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温度对植物蛋白基油墨 3D打印性能的影响
戴涛涛，裘雨萱，张文慧，邓利珍，李　俶，刘成梅，陈　军*

（南昌大学食品科学与资源挖掘全国重点实验室，江西南昌 330047）

摘　要：为了开发新型食品类 3D打印材料，本文以大豆分离蛋白-谷朊粉-大米蛋白（SPI-WG-RP）复合糊状物为对

象，探究不同打印温度（25、30、35、40 ℃）对复合植物蛋白基油墨的流变性能、3D打印性能和结构特性的影

响。结果表明，所有温度下 SPI-WG-RP油墨均表现出剪切稀化行为（R2≥0.98），具有 3D打印可行性。打印温

度的升高降低了 SPI-WG-RP油墨的屈服应力和黏度。当温度达到 40 ℃ 时，蛋白基油墨材料的挤出恢复最好

（>62.79%），SPI-WG-RP油墨具有出色的自支撑行为。此外，打印温度的升高促进了三种蛋白之间的紧密连

接，40 ℃ 时样品微观结构更加致密均匀，在一定程度上提升了 3D打印性能。本研究为制备具有打印性能良好的

植物蛋白基油墨提供了理论依据，这有利于拓展 3D打印技术在植物蛋白领域的应用。
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Effect of Temperature on 3D Printing Performance of
Plant Protein-based Ink

DAI Taotao，QIU Yuxuan，ZHANG Wenhui，DENG Lizhen，LI Ti，LIU Chengmei，CHEN Jun*
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Abstract：In order to develop novel food 3D printing material, the effects of different temperatures (25, 30, 35, 40 ℃) on
the rheological properties, 3D printing performance and structural properties of the composite plant protein-based ink were
investigated with the soybean protein-isolated, gluten and rice protein (SPI-WG-RP) composite paste as the research object.
The results showed that SPI-WG-RP inks exhibited shear thinning (R2≥0.98) at all temperatures, which was feasible for 3D
printing.  The  increase  of  printing  temperature  reduced  the  yield  stress  and  viscosity  of  SPI-WG-RP  compound  plant
protein-based ink. When the temperature reached 40 ℃, the extrusion recovery property of protein-based ink material was
the  best  (>62.79%).  SPI-WG-RP  ink  had  excellent  self-supporting  behavior.  In  addition,  the  increase  in  printing
temperature promoted the tight connection between the three proteins, and the sample microstructure was more dense and
uniform at 40 ℃, which improved the 3D printing performance to a certain extent. This study provides a theoretical basis
for  the  preparation  of  plant  protein-based  ink  with  good  printing  performance,  which  is  conducive  to  expanding  the
application of 3D printing technology in the field of plant protein.

Key words：3D printing；protein-based inks；rheological properties；plant protein；temperature

3D打印技术又称增材制造技术，其原理是通过

逐层打印、堆积成形的方式打印预先设计的结构[1]。

3D食品打印技术将 3D打印和数字烹饪技术结合起

来，对食品进行塑形。该技术设计方便灵活，具有高

精度、高质量、低成本的优点[2]。除了定制食物形

状，3D打印还可以实现个性化的营养和能量设计，满
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足消费者对具有独特结构、质地和营养的新颖适应

