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Abstract: Initiating from omics, the research aimed to discover and filter oat active peptides effective against
hyperuricemia, and to study the operational mechanism of these oat active peptides in treating hyperuricemia. In the present

study, RNA was extracted from oat grains for high-throughput transcriptomic sequencing, and oat grain protein sequences
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were acquired by comparing with a reference genome and quantifying the expression of protein-coding genes. Active
components of oat peptides were selected by employing high-throughput enzymolysis in silico, Peptide Ranker, and
ADME/T. Network pharmacology were utilized to discover active peptides from oat proteins that were effective against
hyperuricemia. The findings indicated that for 'Bayou No.l' and 'Baiyan No.7' oat grains, the counts of protein sequences
expressed with under 90% repeatability during the grain formation and grain-filling phases were respectively 6310, 3157,
and 5804, 5107. The optimal peptide library was from the protein sequences of 'Bayou No.1' naked oat in the grain-filling
stage, processed through simulated enzymatic digestion in silico with proteinase K, yielding a library with 42 oat active
peptides predicted to have potential activity and favorable pharmacological properties. The initial screening revealed key
oat active peptides sequences against hyperuricemia to be PPF, PPPL, MPF, MPL, and PPPF, potentially targeting genes
like ALB, IL1B, SRC, CASP3, and STAT3, influencing pathways in cancer, lipid and atherosclerosis, and chemically induced
carcinogenesis-receptor activation to mitigate hyperuricemia. Molecular docking showed that binding energy <-5 kJ/mol
accounted for 82.86%, indicating that the main active components of oat peptides had good binding activity with most of
the targets. The optimal oat synthetic peptide PPF showed good xanthine oxidase inhibition (IC5,=6.132 mmol/L). Naked
oat protein can act as a promising precursor for the enzymatic release of active peptides effective against hyperuricemia, and
also offers theoretical guidance for producing bioactive peptides through oat protein enzymolysis and developing functional
foods using oat active peptides to combat hyperuricemia.

Key words: oat active peptides; transcriptome analysis; high throughput enzymolysis in silico; network pharmacology;
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(PDB ID:1N5U)center x:y:z=31.82:7.54:32.66; IL1B
(PDB ID:1HIB) center_x:y:z=20.97:3.31:73.73; SRC
( PDB ID:1KSW) center x:y:z=-0.38:50.27:2.00;
CASPS(PDB ID:1NMS) center x:y:z=-9.1:-4.0:24.2;
STATS( PDB ID:6NJS) center x:y:z=13:56.64:0.25,
F 4SRN N size x1yi2z=22.5:22.5:22.5, LG54 6E
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Binging energy (kJ/mol) e H W&k & 114, 24 Binging
energy<0 kJ/mol B}, A] LATE H SRS T X422, HA G,
75 24 Binging energy<-5 kJ/mol B, TA XK
B RAT, d AR

1.2.12 &4 XOD Ml MEVEHT S8 Li 250 fn
Owen S50 3R (14 7 125 AR 415 552 R 512 56 17 B AE &
AP S BN A 25 pL & T PBS 2% W iR W
(0.01 mol/L, pH7.2~7.4) BF AL A1 25 pL XOD
(&M ¥ 0.05 U/mL), 37 °C ¥ F 30 min J&, A
50 pL B MEMS AR (U E R 0.2 mmol/L) 51 & I,
37 °C 5% 3 min N4E 30 s W AR ZRAE 290 nm Rk
SCAEMBh S22k, DLE UL XOD 111 244 51| HEE
WP (2R FE Ry 40 pmol/L) VR BEM:XTRE, PBS 22 uh

o T s AR T SN H PR B B A s 3R (I G Y A
fe/mstiE]) Sk Eofk XOD il 7%, XOD Ayl = n]
FIRN:

