• EI
  • Scopus
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • DOAJ
  • EBSCO
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • JST China
  • FSTA
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020
王敏,徐国辉,赵一灵,等. 金丝桃苷对黄嘌呤氧化酶的抑制作用及分子机理[J]. 食品工业科技,2022,43(12):92−99. doi: 10.13386/j.issn1002-0306.2021090207.
引用本文: 王敏,徐国辉,赵一灵,等. 金丝桃苷对黄嘌呤氧化酶的抑制作用及分子机理[J]. 食品工业科技,2022,43(12):92−99. doi: 10.13386/j.issn1002-0306.2021090207.
WANG Min, XU Guohui, ZHAO Yiling, et al. Inhibition Effect and Molecular Mechanism of Hypericin on Xanthine Oxidase[J]. Science and Technology of Food Industry, 2022, 43(12): 92−99. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090207.
Citation: WANG Min, XU Guohui, ZHAO Yiling, et al. Inhibition Effect and Molecular Mechanism of Hypericin on Xanthine Oxidase[J]. Science and Technology of Food Industry, 2022, 43(12): 92−99. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090207.

金丝桃苷对黄嘌呤氧化酶的抑制作用及分子机理

Inhibition Effect and Molecular Mechanism of Hypericin on Xanthine Oxidase

  • 摘要: 膳食黄酮具有很高的抑制黄嘌呤氧化酶(XOD)的潜力,本文通过酶抑制动力学、多光谱法和分子对接研究金丝桃苷对XOD的抑制特性并分析其分子机制。酶动力学结果表明,金丝桃苷对XOD具有混合竞争性的可逆抑制作用,IC50值为(162.059±2.291) μmol/L,抑制常数Ki为(18.079±0.154) μmol/L。多光谱实验表明,金丝桃苷与XOD具有较高的亲和力,其相互作用主要受氢键和范德华力驱动。圆二色谱表明,金丝桃苷诱导XOD的构象变化,α-螺旋和无规则卷曲含量增加,β-折叠和β-转角含量减少。分子对接结果证实,金丝桃苷与XOD活性区域内的氨基酸残基(如:GLN767,GLY797和PHE798等)产生相互作用。这些结果将为金丝桃苷在开发具有潜力的功能性食品或药品方面提供实验和理论基础。

     

    Abstract: Dietary flavonoid has been reported to possess a high potential for inhibition xanthine oxidase (XOD). Herein, hypericin was investigated for its inhibition effect and interaction mechanism on XOD by enzyme inhibition kinetics, multi-spectroscopy and molecular docking. Enzyme kinetics analysis indicated that hypericin reversibly inhibited XOD in a mix-competitive manner with IC50 value of (162.059±2.291) μmol/L and inhibition constant (Ki) value of (18.079±0.154) μmol/L. Multi-spectroscopy displayed that hypericin bound to XOD with high affinity, and the interaction was predominately driven by hydrogen bond and van der Waals forces. Circular dichroism (CD) demonstrated that hypericin induced the conformational change of XOD with increased α-helix and Random coil while reduced β-sheet and β-turn. Molecular docking suggested that hypericin interacted with residues located within the active pocket of XOD (e.g. GLN767, GLY797 and PHE798). These results would provide experimental and theoretical basis for hypericin in development of functional food or drug.

     

/

返回文章
返回