性食物的需求[3]。因此，在过去的几年中，3D食品打

印技术引起了食品行业的极大关注。

蛋白质是组成人体一切细胞、组织的重要成分，

承担着生命过程中重要的生物功能。挤出型 3D打

印已成功应用于一系列糊状食品材料的打印中。蛋

白糊具有一定的挤压成型性能，但其 3D打印产品的

精度较差，稳定性较低。研究表明，添加海藻酸钠、

黄原胶、魔芋胶和其他多糖可以改善蛋白糊的流变

性能和 3D打印性[4−5]。Liu等[6] 优化了牛奶蛋白浓

缩物和酪蛋白酸钠的配方，当总蛋白含量为 40%~
45%时，显示出最佳的 3D打印性；乳清蛋白和魔芋

胶体系可以精确打印设计 3D食物，当蛋白质含量超

过 20%时，得到的形状明显改善[5]。然而，在植物蛋

白油墨的研究中，尤其是植物肉油墨的研究中，无添

加水凝胶类油墨则少有研究。大豆分离蛋白（SPI）、
小麦面筋蛋白（WG）和大米蛋白（RP）是植物蛋白的

三大主要来源，已被证明可用来制备 3D打印植物

肉，然而仍需要可可脂等物质的加入以改善油墨的打

印性能[7]。

温度会影响食品材料的流变特性，进而会影响

材料的最终 3D打印性能[8]。就半固体来说，当样品

流动性较差时，温度对其 3D打印适应性的影响更明

显。挤压前，油墨需要在适当的温度下软化以适应光

滑的挤压。研究表明，混合物料会在不同温度下表现

出不同的机械强度和变形效应从而影响打印性能，

Zeng等[9] 研究发现混合淀粉的屈服应力随打印温度

的升高先增加后降低；Tian等[10] 研究温度对混合凝

胶体系的 3D打印力学的影响，结果发现，当混合体

系在 45 ℃ 时，可保证油墨顺利挤出，并具有良好的

灯丝保真度；Martínez-Monzó等[8] 研究了温度对马铃

薯泥 3D打印的影响，结果表明，在 30 ℃ 下，脱水马

铃薯泥（250 mL全脂牛奶中加入 38 g脱水马铃薯

泥）含量较高的配方最稳定。

然而，关于温度对植物蛋白质基 3D打印物料性

能影响的研究还处于空白。因此，本研究旨在研究温

度对 SPI-WG-RP油墨 3D打印过程三个阶段（挤出

阶段、恢复阶段和自支撑阶段）中流变性能的影响，

并评价不同打印温度下 SPI-WG-RP油墨形成的

3D打印物的结构特性。研究结果可为更好地理解打

印温度对蛋白质基油墨的流变行为和 3D打印可行

性的影响提供理论和实践指导。 

1　材料与方法 

1.1　材料与仪器

食品级大豆分离蛋白（SPI，纯度=91.9%）　山东

临沂松生物制品有限公司；小麦面筋 （WG，纯

度=77.5%）　河南恩苗有限公司；大米蛋白（RP，纯
度=83.4%）　江西恒顶食品有限公司；菜籽油　山东

鲁华集团有限公司。

LuckyBot型 3D打印机　盐城威布三维科技有

限公司；AL204型电子天平　梅特勒-托利多仪器（上

海）有限公司；GKN-DDQ-1型打蛋器　杭州九阳生

活电器有限公司；MCR  302型流变仪　奥地利