VBlank - VSamp]c

XODIMH]H (%) = x 100

T, Vigpank N BEES IR 5 19 497 1 B2 N 33 2% 5
Vsample 2 ASHIAE fl Y SV 2385 XOD Al 10 PR
FH 1C,, HFRI
1.3 HEAIE

KM EXCEL 2019 A4 34758 150 50 bt s %6
A3 8PEAE ] Graph Prism 9.0 #04:3647 2240 6] ity 7 22
SrAT (BRI ZR ANOVA Kyde) Flgs &, Hrfr P<0.05 B
FIOREFRBEAGIEE X, WAAMHAT 3 IKE
B30T, BAR L B REZEFRIR
2 FER57Hh
2.1 FEZHFIIAIZRE

M A R R ZWEY 2 —, 2
BB AR ER, BN AT PERRH & L R &
B MEEIR (4vena L.) BETRIA 30 MFh, 646
25 DNEF AR, 5 RS . TP EBIER 27 D HEEY)
FhCT AR P A BRUAS [F] 53Ry B P AT A P, AR R YL (0,
AAHE AR 5320 A5 . DI SASAR, A s
B AREASTR] 53 A MR THESE A1 2 JHEZE PY . BLHESE AT A%
RS AR, i AR e R B Avena nuda
L.IMRES 24, 7SS AR A 7S A AR iR e A7
B — A F, 45 44 A Avena sativa var. nuda®?, M
4 A HE S A7 L 20 2R AS vh U R 77 Y Raw data 3
30.51 G, id3EJ5 1) Clean data H: 29.67 G B RS,

BRI ATTE 93%~95%, Sl LA SBAE 94%~97% Z
[a], pEXt e — X AE 66%~75% 28], 2 4 ZHFf
A I 7 SC 2R B T B 5 d - B DU ZH AR AS 5 %) 1 22
HEMAMLEXEE R A & 4 HEARM clean
reads il i TR S 09 P AN EE, ST R S AP435 L
Xt & Avena sativa ssp. nuda ¥ Avena sativa W=7
FEH b, i FARIIEE RS, SR Wk
1 S A ERPRIE U ANRES Y 535517 Y 11920 F1 6269
SRERTH, JEFHEZE FATHE 7 5 FERPRIE BHA RS
W53 5077 Hy 9689 Fil 8595 S5 IITHI(ER 1) N T
EER)T A B A PR B0 I A AR ) RITIF T VR 2 B R,
SR T EHRAE PP H AR ERE T 90% DA R A
A TSN TR T -

HuTE 2 Moy 22 i a3z FHEA 18R 4K
P EE, 8 FHHR 43 85 (U 9 264 T8 S 42 P 15 T B
43, FLRIBRPAEAE 22 > v a] G A vRe i 245 3G PR
FERFEEARMGEE =R AA TSGR ME A FZNK . Bleakley
AR Y F I AR G R (Avena sativa) NP EZZR
2 P 0 07 28 8 R ACE-1., B 2Z Il DPP-IV 1114l
JK, VRN S MUEAN 2 BINEIRGG . AEASITIITST sk
b EFR IR 2 I8 1 8E 7 5 (Avena sativa, ACD)
FNRRIREZZ Mk 1 5 (Avena sativa ssp. nuda, ACD)
TERFIRLIE B FO0E 2 W Y 822 R PR E N BRSO 5 .
I L XA S22 BRI 2H 10 5% SR 2H B 43 Fr AR BIAS ] il
FIAS R B HARES 2R U A5 B Y, LIS e
BARR AP TRl RIS
22 FEEMHITEE
2.2.1 @l RIS XA TE AR E S
BFSE 22 2R FHZK 28 BT B 4 rh B B 2 11 BT
TTHffAAH SR, PE—2PAm T UK EOR, EATHOR, B
R, By st il 20K, Fasd
PE—25 RS S B Z AR AT, Z6— 2 PS50
BT EAA A BIDIREN . ARG SE I IR A A I TR]
RSUHE T2 1 Tl PR 356 1 i A T Py B P Y80 i 2 S A= i
RSB alifh . ThRR R BUAIPFHrad B 42 4%, A
TEPER HNAE R - 456804 1 REESE B Ul
fift (ANFE LR IR 55 #% BIOPEP Fi1 Peptide Cutter), Fi|
A WE B 2B TN, PIFR A LA Aok, R
A, REAZR IR BE AR OB R, $2 v
JRITHEROCR . X AT AL Bh 3R M R AEfe ik 2
IR T ACE-I, DPP-IV il XOD 45414k 7%
PR Du 2P LT ExPASy Peptide Cutter 2

