Volume 43 Issue 12
Jun.  2022
Turn off MathJax
Article Contents
JIANG Hao, SUN Tao, YAO Haoyu, et al. Research Progress of Edible Fungal Polysaccharides[J]. Science and Technology of Food Industry, 2022, 43(12): 447−456. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021070006
Citation: JIANG Hao, SUN Tao, YAO Haoyu, et al. Research Progress of Edible Fungal Polysaccharides[J]. Science and Technology of Food Industry, 2022, 43(12): 447−456. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021070006

Research Progress of Edible Fungal Polysaccharides

doi: 10.13386/j.issn1002-0306.2021070006
  • Received Date: 2021-07-02
    Available Online: 2022-04-26
  • Publish Date: 2022-06-08
  • Polysaccharide is one of the most important active ingredients of edible fungi, which is composed of diverse monosaccharide. Polysaccharide has various biological activities such as antioxidant, antitumor and immune regulation. Therefore, it has been widely used as additive in functional foods. In recent years, more and more researches have been conducted on edible fungal polysaccharides, including the structure analysis, extraction process, conventional fermentation process, biosynthesis and biological activity. In this paper, the monosaccharide composition, molecular weight and glycosidic bond connection methods of several common edible fungal polysaccharides are reviewed, and the advantages and disadvantages of traditional and new extraction methods are discussed. Afterwards, the current status of edible fungal polysaccharides produced by fermentation in shake flasks and small bioreactor is summarized, and finally the biosynthetic mechanism of polysaccharides and its current research status are summarized. Sorting out, this review could provide a theoretical basis for the research and industrial utilization of fungal polysaccharides.
  • loading
  • [1]
    XIE J P, YUN H, DONG H G, et al. Simultaneous extraction, separation and purification of microbial genomic DNA and total RNA from acidic habitat samples[J]. Analytical Methods,2015,7(3):909−917. doi:  10.1039/C4AY01608D
    PARNIAKOV O, LEBOVKA N I, VAN HECKE E, et al. Pulsed electric field assisted pressure extraction and solvent extraction from mushroom (Agaricus bisporus)[J]. Food and Bioprocess Technology,2014,7(1):174−183. doi:  10.1007/s11947-013-1059-y
    ZHAO Y M, SONG J H, WANG J, et al. Optimization of cellulase‐assisted extraction process and antioxidant activities of polysaccharides from Tricholoma mongolicum Imai[J]. Journal of the Science of Food and Agriculture,2016,96(13):4484−4491. doi:  10.1002/jsfa.7662
    RUTHES A C, SMIDERLE F R, IACOMINI M. Mushroom heteropolysaccharides: A review on their sources, structure and biological effects[J]. Carbohydrate Polymers,2016,136:358−375. doi:  10.1016/j.carbpol.2015.08.061
    WANG Q, WANG F, XU Z, et al. Bioactive mushroom polysaccharides: A review on monosaccharide composition, biosynthesis and regulation[J]. Molecules,2017,22(6):955. doi:  10.3390/molecules22060955
    TABARSA M, YOU S G, YELITHAO K, et al. Isolation, structural elucidation and immuno-stimulatory properties of polysaccharides from Cuminum cyminum[J]. Carbohydrate Polymers,2020,230:115636. doi:  10.1016/j.carbpol.2019.115636
    LI Q Z, WU D, ZHOU S, et al. Structure elucidation of a bioactive polysaccharide from fruiting bodies of Hericium erinaceus in different maturation stages[J]. Carbohydrate Polymers,2016,144:196−204. doi:  10.1016/j.carbpol.2016.02.051
    ZHANG Y, ZENG Y, MEN Y, et al. Structural characterization and immunomodulatory activity of exopolysaccharides from submerged culture of Auricularia auricula-judae[J]. International Journal of Biological Macromolecules,2018,115:978−984. doi:  10.1016/j.ijbiomac.2018.04.145
    姜艳红, 张玲帆, 吕瑛, 等. 杏鲍菇多糖PEP-2的结构表征及其对肝癌细胞HepG-2抑制作用的研究[J]. 食品工业科技,2016,37(19):111−116. [JIANG Y H, ZHANG L F, LÜ Y, et al. Chemical characterization of Pleurotus eryngii polysaccharide PEP-2 and its tumor-inhibitory effects against human hepatoblastoma HepG-2 cell[J]. Science and Technology of Food Industry,2016,37(19):111−116.