Anton Paar公司；EDUMR20-015V-I型低场脉冲核

磁共振分析仪　上海纽迈有限公司；LSM800扫描电

镜　德国蔡司公司；Nicolet 5700型傅里叶变换红外

光谱仪　美国 Thermo Electron公司。 

1.2　实验方法 

1.2.1   样品准备　SPI-WG-RP复合植物蛋白基油墨

（3D打印油墨）是参考前人的研究[11] 稍作修改而制

备的。首先，将 SPI、WG和 RP按质量比为 1:1:0.7
充分混合形成复合蛋白粉末。然后将该复合蛋白粉

末与蒸馏水和菜籽油按 3:8:1的质量比混合（总蛋

白质含量为 25%），这个比例的选择是基于真实肉类

的平均蛋白质含量（25%左右）。然后，用打蛋器混

合复合蛋白粉末、水和油约 1 min，得到可食用的

3D打印复合植物蛋白基油墨。最后，用食品级保鲜

膜包裹这些油墨，以防止在储存过程中水分蒸发。

3D打印油墨在 4 ℃ 下放置 12 h后进行打印。 

1.2.2   流变特性测定　如图 1所示，基于挤出型

3D打印的特点，将 3D打印过程分为三个阶段，分别

是挤出阶段、恢复阶段和自支撑阶段。打印的第一

阶段是挤出阶段：通过表征油墨的黏度、屈服应力和

触变性（剪切变稀）行为，评估其在该过程中的挤出性

能。打印的第二阶段是恢复阶段：油墨从喷嘴腔（打

印温度：25、30、35、40 ℃）挤出到室温（25 ℃），暴露

于高剪切速率并经历温度变化，使用剪切恢复模式对

油墨进行了高剪切速率和低剪切速率的模拟，评估油

墨在经历高剪切速率后的可恢复性。三是自支撑阶

段：油墨暴露在室温下，G'、G''、G*对于确定 3D打印

物沉积过程的自支撑行为十分重要。

采用 MCR 302型流变仪进行流变特性的测

定[12]，均取用按 1.2.1方法制成的样品。采用平板-平
板测量系统，平板直径 4 cm，设置间隙 1 cm，加入样

品，刮去平板外多余样品，加上盖板，每次测试均需更

换样品。除非另有说明，否则测试之前在初始测定温

度下平衡 30 min以达到稳定状态。

温度-黏度关系曲线：以 1 ℃/min的升温速率从

25 ℃ 升到 100 ℃，再以 1 ℃/min的降温速率从

100 ℃ 降到 25 ℃，分别绘制样品在升温和降温过程

中的黏度曲线。

应变扫描曲线的测试：角频率固定为 10 rad/s，
固定振幅范围 0.01%~1000%，分别测定 25、30、35、
40 ℃ 打印温度下样品的应变扫描曲线。

静态剪切流变的测试：分别在 25、30、35、40 ℃
下，测量剪切速率（γ）从 0.1~10 s−1 递增范围内样品

黏度（η）的变化情况，对静态剪切数据点进行回归拟

合，公式为：

η =Kγn−1 式（1）
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式中：K为稠度系数，Pa·sn；γ 为剪切速率，s−1；