F1 AN AL SN R S PSR e

Table 1 Transcriptome sequencing and protein sequence data statistics of oat genome
Wb R HIER(%) MHSTR(%) MR (%) FEEEE EEHEAERHERT0%)
Avena sativa ssp. nuda 3V 15 FFPRITE ) 94.96 96.06 75.27 11920 6310
Avena sativa ssp. nuda e 153 94.38 94.83 69.01 6269 3157
Avena sativa 75 AR B 95.1 94.84 66.67 9689 5804
Avena sativa A7 5-HEN 93.89 96.63 69.19 8595 5107
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J¥, 25 BRI, #a it —Fh i fed R 47 HL v i SASEAL)
5 TR T E 2 B R Refineing-PeptideCutter, A
LA ATART B 1 T AT BRI, A5 28 1 s b
T HAFEh e S R AR A h S LA AR, TR
PEPERIR O S AN LR TR Y, AnZEEE 81
IK i) v B 58 Y o A PE T BB AR PGGAR™,
128 FEAZ BR BB M Hh S5 58 (1 o~ 70T %5 W 7 it 40 o K
GDVVALPA Fil DVVALPAG™, Zhao 4™ & H
BN IR Ry A5 1 = A P 9 A T RE AU
HEHT 1 XOD il AR LATR B FIVEY 7 155 PRIR MUAE o

1 FH K S il A8 A i MO 238 T AR A B
VRIS S PR =R 520 AN [R] Y A AL T i
HRBEET XX h N AEAS B P 00 5= A i 2 S S A IR,
SR IR BT I A AR P RE 22 IR SC PR, G480 i3 2.
Jig s v B BT AR I 7 A 2 B DAY S 2 R IR AT/ N IR
T 2 B0, —/ = IR S22l i Rk 1 ING R B 55
1 (PepT 1) iRAN TG iz DA 56 2T 2k W e A& 2R
RS, MR SE IR (VU BR ) i8 50 4 A 55 B8 42
YRR PN A SE BT e ™™, (i 12 43R
B 7K i FRE 2 25 1, R IR AR SCZE HE DA/ Sk an — k-
FSIRIFH R 32, I HAMA: PIIEoK A 25 I A e il

T2/ NIK, DLIE 1.

2.2.2 WEBRMERTEM  FEARF K(Proteinase K) J&
— P IEIE PR 1 22 A TR R TR, W VIRIIB TG 2
FLPRANT Y B i ad FER R Fhum ARG . 55 &3, U

HAEARRR AT KBRS 7 A i 2 S5 AR DG B
K BB AN/ NIRRT 55 AR T A A i 2H S
Mgt v, Jo SR B 2R T K A ™ A= 0% DU 2H Ik SC
JEBEATIE PEFUMPESy . 3T Peptide Ranker X 2063
BRIEATREAE TR PEVEHY, 54 score = 0.9 HAHXT & 1
I B —H, EEXT “ Hlik 1 5 -HESK HH score = 0.9 ik
SCEEH 1532 45 B Bl 1d M 10 FRe 2 IR T 82k 4y
BT, 345G 1446 NFREEETE TR JTCANIEEETE (DL 3) .
ToxinPred?”! J& B FHLAF > B2 A T8 10 56 B A5
BAPPAl o B EA T REETUM, JToiEME H A R
PRI BT TS PE AR T RE M & S ANy & 2250
L,

