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Effect of Temperature on 3D Printing Performance of
Plant Protein-based Ink

DAI Taotao, QIU Yuxuan, ZHANG Wenhui, DENG Lizhen, LI Ti, LIU Chengmei, CHEN Jun”

(State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China)

Abstract: In order to develop novel food 3D printing material, the effects of different temperatures (25, 30, 35, 40 °C) on
the rheological properties, 3D printing performance and structural properties of the composite plant protein-based ink were
investigated with the soybean protein-isolated, gluten and rice protein (SPI-WG-RP) composite paste as the research object.
The results showed that SPI-WG-RP inks exhibited shear thinning (R*= 0.98) at all temperatures, which was feasible for 3D
printing. The increase of printing temperature reduced the yield stress and viscosity of SPI-WG-RP compound plant
protein-based ink. When the temperature reached 40 °C, the extrusion recovery property of protein-based ink material was
the best (>62.79%). SPI-WG-RP ink had excellent self-supporting behavior. In addition, the increase in printing
temperature promoted the tight connection between the three proteins, and the sample microstructure was more dense and
uniform at 40 °C, which improved the 3D printing performance to a certain extent. This study provides a theoretical basis
for the preparation of plant protein-based ink with good printing performance, which is conducive to expanding the

application of 3D printing technology in the field of plant protein.
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Fig.3 Strain scanning curves (A) and viscosity curves (B) of
SPI-WG-RP ink system under different extrusion temperatures
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Fig.4 Shear recovery test (A) and shear recovery rate (B) of
SPI-WG-RP ink system under different extrusion temperatures
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Fig.5 Change curves of the energy storage modulus, loss
modulus (A) and recombination modulus (B) of SPI-WG-RP ink
system with angular frequency under different extrusion
temperatures
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Table 2 Coefficients obtained by fitting the SPI-WG-RP protein paste power low model at different temperatures

G G"
E[ELEE (°C
FTEMEE (C) K'(Pa-sh) " e K'(Pa-s") o 7
25 2373.32430.54¢ 0.17+0.00¢ 0.9931 547.22+7.02¢ 0.20:£0.00° 0.9957
30 2613.55+25.11° 0.18+0.00° 0.9965 615.36+7.76° 0.22+0.00° 0.9964
35 7478.36+108.30° 0.21+0.00* 0.9949 2171.18+62.77° 0.25+0.01* 0.9875
40 18302.04+212.00* 0.19+0.00° 0.9956 5102.39+170.41° 0.21£0.01° 0.9731




3454 5 134

B , S IR HEM SR 3D FTEDPERERY IR 35

FTENGE N aois P . i 3 B, & Ap(HR
71~ e BEIE SR B, AR z (H RN BAR A B s AR B, H
A {EFEFTENRLEE .25 715 (P<0.05), z (HBETTER IR
HTFE S N RIS TR o WETER TR A EANIE 2 {5
F TET AT AT S e 5% Hh il R B PRIER>2572¢,
AEASSZ G vh A5 B HHRLRE B Ty, Tl SRR R, Al
SRS THF N, [RIIE PR o BRI 5 BE B N, (54T
B[S E G-

#£3 ETAREET SPI-WG-RP & M1 55 SRR &
(EEIINES
Table 3 Coefficients obtained by fitting SPI-WG-RP protein
paste weak gel model at different temperatures

FTENIRE(C) A(Pas'") z R
25 2433.79+28.59¢ 5.79+0.09* 0.9944
30 2682.13+24.37¢ 5.54+0.06° 0.9970
35 7786.25+123.94° 4.67+0.07° 0.9942
40 18989.95+256.63* 5.28+0.08° 0.9942
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Fig.6 Images of one-dimensional and two-dimensional model

printed products under different extrusion temperatures

PT-25

PT-30 PT-35

il=rarars

7 ANTEIBE R AT R = AERR ™ S AL
FIEALE
Fig.7 Top view and front view of 3D model printed under
different extrusion temperatures
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Fig.8 Moisture distribution of SPI-WG-RP inks under different
extrusion temperatures
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Fig.9 FTIR spectra of SPI-WG-RP inks under different
extrusion temperatures
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Table 4 Secondary structure of SPI-WG-RP ink under different
extrusion temperatures

FTEMREECC) il TGN B B
25 0.39£0.02°  0.23+0.01°  0.21£0.00° 0.18+0.01°
30 0.40£0.06°  0.22+0.05°  0.20£0.02*  0.18+0.02°
35 0.38+0.01°  0.25:0.00°  0.21£0.00° 0.17+0.01°
40 0.39+£0.02°  0.25:0.01°  0.20£0.00°  0.16+0.02°

2.8 REXTMEMUELIF

H RO 2 TSR Ao i = S AR
FOMIEZSI S & 10 S AN [RIFT BN IREE A il i R 58
TEOULIE, FHEAE £ T BN BE A3 i, BT b it FLR AR 15 5
/B Z2, U IHER 1 B SR NP BRES R B 5] 03X
AT B N ARG O TEIR BE TT AR BE T —Fh i 2
CIV 5 S Ec s T N RN TR 4R S i s = PSS
SR ECE BIHOIEE R Rk, TSR RgF T EDARE
A B TOUL A A4 -5 AT TR T S TR T o AR 55 1Y
SCAERE S IAH—E

PT-25 PT-30 PT-35

<1007

500 pm 500 um

00

100 pm

B 10 AREEFTEFEET 3D FTEN =g T a e+
WA GAG|

Fig.10 Scanning electron microscope images of 3D printed
products freeze-dried at different printing temperatures
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