n为流体指数。

剪切恢复特性的测定：温度设定分别为 25、30、

35、40 ℃，先在 1 s−1 的低剪切速率下剪切 180 s，随

后在 10 s−1 的高剪切速率下持续剪切 180 s，最后再

在 1 s−1 的低剪切速率下剪切 180 s。根据第三阶段

前 30 s时体系的ƞ值与第一阶段平均ƞ的比值来表

征体系的剪切恢复特性。G*从打印温度（25、30、

35、40 ℃）到室温（25 ℃）条件下的变化情况被用来

表征体系凝胶化的时间依赖性。恢复率由以下公式

计算[13]：

恢复率(%) =
根据第一步获得的平均黏度

第三步前30 s内获得的黏度
×100

式（2）

动态黏弹性测定：分别在 25、30、35、40 ℃ 下

稳定 30 min后，设定扫描应变 0.1%，测定由低频率

（0.1 Hz）至高频率（100 Hz）内储能模量（G'）、损耗模

量（G''）、复合模量（G*）随频率的变化情况，并拟合如

下幂律关系[14]：

G′ = K′ωn′ 式（3）

G′′ = K′′ωn′′ 式（4）

G∗ = Afω
1/z 式（5）

式中：K′和 K′′分别是储能模量和损耗模量拟合

出的幂律关系的幂律常数，而 n′和 n′′分别是储能模

量和损耗模量拟合出的幂律关系的平均频率指数，Af

代表凝胶强度，z代表黏弹性程度，ω 代表角速度。 

1.2.3   3D打印过程　采用 LuckyBot型 3D打印机

打印 SPI-WG-RP复合植物蛋白基油墨，通过内置的

加热装置分别设定 3D打印温度为 25、30、35和

40 ℃。这四种温度下打印的样品分别命名为 PT-

25、PT-30、PT-35、PT-40，环境温度为 25 ℃。首先

将冰箱中 SPI-WG-RP油墨取出，并在室温下使其温

度恢复至 25 ℃，在不引入气泡的前提下缓慢倒入注

射器中。物料在打印温度（25、30、35、40 ℃）下平

衡 30 min后再开始打印。喷嘴直径设定为 0.84 mm，

打印速率为 20 mm/s。对不同温度下 SPI-WG-RP

油墨的 3D可打印性，分别采用一维结构（直线、五角

星）、二维结构（网格结构）和三维结构（实心球）进行

评价。填充图案为直线、五角星和网络结构的填充

密度为 100%；填充图案为实心球的填充密度为

50%，模型采用 Cura 15.04设计。 

1.2.4   低场核磁共振（LF-NMR）分析　采用低场核

磁进行水分分布的测定，将 1 g不同温度（25、30、

35、40 ℃）下打印的样品分别包裹在食品级塑料薄

膜中，放入直径 10 mm的玻璃管中。然后，将玻璃管

放入核磁共振分析仪中，根据系统中水分子的限制扩

散来测量水分分布。按 Liu等[15] 的方法采用 carl-

purcell-meiom-gill（CPMG）脉冲序列测定弛豫时间

（T2）。根据 T2 数据测定固定水（T21）、部分固定水

（T22）和游离水（T23）的水分分布。 

1.2.5   傅里叶变换红外光谱（FT-IR）测试　采用溴

化钾压片法[16] 进行傅里叶变换红外光谱的测定，将

不同温度下打印的样品冻干后，各称取约 2 mg冻干

样品与 100~200 mg溴化钾粉末充分混合，球形研磨

机研磨 1~2 min，压成透明薄片，装入压片夹，以溴化

钾空白压片作对照，在 4000~400 cm−1 波数范围内

扫描。 

1.2.6   扫描电镜观察　使用扫描电子显微镜[17] 观察

打印物的微观结构，将不同温度下打印的样品冻干

后，用导电两面胶纸将样品截面固定在样品座上，对

各样品表面喷金，利用扫描电子显微镜在加速电压

10 kV，放大倍数 100倍、500倍下进行观察。 

1.3　数据处理

所有试验均重复 3次，采用 SPSS软件计算平均

值和标准差，使用邓肯法（P<0.05）比较平均值之间的

差异性。采用 Origin 2021进行图形绘制。 

2　结果与分析 

2.1　油墨的温度响应性

SPI-WG-RP油墨的黏度随温度的变化如图 2

所示，可以发现本油墨无明显的凝胶化转变温度，所

以该蛋白油墨体系为无明显温度响应特性的一般浆
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图 1    流变研究框架图

Fig.1    Rheological research framework
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状食品材料，但是在 25 ℃ 到 60 ℃ 之间黏度随温度

明显降低。随着打印温度的升高，剪切黏度先降低后

基本保持比较低的水平，说明温度升高有利于 3D打

印材料的挤出。Woldeyes等[18] 也证实蛋白质的表

观特性黏度会随着温度的升高而普遍降低；Liu等[12]

表示热响应行为是油墨的理想特性，这意味着油墨的

黏度在高温下会大大降低。此外，从图 2的降温曲

线可知，本油墨的温度响应性是不可逆的。
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图 2    SPI-WG-RP油墨的升温和降温黏度曲线
Fig.2    Heating and cooling viscosity curves of