223 EAE IS5 25819 ADME/T £
ST, BV 245 W A€ 4R PN 2 0K ( Absorption) | 43 A

( Distribution) . X} ( Metabolism) . HE ittt ( Excr-
etion) . BEM: (Toxicity), J2& 52 W 245 997 5 5k

., T SwissADME X} 224085 i K ASUI

H 2 R A R AR B R e

Table 2 Production statistics of of amino acids and peptides in silico

R e U 15 KRG 5 i 155 P75 AR B 75
Vi
FIER kB FIER kB R T R kB
MR 1l 238707 561972 99832 236477 249482 598197 207204 502321
E MK 682914 681962 291003 287698 723022 732716 605937 617901
WEIATR 25 [ 331396 552532 142180 234251 348087 590820 290238 497313
TR S R R 1 83437 369198 34047 154017 87689 392963 72243 328195
AP S JBE 2R 11 ity 13079 142546 5921 58752 13441 154788 11328 129076
B #E I Bf-pH2 306523 342476 125172 143382 320788 365171 265169 305373
B & M f-pH1.3 228652 281335 92799 116731 238810 298919 197108 249279
JHR TR Rt 40766 257293 17604 110503 45515 279664 39788 239514
A JNEEFLE 15961 137706 6621 57546 17201 147582 14136 122773
AN g 21406 188694 10274 82363 23111 201295 20387 170610
W E MG 1727 18324 671 7983 2286 20387 1954 17267
LS P 4L A 504718 519745 208049 219464 538438 559252 449286 472226
100 Wik 145 HEHI 100 H#ET 5 FPRIE ]
in=n I = =N I l I g
S I I I I I -k S = Utk
i = ik i = /\Jik
ﬁE = Lk ﬁ = Lk
=50 AR B 50 Y,/
g Eil/N g FRK
1l = JURK 1 = JURK
=4 = =ik # = ik
0- 0-
& D> & UNE
NS G STt
SRR SN N ML ERAE SR N MO
7RG O I ¥ B RGO A ®
F SN WO F R W
%%%k%% Y & S é%%%%% % &ﬂ\\r e
B & RN §
EARliES EARIES
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100 H#E75 RN 100] @ = Wk 15 FPROIE U
LR TLLTTTT NEEITETITE
& = JUik s = JUAik
b - t Qi -
% 507 /‘—\ﬁ = 50] ;—\%
i Ei = N
8 -k R = Pk
# -= & -
= Jik = ik
0- 0-
R & R
R AR SG S RSO S
SRR RN RN
R R N AN R S o IR 7RG O A %
¥ @*@@@%@%@ &@& X X@’%@ /¥ %’&%@%%‘%’@® é X )@‘%
IR Sl iz
Bl 1 32 ZRR-JURR B AN B
Fig.1 Relative content of oat dipeptides-nonapeptides

# 3 Peptide Ranker Tl BA WAL SO B STHT (G F M K BB S )
Table 3 Peptide Ranker predicts potentially active peptide library data (after Proteinase K in silico)

o I 15 -FFRLE I 15 A FIHET S FPRE L) M7 -
JIEK AT (%) JE AR 1 (%) JEK AT (%) JIEK AR 1 (%)
5T 85888 / 42793 / 89795 / 80149 /
205 24182 28.16 12448 29.09 25779 28.71 23062 28.77
=09 2664 3.10 1532 3.58 2842 3.16 2554 3.19

JE B <k 1 5 -HESR I IR SC)%E P Peptide Ranker
PESr = 0.9 HIGEETER 1446 e iR PEAR, RIS A
SMILES =X #F 17 ADME i ] i % iy B W 0
“High”, MLIXGERE A “NO”, HAE25PEFm g 2 4>

K2 ASPU SR “Yes”, LIPPAG i A4 IROA 141 iRk 2454 S
HAYFIHEE AP S . B 2RI 42 Z504 F iiE ik
W NI A A 5 B HLEAT R A DS 2 PR R i TR
PERK, Kes hlak 4.

