L AW W S RN % NV TRE SR N =T A [ty TR T S e N
AN B 2 A AR B R B TR], T REAR R R SR,
DAL, 7R S BRI R T X AR TR 2R A 75 e B 10 4
P, RGEAALH R AR A L A A2 R, LAGA
AL R KBRS S SRR T

JHCHEL ASCAAR A A X B, S B i v A5 B8 AR B
RORIII 22—, 4N, Patil 25192 S 90, B RS CHS
PAHAERTRR L (BN, ¥4 55 BTG 4 PR 251 2% AL
SRALpEZ B . ZAEXHREE 538 3% . 10% Fi1 30%
s I~ A: 1 DBD S8 AR EH A 60 s 5, B.
atrophaeus ZFH157 AL T 5.0, 6.0 F1 6.4 1g CFU/
stripo &% FIREE SR IR I, 145 B A<
AR A o P 5 v ), HCSC P e R A 14 < OHL 4504 1
TR 43 e B 25 FH v, AT 43 5 JHL 6 4 B 25 0 1) 3% K
fEHS
3.3 AMIERTEIFA R

VA5 B8 A B TR) ANy =t 2 5 mi HA K Al B
ZREAIRCR AT . BN, Patil 54 W5 & B, BE
25 O RS TRT R B0, ¥4 55 B AT 40 PR 251 2 KA
R . 4 DBD S5 ARGl SR 65%
0,+30% CO,+5% N,)535I4bH] 30 s F1 60 s Ji, B.
atrophaeus ZFH153 5 AKX T 3.5 11 6.0 1lg CFU/mL.
TR S5 B TR FRED S L 2 B T RIS SR . )
N, Lee 4502 &3, 4 DBD 4555 TR (TR K 30 W)
AbER 3 F1 4 min J5, 3R TAERERTEINY B. cereus 3
5y BIFEAR T 1.6 Al 2.2 1g CFU/g, X2 R M HkiA

21 PR 27 3R T TS P B v B 23 it A v 4 B AR A
BT TR (8 A TR I T, 2 T e LX) 241 BT 26
TR BRI,

K iF o 2R B, ¥ 45 B A 3y =X ik 25 5 )
X 2R A RKAVE o 45 B AR FRAN T 2F 7 1
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