SPI-WG-RP ink
  

2.2　温度对挤出阶段油墨流变特性的影响

打印的第一阶段是挤出阶段：通过表征油墨的

屈服应力、黏度和触变性（剪切变稀）行为，评估其在

挤出过程中的挤出性能。屈服应力即材料内部结构

开始破裂的点[13]，反映了油墨的机械强度，对油墨的

可挤出性至关重要。油墨材料的应变扫描曲线如

图 3A所示，随着打印温度升高，开始偏离线性黏弹

区域的值逐渐降低，即屈服应力点降低，这可能是因

为温度升高促进了糊状物网络结构的变形[15]，而这对

于挤出阶段来说是有利的。一般来说，具有低屈服应

力的油墨更有利于在 3D打印过程中的挤出[19]。另

一方面，因为在挤出过程中需经常启动和停止打印机

以调整挤出位置，所以较低的屈服应力可以更好地保

护打印机[12]。

蛋白类材料的表观黏度直接受温度的影响，在

3D打印的情况下也是如此[20]。较理想的油墨配方

需要显示出合适的黏度，该黏度值要满足既可以从喷

嘴挤出，又可以支撑组合层[21]。SPI-RP-WG油墨在

不同温度下的流动曲线如图 3B所示。随着剪切速

率的增加，剪切黏度降低，说明了油墨材料为剪切变

稀的假塑性流体，这种剪切稀化行为被认为有利于

3D打印过程；随着打印温度的升高，材料剪切黏度降

低，这是因为升高温度有利于提高材料热挤出的连续

性[12]，因此蛋白油墨更易被挤出。通常采用双参数幂

律模型来描述蛋白糊剪切变稀特性，得到的参数如

表 1所示，R2≥0.98，所有油墨的流动性指数 n值均

小于 1，表明该油墨为假塑性非牛顿流体，稠度系数

K均降低，说明材料变得更易流动，有利于 3D打印

的挤出阶段[13]。 

2.3　温度对恢复阶段油墨流变特性的影响

打印的第二阶段是恢复阶段：油墨从喷嘴腔（打

印温度：25、30、35和 40 ℃）挤出到室温环境（25 ℃）

的过程中，会经历剪切力和温度的变化，因此，使用剪

切恢复[12] 以模拟油墨在经历高剪切速率后的可恢复

性。图 4A说明了在低剪切速率和高剪切速率改变

下油墨黏度的剪切恢复行为。随着剪切速率的增加，

油墨剪切黏度逐渐降低，这意味着较快的挤出速度有

利于 SPI-WG-RP油墨连续性挤出，这主要是因为油

墨材料通过打印喷头时经历的剪切力破坏了网络结

构而产生了较低的黏度；随着打印温度的升高，材料

剪切黏度降低，说明热挤出有利于蛋白油墨的 3D打

印。另外，随着打印温度的升高，油墨的剪切恢复率

显著增加（图 4B），这是由于较高的打印温度可以促

进蛋白颗粒之间的紧密连接[20]，这一现象有利于油墨
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图 3    不同挤出温度下 SPI-WG-RP油墨体系的应变扫描曲

线（A）和挤出阶段的黏度曲线（B）
Fig.3    Strain scanning curves (A) and viscosity curves (B) of
SPI-WG-RP ink system under different extrusion temperatures

注：PT-25代表打印温度为 25 ℃，PT-30代表打印温度为 30 ℃，
PT-35代表打印温度为 35 ℃，PT-40代表打印温度为 40 ℃，
图 4~图 10同。
 

表 1    基于不同温度下 SPI-WG-RP蛋白糊 Power-low模型
拟合得到的系数

Table 1    Coefficients obtained by fitting the SPI-WG-RP
protein paste Power-low model at different temperatures

打印温度（℃） K（Pa·sn） n R2

25 343.21±2.77a 0.24±0.01b 0.9955
30 307.51±3.59b 0.26±0.01a 0.9914
35 239.20±3.99c 0.20±0.01c 0.9808
40 200.31±2.34d 0.09±0.01d 0.9814

注：同一列中的字母代表数据在数理统计上存在显著差异（P <0.05）；表2~
表4同。
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堆积自支撑结构的形成，也有可能造成过度的挤出膨