2 4 ToxinPred £l Swiss ADME i1 i) 7HE 22 15 P4 Jik

Table 4 Oat active peptides screened by ToxinPred and Swiss ADME

NG I c g FEi(Da)  KEME(ESOL) MMM mMibERE PO AUMERPASO MM AR
MF 0.9966 Non-Toxin 296.39 Very soluble High No No No 0.55
CF 0.9964 Non-Toxin 268.33 Highly soluble High No No No 0.55
MW 0.9953 Non-Toxin 335.42 Very soluble High No Yes No 0.55
GF 0.9947 Non-Toxin 222.24 Highly soluble High No No No 0.55
PF 0.9934 Non-Toxin 262.3 Highly soluble High No No No 0.55
GW 0.9932 Non-Toxin 261.28 Highly soluble High No No No 0.55
PW 0.9929 Non-Toxin 301.34 Very soluble High No No No 0.55

MPF 0.9927 Non-Toxin 3935 Very soluble High No Yes No 0.55
PMF 0.9924 Non-Toxin 393.5 Very soluble High No Yes No 0.55
PPW 0.9894 Non-Toxin 398.46 Very soluble High No Yes No 0.55
GPF 0.9893 Non-Toxin 319.36 Very soluble High No No No 0.55
GPW 0.9888 Non-Toxin 358.39 Very soluble High No No No 0.55
PPPF 0.9887 Non-Toxin 456.53 Very soluble High No No No 0.55
PPF 0.9886 Non-Toxin 359.42 Very soluble High No No No 0.55
PPPW 0.9882 Non-Toxin 495.57 Very soluble High No No No 0.55
PGW 0.9879 Non-Toxin 358.39 Very soluble High No No No 0.55
PGF 0.9874 Non-Toxin 319.36 Highly soluble High No No No 0.55
GGF 0.9873 Non-Toxin 279.29 Highly soluble High No No No 0.55
PPGF 0.9862 Non-Toxin 416.47 Very soluble High No Yes No 0.55
PGPF 0.9861 Non-Toxin 416.47 Very soluble High No No No 0.55
MP 0.9601 Non-Toxin 246.33 Highly soluble High No No No 0.55
GM 0.9532 Non-Toxin 206.26 Highly soluble High No No No 0.55
HW 0.9529 Non-Toxin 341.36 Very soluble High No No No 0.55
PM 0.9519 Non-Toxin 246.33 Highly soluble High No Yes No 0.55
HF 0.9510 Non-Toxin 302.33 Highly soluble High No No No 0.55
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BRFS s BEME s fh(Da)  KEEME(ESOL)  EWL  ifsbeRE PR AUMEEEPASO KM AR
SF 0.9488 Non-Toxin 252.27 Highly soluble High No No No 0.55
QF 0.9461 Non-Toxin 293.32 Highly soluble High No No No 0.55
MG 0.9440 Non-Toxin 206.26 Highly soluble High No No No 0.55
CP 0.9433 Non-Toxin 218.27 Highly soluble High No No No 0.55
DF 0.9424 Non-Toxin 280.28 Highly soluble High No No No 0.56
PPPL 0.9410 Non-Toxin 422.52 Very soluble High No Yes No 0.55
PHF 0.9380 Non-Toxin 399.44 Very soluble High No No No 0.55
SwW 0.9339 Non-Toxin 291.3 Highly soluble High No No No 0.55
KPF 0.9224 Non-Toxin 390.48 Highly soluble High No Yes No 0.55
MPL 0.9224 Non-Toxin 359.48 Highly soluble High No Yes No 0.55
PML 0.9213 Non-Toxin 359.48 Highly soluble High No Yes No 0.55
PSF 0.9204 Non-Toxin 349.38 Highly soluble High No No No 0.55
PGPL 0.9151 Non-Toxin 382.45 Highly soluble High No Yes No 0.55
PPGL 0.9128 Non-Toxin 382.45 Very soluble High No Yes No 0.55
PPG 0.9113 Non-Toxin 269.3 Highly soluble High No No No 0.55
KF 0.9068 Non-Toxin 293.36 Highly soluble High No No No 0.55
GP 0.9055 Non-Toxin 172.18 Highly soluble High No No No 0.55

