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Abstract: In order to explore the feasibility of combining near-infrared (NIR) spectroscopy and deep learning network for
quantitative moisture detection, the dried Porphyra was divided into 479 groups, which detected the NIR spectra and
moisture content. Four traditional quantitative moisture prediction models and a convolution neural networks (CNN) deep-
learning moisture prediction model were finally established at full spectrum by preprocessing and analyzing the

experimental data. After comparing the prediction results of the five models, it was found that the CNN model established
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by the preprocessing method of S-G smoothing combined with the second derivative had the best prediction effect. Its root-

mean-square error of prediction (RMSEP) value was 0.456 and the coefficient of determination of prediction (sz) value
was 0.990. After optimization, the RMSEP value of the model was reduced to 0.342 and the Rp2 value could reach 0.994
(>0.8). At the same time, the ratio of performance to deviation for validation (RPD) was 6.155 (>3), which proved the

possibility of practical application of the model in agriculture and food industry. The CNN model could predict the moisture

content quickly, accurately, and non-destructive, improve the efficiency and accuracy of moisture detection, and provide an

important reference for the quality control of related dry aquatic products.

Key words: Porphyra; moisture content; near infrared spectroscopy; deep learning; convolution neural networks
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Table 1 Batch statistics of Porphyra samples
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Fig.4 Near-infrared spectrum acquisition of samples
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Table 2 Results of sample set partitioning
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Table 3 Results of water content prediction models established
by different modeling methods under the optimal pretreatment

method
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prediction model
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