    JIANG Y H, ZHANG L F, LÜ Y, et al. Chemical characterization of Pleurotus eryngii polysaccharide PEP-2 and its tumor-inhibitory effects against human hepatoblastoma HepG-2 cell[J]. Science and Technology of Food Industry, 2016, 37(19): 111-116.
    WEN L, GAO Q, MA C, et al. Effect of polysaccharides from Tremella fuciformis on UV-induced photoaging[J]. Journal of Functional Foods,2016,20:400−410. doi:  10.1016/j.jff.2015.11.014
    LI Q, WANG W, ZHU Y, et al. Structural elucidation and antioxidant activity a novel Se-polysaccharide from Se-enriched Grifola frondosa[J]. Carbohydrate Polymers,2017,161:42−52. doi:  10.1016/j.carbpol.2016.12.041
    BARBOSA J R, DOS SANTOS FREITAS M M, DA SILVA MARTINS L H, et al. Polysaccharides of mushroom Pleurotus spp. : New extraction techniques, biological activities and development of new technologies[J]. Carbohydrate Polymers,2020,229:115550. doi:  10.1016/j.carbpol.2019.115550
    RUTHES A C, SMIDERLE F R, IACOMINI M. D-glucans from edible mushrooms: A review on the extraction, purification and chemical characterization approaches[J]. Carbohydrate Polymers,2015,117:753−761. doi:  10.1016/j.carbpol.2014.10.051
    ZHANG M, CUI S W, CHEUNG P C K, et al. Antitumor polysaccharides from mushrooms: A review on their isolation process, structural characteristics and antitumor activity[J]. Trends in Food Science & Technology,2007,18(1):4−19.
    MORALES D, SMIDERLE F R, VILLALVA M, et al. Testing the effect of combining innovative extraction technologies on the biological activities of obtained β-glucan-enriched fractions from Lentinula edodes[J]. Journal of Functional Foods,2019,60:103446. doi:  10.1016/j.jff.2019.103446
    SU C H, LAI M N, NG L T. Effects of different extraction temperatures on the physicochemical properties of bioactive polysaccharides from Grifola frondosa[J]. Food Chemistry,2017,220:400−405. doi:  10.1016/j.foodchem.2016.09.181
    WANG Z B, PEI J J, MA H L, et al. Effect of extraction media on preliminary characterizations and antioxidant activities of Phellinus linteus polysaccharides[J]. Carbohydrate Polymers,2014,109:49−55. doi:  10.1016/j.carbpol.2014.03.057
    SERMWITTAYAWONG D, PATNINAN K, PHOTHIPHIPHIT S, et al. Purification, characterization, and biological activities of purified polysaccharides extracted from the Gray oyster mushroom [Pleurotus sajor-caju (Fr.) Sing.][J]. Journal of Food Biochemistry,2018,42(5):e12606. doi:  10.1111/jfbc.12606
    BAEVA E, BLEHA R, LAVROVA E, et al. Polysaccharides from basidiocarps of cultivating mushroom Pleurotus ostreatus: Isolation and structural characterization[J]. Molecules,2019,24(15):2740. doi:  10.3390/molecules24152740
    SZWENGIEL A, STACHOWIAK B. Deproteinization of water-soluble ß-glucan during acid extraction from fruiting bodies of Pleurotus ostreatus mushrooms[J]. Carbohydrate Polymers,2016,146:310−319. doi:  10.1016/j.carbpol.2016.03.015
    CHEN X Y, JI H Y, XU X M, et al. Optimization of polysaccharide extraction process from Grifola frondosa and its antioxidant and anti-tumor research[J]. Journal of Food Measurement and Characterization,2019,13(1):144−153. doi:  10.1007/s11694-018-9927-9
    ZHANG L, WANG M. Polyethylene glycol-based ultrasound-assisted extraction and ultrafiltration separation of polysaccharides from Tremella fuciformis (snow fungus)[J]. Food and Bioproducts Processing,2016,100:464−468. doi:  10.1016/j.fbp.2016.09.007
    GIL-RAMÍREZ A, SMIDERLE F R, MORALES D, et al. Strengths and weaknesses of the aniline-blue method used to test mushroom (1→ 3)-β-d-glucans obtained by microwave-assisted extractions[J]. Carbohydrate Polymers,2019,217:135−143. doi:  10.1016/j.carbpol.2019.04.051
    WANG N, ZHANG Y, WANG X, et al. Antioxidant property of water-soluble polysaccharides from Poria cocos Wolf using different extraction methods[J]. International Journal of Biological Macromolecules,2016,83:103−110. doi:  10.1016/j.ijbiomac.2015.11.032
    LI L, YANG X, PAN L, et al. Comparing three methods of extraction of Auricularia auricula polysaccharides[J]. Current Topics in Nutraceutical Research,2019,17(1):7−11.