T AR 2 PASOIN I MEAL AT CYPIA2 . CYP2C19 . CYP2C9. CYP2D6FICYP3A4 ik 1EAf

2.3 e RER I AERRE R MR RY ik
2.3.1 eGP K-8 PRI I REAE A FRE
Target Prediction I PharmMapper ZC3E JZE 70 L) |
U7 396 ) 42 S5 REEE TR MR IR N, R BRE R 5 k15
514 A0 G PEAKHE S . CTD 45 & Gene cards.
DisGeNet 1 OMIM & i Be 345 8790 ~isy IR
HURE VS TER AT o A 514 e I PE IR o3 30 A 5
8790 /I~ RIR MLAE WS TEHE AL IO AR,, ZRAS 343 ~3He
2 PR T v PR IR INURE P/ E RS (BT 2)

2% Swiss-

Oat peptides

Hyperurlcemla

P 2 A T P IR 3 PR R MLAE A T A5

Fig.2 Target of oat active peptides-hyperuricemia

2.3.2 PPI MIZHRFNIT SAZ AT EE - PPT X
R E ST, PR BOGE R B> A5 (22) PPI N 4% A, 3k
168 719 15, 3619 Z%i (& 3), $#2HL PPI %% A 194
JE > 37 5 (0.0031) FiT 5 25 3 >0 37 0 (0.4839) 119

PPI M4 B, H: 55 75 45, 925 4530 (Kl 4) . HE S
RGBS | A BERN R B Y R T R S B A

(LI T PR B S EERI o5, P 65 HP ST oL #3222

J& ALB. ILIB. SRC. CASP3 1 STAT3(3 5).

AT FE L5 R B, e 16 P R VA = PR TR I RE

o5 P RO A SC R ¥R 25 O ALB. ILIB. SRC.
CASP3 il STAT3, 5 /=1 IRER ML AE NS 09 T B #1403 104

F 5 AR 0 PR IR AR AZ Lo R A R 4545 A5

FAIES 4L
Table 5 Node parameters of core target network of oat active
peptides against hyperuricemia

LA B IrEE BEWE
ALB 143 0.057 0.620

ILIB 139 0.050 0.620

SRC 120 0.054 0.591
CASP3 118 0.028 0.593
STAT3 116 0.027 0.591

BRI G, 105 I8 1 (ALB) fFE A, 2 Sz eI
WEA I BERI TR 45 hR . ALB ZKF-5387 & i FRIBZ 1ML
SE AR © PRI 7K V-1 AR A 35y 52 o 25 BAH OCP i f
FELERAEIR, NG RSB, B R P R PRSI AT 2
DU TR PR IR LILAE ey 1& BN B8 — R T BT 4 7 ) SR 0L

40 A 2 -1B(IL-1B) gt 19 &5 2 4 A 3R

1 AU IR T RGN — B . IL-1B J&—FheR g a4t &
2L DR, A F SR R IR 2 = A A G2 T N )

FEA Y, WFFE I IL-1B i) 221k aeag4m i
SN TR, VR SE A N TR N, R D e R

G233, AL B2 RIS B 1 (SRC) S5 2 HH IR e 2
1 Gt i) 114 = A2 A 8 s 21 B F1 Y, SRC SR,
B2 545, G CEPRIIEEE o1k, 1 R0 A5 Ok

VAT AR AR P EE 2 G 554 5P, SRC =
5187 Yes-associated & [ ( YAP) W Fg AL Fll 'S £ 4
e A% E A7, I SRC 54 AT 57 11 B 2T i b At
PR R, AR R FH i 3(CASP3) &40
HagH TR EE A S 4T, 5 e e A DG B IS
TErER R RA VIR R, A5 55 S s, s =