大效应。 

2.4　温度对自支撑阶段油墨流变特性的影响

打印的第三阶段是恢复阶段：油墨暴露在室温

下，G'、G''、G*对于确定 3D打印物沉积过程的自支

撑行为都很重要。在 3D打印的自支撑阶段，物料自

身需要具备足够的机械强度以维持结构的稳定性，在

此阶段，G'和 G*对此有重要影响[22]。储能模量（G'）
通常用于测量样品的固体弹性行为，可以反映样品的

机械强度，机械强度高的油墨具有更好的自支撑性，

可以更好地保持打印形状[15]。复合模量（G*）反映了

抵抗压缩变形和机械强度的能力，对 3D打印过程来

说非常重要[23]。G*的变化反映了不同打印温度下的

整体形变阻力的情况，以及在室温下 10 min后油墨

的凝胶化行为。不同温度下稳定后的频率扫描曲线

如图 5所示，结果表明随着打印温度升高，G"、G'均
升高，且 G'>G''，这表明在更高的打印温度下会形成

更加刚性的网络结构。G*表示实体的性质，G*的增

加同样反映了抵抗压缩变形和机械强度的能力增

强。根据频率扫描结果，可以推断打印后物料的稳

定性能更强，有利于构造机械强度更强且更稳定的打

印物。

从图 5A看出，不同温度下胶体体系的 G'和 G''
都表现出明显的频率依赖性。通过幂律模型（Power
low model）和弱凝胶模型（Weak gel model）分别对

频率扫描数据进行分析，拟合参数如表 2所示。常

数 K与 LVR内的网络强度有关，指数 n与模量的频

率依赖性有关。对于完全交联的凝胶，n为 0；对于

具有弱相互作用的物理凝胶，如氢键，n为较小的正

数[24]。随着温度的升高，K'、K''均增大，n'、n''为较小

的正数且均先增大后减小，说明油墨之间具有弱相互

作用，且升高温度有利于增强油墨材料的网络强度。

Af 代表凝胶强度，可以解释为流变学单元（滴、

纤维、胶束等）之间相互作用的强度；z代表黏弹性程

度，可以解释为彼此相互作用的流变单元的数量，通

过观察以上两个参数值，可以评估这些食品材料在 3D
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图 4    不同挤出温度下 SPI-WG-RP油墨体系的剪切恢复试
验（A）和剪切恢复率（B）

Fig.4    Shear recovery test (A) and shear recovery rate (B) of
SPI-WG-RP ink system under different extrusion temperatures

注：图中不同字母代表数据在数理统计上存在显著差异
（P<0.05）。
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图 5    不同挤压温度下 SPI-WG-RP油墨体系的储能模量、损
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Fig.5    Change curves of the energy storage modulus, loss
modulus (A) and recombination modulus (B) of SPI-WG-RP ink

system with angular frequency under different extrusion
temperatures

 

表 2    基于不同温度下 SPI-WG-RP蛋白糊幂律模型拟合得到的系数

Table 2    Coefficients obtained by fitting the SPI-WG-RP protein paste power low model at different temperatures

打印温度（℃）
G' G''

K'（Pa·sn） n' R2 K''（Pa·sn） n'' R2

25 2373.32±30.54d 0.17±0.00d 0.9931 547.22±7.02c 0.20±0.00c 0.9957
30 2613.55±25.11c 0.18±0.00c 0.9965 615.36±7.76c 0.22±0.00b 0.9964
35 7478.36±108.30b 0.21±0.00a 0.9949 2171.18±62.77b 0.25±0.01a 0.9875
40 18302.04±212.00a 0.19±0.00b 0.9956 5102.39±170.41a 0.21±0.01b 0.9731
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打印挤出应用中的适用性。如表 3所示，高 Af 值表