    FAN Y N, WU X Y, ZHANG M, et al. Physical characteristics and antioxidant effect of polysaccharides extracted by boiling water and enzymolysis from Grifola frondosa[J]. International Journal of Biological Macromolecules,2011,48(5):798−803. doi:  10.1016/j.ijbiomac.2011.03.013
    HUAMÁN-LEANDRO L R, GONZÁLEZ-MUÑOZ M J, FERNÁNDEZ-DE-ANA C, et al. Autohydrolysis of Lentinus edodes for obtaining extracts with antiradical properties[J]. Foods,2020,9(1):74. doi:  10.3390/foods9010074
    RODRÍGUEZ-SEOANE P, DÍAZ-REINOSO B, GONZÁLEZ-MUÑOZ M J, et al. Innovative technologies for the extraction of saccharidic and phenolic fractions from Pleurotus eryngii[J]. LWT-Food Science and Technology,2019,101:774−782. doi:  10.1016/j.lwt.2018.11.062
    WANG Y F, JIA J X, REN X J, et al. Extraction, preliminary characterization and in vitro antioxidant activity of polysaccharides from Oudemansiella radicata mushroom[J]. International Journal of Biological Macromolecules,2018,120:1760−1769. doi:  10.1016/j.ijbiomac.2018.09.209
    WU Z W, ZHANG M X, XIE M H, et al. Extraction, characterization and antioxidant activity of mycelial polysaccharides from Paecilomyces hepiali HN1[J]. Carbohydrate Polymers,2016,137:541−548. doi:  10.1016/j.carbpol.2015.11.010
    GUO X, ZOU X, SUN M. Optimization of extraction process by response surface methodology and preliminary characterization of polysaccharides from Phellinus igniarius[J]. Carbohydrate Polymers,2010,80(2):344−349. doi:  10.1016/j.carbpol.2009.11.028
    LIU Y, ZHOU Y, LIU M, et al. Extraction optimization, characterization, antioxidant and immunomodulatory activities of a novel polysaccharide from the wild mushroom Paxillus involutus[J]. International Journal of Biological Macromolecules,2018,112:326−332. doi:  10.1016/j.ijbiomac.2018.01.132
    ZHANG J X, WEN C T, GU J Y, et al. Effects of subcritical water extraction microenvironment on the structure and biological activities of polysaccharides from Lentinus edodes[J]. International Journal of Biological Macromolecules,2019,123:1002−1011. doi:  10.1016/j.ijbiomac.2018.11.194
    ZHU M, NIE P, LIANG Y K, et al. Optimizing conditions of polysaccharide extraction from Shiitake mushroom using response surface methodology and its regulating lipid metabolism[J]. Carbohydrate Polymers,2013,95(2):644−648. doi:  10.1016/j.carbpol.2013.03.035
    XUE D N, FARID M M. Pulsed electric field extraction of valuable compounds from white button mushroom (Agaricus bisporus)[J]. Innovative Food Science & Emerging Technologies,2015,29:178−186.