F(STAT) S 5L WK E Z 2 A arik s,
STAT3 gl o] 24035 B I RE A%, FEAIK IS IR /K
S, I SESE LT AL A HE RS,

2.3.3 GO WRETEM KEGG B &4 W0
RS T GO ThRERN KEGG 18 i 5 455 v PR IR 1fiL
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P 3 A I R JIR- PR IR IUAT 94 HIRE K3 (PP 4% A)

Fig.3 Target of oat active peptides-hyperuricemia (PPI network A)

Fig.4

Pl 4 JHEAZ T TR JR- o BRIFR ILAE 4% O3 5 (PPT M %% B)

Core target of oat active peptides-hyperuricemia (PPI network B)
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SEZ AR DGO AR, WIAMIREAZ IR P P A 1 24 3L L (BP) & 4E 958 1~ GO TR, ZE = 5T E W (res-
FILEAR P A= el B o %o HEE 1 A O T v R R L ponse to hormone) . & fkG 4 /2 i (cellular response
REMY 55 DL A E B B SRS a R aniE 5. to nitrogen compound) . A HLEA A W) S (cellular
6 iras. HiAanEl s RSk R rae s B Yt i2 response to organonitrogen compound) . 2= H

Description

Chemical carcinogenesis- receptor activation-

Response to hormone

Cellular response to nitrogen compound
Cellular response to organonitrogen compound
Cellular response to hormone stimulus
Response to peptide

Response to peptide hormone

Cellular response to peptide

Cellular response to peptide hormone stimulus
Response to insulin

Regulation of insulin receptor signaling pathway

dd

Membrane microdomain

Membrane raft

Transcription regulator complex

Serine/threonine protein kinase complex

Plasma membrane raft

Cyclin- dependent protein kinase holoenzyme complex
Caveola

Nuclear chromosome

Transcription repressor complex

Cyclin A2-CDK2 complex

Kinase binding

Protein domain specific binding

Kinase activity

Phosphotransferase activity, alcohol group as acceptor
Protein kinase activity

Protein kinase binding

Endopeptidase activity

Protein serine/threonine kinase activity

Protein serine kinase activity

Protein serine/threonine/tyrosine kinase activity

—log, (Pvalue)

20

0/0)

10

AN

10 20 30
Counts

P 5 A T PR IR 190 BRIFR LAE B FHEE A GO m AT

Fig.5 GO enrichment analysis of the target of oat active peptides against hyperuricemia

(=]

KEGG Enrichment

Pathways in cancer- .
Lipid and atherosclerosis- &
Endocrine resistance- @

Coronavirus disease-COVID-194 ~log,(Pvalue)

Estrogen signaling pathway ® 40
Relaxin signaling pathway+ 30
IL-17 signaling pathway
Fluid shear stress and atherosclerosis- $ 20
Breast cancer ! .
Shigellosis- ] Count
MAPK signaling pathway- ® ® 10
Oxytocin signaling pathway ) ® 5
Yersinia infection{ @ ®
Th17 cell diferentiation{ @& . 25
Pathogenic Escherichia coli infection{ @& . 30
C-type lectin receptor signaling pathway4 @
Colorectal cancer{ @
Pertussis{ #