示高凝胶强度，低 z值表示较低的黏弹性程度，且

Af 值随打印温度显著升高（P<0.05），z值随打印温度

的升高先下降后升高 。研究表明高 Af 值和低 z值
的面团类似材料用注射器挤出可能非常困难[22,25−26]，

但本实验中随着挤出温度的升高，油墨黏度降低，使

得油墨易于挤出，同时因为凝胶强度的增加，使得打

印成型性更好。
 
 

表 3    基于不同温度下 SPI-WG-RP蛋白糊弱凝胶模型拟合
得到的系数

Table 3    Coefficients obtained by fitting SPI-WG-RP protein
paste weak gel model at different temperatures

打印温度（℃） Af（Pa·s
1/z） z R2

25 2433.79±28.59c 5.79±0.09a 0.9944
30 2682.13±24.37c 5.54±0.06b 0.9970
35 7786.25±123.94b 4.67±0.07d 0.9942
40 18989.95±256.63a 5.28±0.08c 0.9942

  

2.5　植物蛋白基油墨的 3D打印性能评价

为了评估油墨的打印性，本研究打印了一维结

构（五角星）、二维结构（网格结构）和三维结构（球）。

图 6显示了不同打印温度下五角星一维、网格二维

结构的打印产品。当温度较低（<30 ℃），复合蛋白体

系的流动性变差导致打印过程中发生堵塞，油墨挤出

量减少使得打印准确性降低，打印效果不佳。随着打

印温度的增加，挤出的油墨总量越来越多，打印效果

逐渐变好，这是因为随着温度的升高，复合蛋白油墨

的黏度不断降低，有利于 3D打印油墨的顺利挤出。

另外，由于屈服应力反映了启动油墨流动所需的最小

压力，对于使油墨从狭窄的喷嘴中挤出非常重要，升

高温度降低了屈服应力，这是 3D打印油墨顺利挤出

的另一原因[19]。另外，恢复阶段的数据表明，提高打

印温度可以优化蛋白基油墨材料的挤出恢复特性，这

也为油墨自支撑结构的形成提供了依据。如图 7所

示，40 ℃ 打印温度下打印形状更加完整，且 24 h无

明显变形，这是因为打印温度的提高优化了蛋白基油

墨材料的挤出恢复特性，SPI-WG-RP油墨体系较好

的剪切恢复性可以在油墨挤出的同时快速恢复足够

的机械强度来支持下一个基础层，形成刚性的网络结

构[12]，以形成可以自支撑的球形。 

2.6　温度对油墨水流动性质的影响

食用油墨内部的水分分布会极大地影响其流变

性能，从而影响其印刷适应性和印刷精度[27]。如图 8
所示，随着打印温度的升高，蛋白油墨的 T21 横向弛

豫时间先减小后增加，T22 横向弛豫时间基本不变，

说明打印温度的提高降低了蛋白油墨中固定化水的

水分自由度，使得水分子与蛋白油墨之间的结合更加

紧密[28]，然而随着温度的进一步升高 T21 略有增加，

这可能是温度的升高加剧了分子的运动，水分自由度

增加。已有研究人员证明，具有较长横向松弛时间和

较高自由度的食用油墨更容易从喷嘴中挤出[29]。该

结果表明，温度的改变会引起 SPI-WG-RP油墨与水

结合能力的改变，从而影响 3D打印性能。
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图 8    不同挤出温度下挤出的 SPI-WG-RP油墨水分
分布情况

Fig.8    Moisture distribution of SPI-WG-RP inks under different
extrusion temperatures

  