    YI Y, XU W, WANG H X, et al. Natural polysaccharides experience physiochemical and functional changes during preparation: A review[J]. Carbohydrate Polymers,2020,234:115896. doi:  10.1016/j.carbpol.2020.115896
    KLAUS A, KOZARSKI M, NIKSIC M, et al. Antioxidative activities and chemical characterization of polysaccharides extracted from the basidiomycete Schizophyllum commune[J]. LWT-Food Science and Technology,2011,44(10):2005−2011. doi:  10.1016/j.lwt.2011.05.010
    KE L Q. Optimization of ultrasonic extraction of polysaccharides from Lentinus edodes based on enzymatic treatment[J]. Journal of Food Processing and Preservation,2015,39(3):254−259. doi:  10.1111/jfpp.12228
    ALZORQI I, SUDHEER S, LU T J, et al. Ultrasonically extracted β-d-glucan from artificially cultivated mushroom, characteristic properties and antioxidant activity[J]. Ultrasonics Sonochemistry,2017,35:531−540. doi:  10.1016/j.ultsonch.2016.04.017
    LI X Y, WANG L. Effect of extraction method on structure and antioxidant activity of Hohenbuehelia serotina polysaccharides[J]. International Journal of Biological Macromolecules,2016,83:270−276. doi:  10.1016/j.ijbiomac.2015.11.060
    MARIĆ M, GRASSINO A N, ZHU Z, et al. An overview of the traditional and innovative approaches for pectin extraction from plant food wastes and by-products: Ultrasound-, microwaves-, and enzyme-assisted extraction[J]. Trends in Food Science & Technology,2018,76:28−37.
    XU N, SUN Y H, GUO X L, et al. Optimization of ultrasonic-microwave synergistic extraction of polysaccharides from Morchella conica[J]. Journal of Food Processing and Preservation,2018,42(2):e13423. doi:  10.1111/jfpp.13423
    YOU Q H, YIN X L, ZHANG S N, et al. Extraction, purification, and antioxidant activities of polysaccharides from Tricholoma mongolicum Imai[J]. Carbohydrate Polymers,2014,99:1−10. doi:  10.1016/j.carbpol.2013.07.088
    YU G, YUE C, ZANG X, et al. Purification, characterization and in vitro bile salt-binding capacity of polysaccharides from Armillaria mellea mushroom[J]. Czech Journal of Food Sciences,2019,37(1):51−56. doi:  10.17221/182/2018-CJFS
    YUAN Y, LIU Y, LIU M D, et al. Optimization extraction and bioactivities of polysaccharide from wild Russula griseocarnosa[J]. Saudi Pharmaceutical Journal,2017,25(4):523−530. doi:  10.1016/j.jsps.2017.04.018
    BISHOP K S, KAO C H J, XU Y, et al. From 2000 years of Ganoderma lucidum to recent developments in nutraceuticals[J]. Phytochemistry,2015,114:56−65. doi:  10.1016/j.phytochem.2015.02.015
    POKHREL C P, OHGA S. Submerged culture conditions for mycelial yield and polysaccharides production by Lyophyllum decastes[J]. Food Chemistry,2007,105(2):641−646. doi:  10.1016/j.foodchem.2007.04.033
    KIM S W, HWANG H J, XU C P, et al. Optimization of submerged culture process for the production of mycelial biomass and exo-polysaccharides by Cordyceps militaris C738[J]. Journal of Applied Microbiology,2003,94(1):120−126. doi:  10.1046/j.1365-2672.2003.01754.x
    SHU C H, HSU H J. Effects of sodium chloride on the production of bioactive exopolysaccharides in submerged cultures of Phellinus linteus[J]. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology,2008,83(5):618−624.