GnRH signaling pathway{ =

0.2 0.3 0.4 0.5 0.6
Gene ratio

Pl 6 aReA TR PEIR T 1ot BRIR ILAE A 1 HIE 55 KEGG 70H7
Fig.6 KEGG analysis of the target of oat active peptides against hyperuricemia
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)W (cellular response to hormone stimulus) . ZZ K
(response to peptide) AW FE . UL (CC) &
£ 891~ GO Tifg, F Z4E i T 5 £ ( membrane
raft) . JE{% X (membrane microdomain) . %5 85 -AR4E
(plasma membrane raft) . /MYt (caveola) | 5% 5%
#7154 %) (transcription regulator complex) &, 41
T IIEE(MF) &4 94 1~ GO TR, 2= 5 AEss
4 (kinase binding) . & 1 #( il %5 & (protein kinase
binding) . & 1 BT 45384 4 45 B (protein domain
specific binding) . & 1 ¥ [ 1% 74 ( protein kinase
activity )&%, i#id KEGG &850, HASBIEAZ.O
S S S RIERE 163 4%, 1K1 6 th i R G PRIk T
Tt PRIR M AEHEAA 7T 20 0955 i, S8l B s
J& i (Pathways in cancer) . g JBt F1 30 ik 35 £ 1 1k,
(Lipid and atherosclerosis) . b 2% I -52 A L IG
(Chemical carcinogenesis-receptor activation )%,
FEAZ TR PERYRTE = PRIR IUAE A3 B TE KEGG &
LSBT, S RE AR S R AR IR R R 2 1 E
1%, DRI I 30 2 PT  JETHEEE 1 P R T 0 v PR iR

IRE PO SCERER . IR ARSI Tt T8 2 B0 AL 3 BH = PR 18R
IRE 55 0 R 1 & A . R ANTSAHIC . PRI
IEARE IE PR g 2 A= & R ML 5 I PR P AH G g
PEARIE M EE A K, Xie N H T Meta 537 5 7
BN AT, I BH I P BRI K SE-(SUA) B30
1 mg, X BAAIEEAE &I FE S AN T, AH 5 FRIR MUAE Y
YRR BAET %, SUA /K- 5 BJEAE & R (AELk
P P=0.238) A EFIESLT - FR(JEL P P=0.263) 2 [H]
TAE—E LR MESFE R . Meng 2512 P k3R H 5 PR IR
ILAEE T CXCL-13 i85 AR RS 2R, IRIR
i T HPERR AU, v N B A b ) —SEfR A S
i, PRI 1 AV Ve LA L B 5 - il S0 52 e 44
FEsh kb RERE fad F
2.3.4  FHERZ I MR K-V FH A o - 7 3 % PN 285 114 A 82
FHEE T P KA S P B R 26 H 117
MU 969 S5 (El 7). T PPF. PPPL. MPF.
MPL F1 PPPF “AFREZZ 1 5 UK T 1= PR 19 IfUE 14 S22
R (R 6) o T SRC A FReE 1% P k1 01 i IR iR
IMUAE A% O HE 5, PTGS2 . MAPKI, ACE Fll MMP2

Fig.7 Network diagram of oat active peptides-targets-potential pathways
TE: B ORI A QSRR A, A O RE 19 AR TR PR IR R 20y, S (M) = A 19 A5 S il i, 1Ak =
Z B LA P 3 sy T B R (s ] B AR L 2, il AU R (B TR T 219 5 R R 2
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IR AR BRI (R 7)o WL ST, AR iE T
159 DS VIV At LY SO S g . WVSREEE £ 2 v i 2 |
S AT G ARSI, AR TR PR
N B R F S BRI 21, i 2 s 220l 2 R
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F o MATEVEIKLE T SRFIESEL

Table 6 Node parameters of main oat active

peptides network
NG HERERE I B
PPF 27 0.020 0.498
PPPL 26 0.022 0.494
MPF 26 0.025 0.494
MPL 25 0.032 0.489
PPPF 25 0.015 0.489

KT MATEVE IR S LT AR ES L
Table 7 Node parameters of main target network of oat
active peptides

HLA B iy E 5
SRC 42 0.059 0.552
PTGS2 42 0.051 0.552
MAPKI 41 0.069 0.547
ACE 40 0.041 0.542
MMP2 36 0.036 0.513
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