• EI
  • Scopus
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • DOAJ
  • EBSCO
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • JST China
  • FSTA
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020
刘清波,张丹,董和亮,等. 乳酸菌肽聚糖对丙烯酰胺的吸附特性研究[J]. 食品工业科技,2021,42(13):103−110. doi: 10.13386/j.issn1002-0306.2020100087.
引用本文: 刘清波,张丹,董和亮,等. 乳酸菌肽聚糖对丙烯酰胺的吸附特性研究[J]. 食品工业科技,2021,42(13):103−110. doi: 10.13386/j.issn1002-0306.2020100087.
LIU Qingbo, ZHANG Dan, DONG Heliang, et al. Adsorption Properties of Lactobacillus Peptidoglycan on Acrylamide[J]. Science and Technology of Food Industry, 2021, 42(13): 103−110. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020100087.
Citation: LIU Qingbo, ZHANG Dan, DONG Heliang, et al. Adsorption Properties of Lactobacillus Peptidoglycan on Acrylamide[J]. Science and Technology of Food Industry, 2021, 42(13): 103−110. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020100087.

乳酸菌肽聚糖对丙烯酰胺的吸附特性研究

Adsorption Properties of Lactobacillus Peptidoglycan on Acrylamide

  • 摘要: 以4株乳酸菌肽聚糖(Peptidoglycan,PG)为生物吸附剂,探讨其对丙烯酰胺(acrylamide,AA)的吸附特性。利用高效液相色谱法考察不同因素(pH、温度、时间、PG浓度、AA浓度及钙离子浓度)以及模拟胃肠环境下PG对AA吸附特性的影响。结果表明,随pH、温度的增大,4株乳酸菌PG对AA的吸附率均呈先增加后减少的趋势。当pH为5、温度为37 ℃,4株乳酸菌PG对AA的吸附率均达到最大值,其中植物乳杆菌1.0665 PG的吸附率最大,为87.35%。在6 h以内,4株乳酸菌PG对AA的吸附率随时间的延长而显著增加(P<0.05),但6 h后无显著性变化。吸附率随AA浓度的升高而减小,且随着PG浓度、钙离子浓度的增加而增大。在模拟胃环境条件下,不同pH显著影响PG对AA的吸附效果(P<0.05),并且pH为3.5时,PG对AA的吸附率最高;不同的时间对PG吸附AA的能力无显著影响(P>0.05)。在模拟肠环境下,胆盐浓度和吸附时间均显著影响PG对AA的吸附效果(P<0.05),其中0.3%~0.4%胆盐浓度更有利于PG 对AA的吸附。综上,本研究为乳酸菌肽聚糖在生物吸附脱毒方面的应用及机制探讨奠定理论基础。

     

    Abstract: Four strains of lactic acid bacteria peptidoglycan (PG) are used as biosorbent to study the adsorption characteristics of acrylamide (AA). The effects of different factors ( pH value, temperature, time, PG concentration, AA concentration and calcium ion concentration) and simulated gastrointestinal environment on the adsorption characteristics of AA were investigated by HPLC. The results showed that with the increase of pH value and temperature, the adsorption rate of four lactic acid bacteria PG for AA increased first and then decreased. When the pH value was 5 and the temperature was 37 ℃, the adsorption rate of PG by four lactic acid bacteria reached the maximum value, among which the PG adsorption rate of Lactobacillus plantarum 1.0665 was 87.35%. Within 6 h, the adsorption rate of PG by four strains of lactic acid bacteria increased significantly with the extension of time (P<0.05), but there was no change after 6 h .The results showed that the adsorption rate decreased with the increase of AA concentration, and increased with the increase of PG concentration and calcium concentration. In the simulated gastric environment, different pH values significantly affected the adsorption effect of PG on AA (P<0.05), and the adsorption rate of PG to AA was the highest when pH was 3.5, and the different time had no significant effect on the adsorption capacity of PG for AA (P>0.05). In the simulated intestinal environment, bile salt concentration and the adsorption time significantly affected by efficiency of PG to AA (P<0.05), and 0.3%~0.4% bile salt concentration was more conducive to the adsorption of AA by PG. In conclusion, this study laid a theoretical foundation for the study of the adsorption mechanism of lactic acid bacteria.

     

/

返回文章
返回