    XU C, GENG L, ZHANG W. Production of extracellular polysaccharides by the medicinal mushroom Trametes trogii (higher basidiomycetes) in stirred-tank and airlift reactors[J]. International Journal of Medicinal Mushrooms,2013,15(2):183−189. doi:  10.1615/IntJMedMushr.v15.i2.70
    SHIH I L, CHOU B W, CHEN C C, et al. Study of mycelial growth and bioactive polysaccharide production in batch and fed-batch culture of Grifola frondosa[J]. Bioresource Technology,2008,99(4):785−793. doi:  10.1016/j.biortech.2007.01.030
    PENG L, LI J, LIU Y, et al. Effects of mixed carbon sources on galactose and mannose content of exopolysaccharides and related enzyme activities in Ganoderma lucidum[J]. Rsc Advances,2016,6(45):39284−39291. doi:  10.1039/C6RA04798J
    XU J W, JI S L, LI H J, et al. Increased polysaccharide production and biosynthetic gene expressions in a submerged culture of Ganoderma lucidum by the overexpression of the homologous α-phosphoglucomutase gene[J]. Bioprocess and Biosystems Engineering,2015,38(2):399−405. doi:  10.1007/s00449-014-1279-1
    LI M, CHEN T, GAO T, et al. UDP-glucose pyrophosphorylase influences polysaccharide synthesis, cell wall components, and hyphal branching in Ganoderma lucidum via regulation of the balance between glucose-1-phosphate and UDP-glucose[J]. Fungal Genetics and Biology,2015,82:251−263. doi:  10.1016/j.fgb.2015.07.012
    PENG L, QIAO S, XU Z, et al. Effects of culture conditions on monosaccharide composition of Ganoderma lucidum exopolysaccharide and on activities of related enzymes[J]. Carbohydrate Polymers,2015,133:104−109. doi:  10.1016/j.carbpol.2015.07.014
    GONG P, WANG S, LIU M, et al. Extraction methods, chemical characterizations and biological activities of mushroom polysaccharides: A mini-review[J]. Carbohydrate Research,2020,494:108037. doi:  10.1016/j.carres.2020.108037
    FOGLI S, PORTA C, DEL RE M, et al. Optimizing treatment of renal cell carcinoma with VEGFR-TKIs: A comparison of clinical pharmacology and drug-drug interactions of anti-angiogenic drugs[J]. Cancer Treatment Reviews,2020,84:101966. doi:  10.1016/j.ctrv.2020.101966
    ZHANG Y, LI S, WANG X, et al. Advances in lentinan: Isolation, structure, chain conformation and bioactivities[J]. Food Hydrocolloids,2011,25(2):196−206. doi:  10.1016/j.foodhyd.2010.02.001
    ZHANG S, NIE S, HUANG D, et al. A novel polysaccharide from Ganoderma atrum exerts antitumor activity by activating mitochondria-mediated apoptotic pathway and boosting the immune system[J]. Journal of Agricultural and Food Chemistry,2014,62(7):1581−1589. doi:  10.1021/jf4053012
    LI S, GAO A, DONG S, et al. Purification, antitumor and immunomodulatory activity of polysaccharides from soybean residue fermented with Morchella esculenta[J]. International Journal of Biological Macromolecules,2017,96:26−34. doi:  10.1016/j.ijbiomac.2016.12.007
    YANG M Y, BELWAL T, DEVKOTA H P, et al. Trends of utilizing mushroom polysaccharides (MPs) as potent nutraceutical components in food and medicine: A comprehensive review[J]. Trends in Food Science & Technology,2019,92:94−110.
    CUI Y, YAN H, ZHANG X. Preparation of Lentinula edodes polysaccharide-calcium complex and its immunoactivity[J]. Bioscience, Biotechnology, and Biochemistry,2015,79(10):1619−1623. doi:  10.1080/09168451.2015.1044930
    MALLICK S K, MAITI S, BHUTIA S K, et al. Immunostimulatory properties of a polysaccharide isolated from Astraeus hygrometricus[J]. Journal of Medicinal Food,2010,13(3):665−672. doi:  10.1089/jmf.2009.1300
    ZHANG X, QI C, GUO Y, et al. Toll-like receptor 4-related immunostimulatory polysaccharides: Primary structure, activity relationships, and possible interaction models[J]. Carbohydrate Polymers,2016,149:186−206. doi:  10.1016/j.carbpol.2016.04.097