2.7　温度对油墨傅里叶红外光谱（FTIR）的影响

傅里叶红外光谱图（FTIR）可以用来分析蛋白质

的官能团和二级结构的变化。不同挤出温度下蛋白

油墨的 FTIR光谱图如图 9所示，酰胺 A的最大吸

收峰位于 3200~3600 cm−1 的波长范围内，主要涉及

N-H键和氢键的伸缩振动[30]，酰胺 B的最大吸收峰

则位于 2800~3000 cm−1 的波长范围内，主要是甲基

的伸缩振动[31]，四种挤出温度下的 SPI-WG-RP油墨

具有相似的 FTIR谱图，无特征性吸收峰出现，这表

明升高打印温度对植物蛋白基油墨的官能团变化没

有影响。此外，酰胺 I区的吸收峰在 1600~1700 cm−1，

主要是蛋白质骨架中 C=O伸缩振动引起，常用来反

映蛋白质的二级结构，其中 1610~1640 cm−1 为 β-折
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图 6    不同挤出温度下的一维、二维模型打印
产品示意图

Fig.6    Images of one-dimensional and two-dimensional model
printed products under different extrusion temperatures
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图 7    不同挤出温度下打印的三维模型产品俯视图
和正视图

Fig.7    Top view and front view of 3D model printed under
different extrusion temperatures
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叠，1640~1650 cm−1 为无规则卷曲，1650~1660 cm−1

为 α-螺旋，1660~1695 cm−1 为 β-转角 [32]。对 FTIR
谱图进行拟合分析结果如表 4所示，随着挤出温度

的升高，四种复合蛋白的 β-折叠、无规则卷曲、α-螺
旋和 β-转角均无显著性变化（P>0.05）。结果表明，

在一定范围内，温度对该复合蛋白体系的二级结构没

有显著的影响。
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图 9    不同挤出温度下挤出的 SPI-WG-RP油墨 FTIR谱图
Fig.9    FTIR spectra of SPI-WG-RP inks under different

extrusion temperatures
 
  

表 4    不同挤出温度下 SPI-WG-RP油墨二级结构
Table 4    Secondary structure of SPI-WG-RP ink under different

extrusion temperatures

打印温度（℃） β-折叠 无规则卷曲 α-螺旋 β-转角

25 0.39±0.02a 0.23±0.01a 0.21±0.00a 0.18±0.01a

30 0.40±0.06a 0.22±0.05a 0.20±0.02a 0.18±0.02a

35 0.38±0.01a 0.25±0.00a 0.21±0.00a 0.17±0.01a

40 0.39±0.02a 0.25±0.01a 0.20±0.00a 0.16±0.02a

  

2.8　温度对油墨微观结构的影响

扫描电镜已被广泛用于观察复杂的复合材料的

微观形态[10]。图 10为不同打印温度下样品的电镜

微观图，随着打印温度的增加，截面上的孔洞变得更

小更多，说明蛋白质油墨内部的物理结构更均匀。这

可能是因为较高的打印温度可以促进了三种蛋白之

间形成更为均匀的网状结构，从而在基于蛋白质类油

墨中形成致密的微观结构[20]。因此，所得到的打印样

品的微观结构与前面所讨论的流变行为和更强的自

支撑能力相一致。
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图 10    不同打印温度下 3D 打印产品冷冻干燥后的扫描电子
显微镜图

Fig.10    Scanning electron microscope images of 3D printed
products freeze-dried at different printing temperatures

  

3　结论
本研究制备了可用于挤压型 3D食品打印机的

SPI-WG-RP复合植物蛋白基油墨，明晰了不同打印

温度对复合植物蛋白基油墨的影响。研究结果表明，

打印温度的升高增加了 SPI-WG-RP油墨的储能模

量（G'）、损耗模量（G''）和复合模量（G*），降低了油墨

的稠度系数（K）和屈服应力，并通过幂律模型和弱凝

胶模型拟合量化了油墨的剪切变稀行为。一定程度

增加打印温度的方法可以改善蛋白基油墨的印刷性

能，主要体现在固定化水的增加以及微观结构上的均

匀化。本研究结果将为复合植物蛋白基 3D打印工

艺提供初步依据，为制备具有良好 3D打印性能的蛋

白质类产品提供了有用信息，这有利于拓展 3D打印

技术在食品领域的应用。
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