    PERERA N, YANG F L, CHERN J, et al. Carboxylic and O-acetyl moieties are essential for the immunostimulatory activity of glucuronoxylomannan: A novel TLR4 specific immunostimulator from Auricularia auricula-judae[J]. Chemical Communications,2018,54(51):6995−6998. doi:  10.1039/C7CC09927D
    KOZARSKI M, KLAUS A, JAKOVLJEVIC D, et al. Antioxidants of edible mushrooms[J]. Molecules,2015,20(10):19489−19525. doi:  10.3390/molecules201019489
    SU Y, LI L. Structural characterization and antioxidant activity of polysaccharide from four auriculariales[J]. Carbohydrate Polymers,2020,229:115407. doi:  10.1016/j.carbpol.2019.115407
    KHATUA S, ACHARYA K. Alkaline extractive crude polysaccharide from Russula senecis possesses antioxidant potential and stimulates innate immunity response[J]. Journal of Pharmacy and Pharmacology,2017,69(12):1817−1828. doi:  10.1111/jphp.12813
    JING H, LI J, ZHANG J, et al. The antioxidative and anti-aging effects of acidic-and alkalic-extractable mycelium polysaccharides by Agrocybe aegerita (Brig.) Sing[J]. International Journal of Biological Macromolecules,2018,106:1270−1278. doi:  10.1016/j.ijbiomac.2017.08.138
    TENG J F, LEE C H, HSU T H, et al. Potential activities and mechanisms of extracellular polysaccharopeptides from fermented Trametes versicolor on regulating glucose homeostasis in insulin-resistant HepG2 cells[J]. PloS One,2018,13(7):e0201131. doi:  10.1371/journal.pone.0201131
    MA H T, HSIEH J F, CHEN S T. Anti-diabetic effects of Ganoderma lucidum[J]. Phytochemistry,2015,114:109−113. doi:  10.1016/j.phytochem.2015.02.017
    YAMAÇ M, ZEYTINOGLU M, SENTURK H, et al. Effects of black hoof medicinal mushroom, Phellinus linteus (Agaricomycetes), polysaccharide extract in streptozotocin-induced diabetic rats[J]. International Journal of Medicinal Mushrooms,2016,18(4):301−311. doi:  10.1615/IntJMedMushrooms.v18.i4.30
    ZHANG C, LI J, HU C, et al. Antihyperglycaemic and organic protective effects on pancreas, liver and kidney by polysaccharides from Hericium erinaceus SG-02 in streptozotocin-induced diabetic mice[J]. Scientific Reports,2017,7(1):1−13. doi:  10.1038/s41598-016-0028-x
    XIAO C, WU Q, ZHANG J, et al. Antidiabetic activity of Ganoderma lucidum polysaccharides F31 down-regulated hepatic glucose regulatory enzymes in diabetic mice[J]. Journal of Ethnopharmacology,2017,196:47−57. doi:  10.1016/j.jep.2016.11.044
    REN Z, LI J, SONG X, et al. The regulation of inflammation and oxidative status against lung injury of residue polysaccharides by Lentinula edodes[J]. International Journal of Biological Macromolecules,2018,106:185−192. doi:  10.1016/j.ijbiomac.2017.08.008
    REN Y, GENG Y, DU Y, et al. Polysaccharide of Hericium erinaceus attenuates colitis in C57BL/6 mice via regulation of oxidative stress, inflammation-related signaling pathways and modulating the composition of the gut microbiota[J]. The Journal of Nutritional Biochemistry,2018,57:67−76. doi:  10.1016/j.jnutbio.2018.03.005
    XU X, YANG J, NING Z, et al. Lentinula edodes-derived polysaccharide rejuvenates mice in terms of immune responses and gut microbiota[J]. Food & Function,2015,6(8):2653−2663.
    LI W J, NIE S P, PENG X P, et al. Ganoderma atrum polysaccharide improves age-related oxidative stress and immune impairment in mice[J]. Journal of Agricultural and Food Chemistry,2012,60(6):1413−1418. doi:  10.1021/jf204748a
    PAN W J, DING Q Y, WANG Y, et al. A bioactive polysaccharide TLH-3 isolated from Tricholoma lobayense protects against oxidative stress-induced premature senescence in cells and mice[J]. Journal of Functional Foods,2018,42:159−170. doi:  10.1016/j.jff.2017.12.070
    PENG X B, LI Q, OU L N, et al. GC-MS, FT-IR analysis of black fungus polysaccharides and its inhibition against skin aging in mice[J]. International Journal of Biological Macromolecules,2010,47(2):304−307. doi:  10.1016/j.ijbiomac.2010.03.018
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (59) PDF downloads(20) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint