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江苏海洋生物资源创新中心，江苏南京 210019；
3.中国海洋大学食品科学与工程学院，山东青岛 266104）

摘　要：为探索近红外光谱结合深度学习网络对紫菜水分定量检测的可行性，本研究检测并收集了 479组干条斑紫

菜的光谱数据和水分含量数据，分别使用四种方法对其中的光谱数据进行了预处理，并在全波段下建立了四种传

统定量水分预测模型和一种卷积神经网络（Convolution Neural Networks，CNN）深度学习水分预测模型。对比五

种模型预测结果后发现，在 S-G平滑结合二阶导数的预处理方法下所建立的 CNN模型预测效果最佳，其预测均方

根误差（Root-Mean-Square Error  of  Prediction，RMSEP）值为 0.456，预测集决定系数（Coefficient  of  Determi-
nation of Prediction，Rp

2）值为 0.990，优化后，该模型的 RMSEP值降至 0.342，Rp
2 值可以达到 0.994（>0.8），

同时，外部验证相对误差（Ratio of Performance to Deviation for Validation，RPD）值达 6.155（>3），证明了模型

实际应用于农业和食品工业的可能性。该 CNN模型能够快速、准确、无损地预测条斑紫菜的水分含量，提高了紫

菜水分检测的效率和准确性，为相关干制水产品的质量控制提供了重要的参考依据。

关键词：条斑紫菜，水分含量，近红外光谱，深度学习，卷积神经网络
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Abstract：In order to explore the feasibility of combining near-infrared (NIR) spectroscopy and deep learning network for
quantitative  moisture  detection,  the  dried  Porphyra  was  divided  into  479  groups,  which  detected  the  NIR  spectra  and
moisture content. Four traditional quantitative moisture prediction models and a convolution neural networks (CNN) deep-
learning  moisture  prediction  model  were  finally  established  at  full  spectrum  by  preprocessing  and  analyzing  the
experimental data. After comparing the prediction results of the five models, it was found that the CNN model established  
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by the preprocessing method of S-G smoothing combined with the second derivative had the best prediction effect. Its root-
mean-square  error  of  prediction (RMSEP) value  was  0.456 and the  coefficient  of  determination of  prediction (Rp

2)  value
was 0.990. After optimization, the RMSEP value of the model was reduced to 0.342 and the Rp

2 value could reach 0.994
(>0.8).  At  the  same  time,  the  ratio  of  performance  to  deviation  for  validation  (RPD)  was  6.155  (>3),  which  proved  the
possibility of practical application of the model in agriculture and food industry. The CNN model could predict the moisture
content quickly, accurately, and non-destructive, improve the efficiency and accuracy of moisture detection, and provide an
important reference for the quality control of related dry aquatic products.

Key words：Porphyra；moisture content；near infrared spectroscopy；deep learning；convolution neural networks

条斑紫菜（Porphyra yezoensis）隶属于红藻门

（Rhodophyta）、原红藻纲（Protoflorideophy-ceae）、

红毛菜目（Bangiales）、红毛菜科（Bangiaceae）、紫菜

属（Pyropia）[1]，是一种重要的海洋经济作物。条斑紫

菜主要分布于黄海、渤海、东海北部沿岸，其主产区

在长江以北沿海的山东、江苏两省[2]。作为海洋农业

和出口创汇的主导品种之一，我国每年生产的条斑紫

菜有 70%销往国外，出口量占国际紫菜市场贸易总

量的 50%以上[3]。条斑紫菜营养丰富，若干燥不到

位，极易在运输和贮存环节因水分含量过高而导致腐

败变质[4−5]。因此有必要在紫菜烘干工艺之后、封装

工艺之前[6−7]，对生产线上的所有紫菜产品的水分进

行在线监测，从而及时去除不合格的产品。但目前常

用的水分检测方法主要为直接烘干法[8−9]，该法耗时

且损耗样品，不适用于大批量检测，也不能满足生产

现场对水分检测的快速、无损等测定要求[10]。在国

际紫菜标椎的制定中，水分是评价紫菜质量的重要参

数之一，若缺少高效精准的水分检测技术，将不利于

我国紫菜的质量管理，从而进一步影响我国紫菜进出

口贸易发展[11]。在此背景下，近年来，大批新型水分

检测技术应运而生。以测试简易、分析快速为特点

的近红外光谱技术便是其中之一[12]。

近红外光谱是介于可见光和中红外光之间的电

磁波谱，其波长范围为 780~2526 nm[13]，它能反映 O-

H、C-H、N-H、S-H等不同化学键的信息[14]，这使得

近红外光谱应用于紫菜水分检测成为可能。目前，近

红外分析技术在紫菜质量检测方面已有较多应用。

Guan等[15] 利用近红外光谱技术建立了紫菜最佳收

获时间的识别模型；Wu等[16] 采用偏最小二乘法结

合无信息变量消除算法构建了紫菜蛋白含量近红外

检测模型。除利用传统定量分析模型之外，部分研究

将近几年以突出的特征提取能力而得到广泛应用的

深度学习模型引入近红外光谱检测领域，如方明明

等[17] 基于卷积神经网络建立了苹果脆片水分近红外

预测模型；Benmouna等[18] 基于近红外光谱和一维卷

积神经网络建立了富士苹果的质量检测模型。而利

用深度学习算法对紫菜质量进行检测的相关研究仍

较为欠缺。本文为探索深度学习模型对于紫菜近红

外光谱的特征学习能力和水分的回归分析能力，对相

关光谱预处理方法进行了优化，同时在全波段下比较

了传统定量模型与深度学习模型的预测效果，并通过

调整模型超参数进一步挖掘深度学习模型的预测

潜力。 

1　材料与方法 

1.1　材料与仪器

干紫菜薄片　实验共选取 479组干条斑紫菜样

本，样品采购自赣榆、秦皇岛、青岛、威海等全国各

主要产地，分别来自于 2022年年末一茬和 2023年

四茬紫菜样品（表 1）。测定时，每组取 10张条斑紫

菜作为平行样，每张紫菜的尺寸为 19 cm×21 cm。
  

表 1    紫菜样品批次统计
Table 1    Batch statistics of Porphyra samples

紫菜样品批次 数目

2022年年末 145
2023年头茬 150
2023年二茬 54
2023年三茬 49
2023年五茬 81

 

MicroNIR 1700ES VIAVI近红外光谱仪　美

国 VIAVI，采用集成真空钨灯作为照明光源，波长范

围为 908~1676 nm，样品工作距离（即样品与探头距

离）范围为 0~15 mm；LRH-70恒温干燥箱　上海一

恒科学仪器有限公司；ME203E电子天平　上海梅特

勒-利特多有限公司。 

1.2　实验方法 

1.2.1   紫菜水分检测　按照 GB 5009.3-2016《食品

安全国家标准 食品中水分的测定》中直接测定法对

干条斑紫菜样本进行水分测定。 

1.2.2   光谱采集　如图 1所示，将每张样品均分为

4×5的 20份均等区域，竖立置于样品台上。分别采

集每组样品每张条斑紫菜片四个角落和中间 2点，

共 6个点的光谱数据，以消除紫菜不均匀性所造成

的误差。

采样方式为漫反射积分球模式，波长范围为

900~1650 nm、光谱分辨率为 6.2 nm、样品工作距离

为 3 mm、信噪比为 23000（扫描次数为 100 次，采集

后取平均值）、工作温度为 25 ℃。预热设备 15 min，
校正暗电流并以聚四氟乙烯白板为参比。 

1.3　数据处理 

1.3.1   样本集划分　目前最常用的样本集划分方法

是基于光谱变量的 Kennard-Stone（K-S）法以及在
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K-S法的基础上提出的 Sample set Partitioning based

on joint X-Y distances（SPXY）法。本文采用 SPXY

法，相对于 K-S法该法能够同时考量理化值和光谱

两个变量，有效覆盖了多维向量空间，并增加了样本

之间的差异性和代表性[19−20]。通过 SPXY法，本文

将 2022年年末和 2023年头茬、二茬和三茬采集的

紫菜数据集划分训练集和测试集。同时，因 2023年

采集的五茬紫菜水分含量分布最广泛，故将其作为外

部验证集评价最终模型的预测能力。 

1.3.2   光谱数据预处理　在进行近红外光谱检测时，

环境背景噪声和仪器误差会降低光谱数据的解释

性，进而影响建模精度。因此，必须对已获取的光谱

信息进行预处理操作。本研究采用多元散射校正

（Multiplicative Scatter Correction，MSC）、标准正态

变 量 校 正 （ Standard  Normal  Variate  Correction，

SNV）、一阶导数校正（First  Derivative  Correction，

FD）、二阶导数校正（Second Derivative Correction，

SD）和 S-G平滑（Savitzky-Golay，S-G）共五种单类

方法和四种组合方法对光谱数据进行预处理。对于

不同预处理方法，统一建立卷积神经网络模型，并通

过决定系数 Rp
2 的大小评价各预处理方法的效果。 

1.3.3   深度学习预测模型的建立　卷积神经网络

（Convolution Neural Networks，CNN）是一个多层非

全连接的深度神经网络[21]，其特点是通过卷积层和池

化层的多次反复交替学习来提取数据特征。相比于

普通全连接神经网络，卷积神经网络凭借其降低模型

复杂度、高效处理数据等优势，近年来被应用于目标

检测、图像分类等计算机视觉领域。

CNN基本架构由输入层、卷积层、池化层、全

连接层和输出层堆叠而成，本研究使用的 CNN结构

如图 2所示，由 3层一维卷积层（conv1d）、2层最大

池化层（maxpooling1d）和 2个全连接层（dense）组成。 

1.3.4   传统定量模型的建立　本文同时选用多元线

性回归（Multiple Linear Regression，MLR）法、偏最

小二乘（Partial Least Squares，PLS）法、支持向量回

归（Support Vector Regression，SVR）和人工神经网

络（Artificial Neural Network，ANN）共四种传统定量

校正方法进行预测模型的建立，并将其与卷积神经网

络所建立的模型相比较，探究使用卷积神经网络建立

紫菜水分预测模型的优势。

用于建立模型的数据分析软件为开源 Python

3.10.9与相关数据科学包，数据科学包包括：scikit-

learn 0.22.1、scipy 1.4.1、Numpy 1.19.4、pandas 1.0.1、

Matplotlib 3.1.3、TensorFlow 2.11.0等。 

1.3.5   模型评价标准　引入预测决定系数（Coeffi-

cient of Determination of Prediction，Rp
2）、外部验证

相对误差值（Ratio  of  Performance  to  Deviation  for

Validation，RPD）和预测均方根误差（Root-Mean-

Square Error of Prediction，RMSEP）3个指标对预测

模型进行评价。其中，决定系数值 Rp
2 越接近于 1，

说明模型的拟合效果越好；RPD值用于外部验证，其

值越大则预测模型的效果越好；RMSEP的值越低，
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图 1    近红外光谱采集装置图

Fig.1    Schematic diagram of near-infrared acquisition device
注：a.薄片型干条斑紫菜样品；b.MicroNIR 1700ES 探测头；c.标准白板；d.外接平板与内置软件。
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图 2    CNN基本架构模式图

Fig.2    CNN basic architecture model diagram
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说明模型预测的准确率越高。Rp
2、RPD及 RMSEP

计算公式如下。

Rp
2 = 1−

∑n
i=1(yi,actual −yi,predicted)

2∑n
i=1(yi,actual −yi,predicted)

2

RPD =
1√

1−Rp
2

RMSEP =

√∑n
i=1(yi,actual −yi,predicted)

2

n−1

式中，yi,actual 为验证集样品水分实际测定值；

yi,predicted 为验证集样品水分预测值；n为验证集的样

品数。 

2　结果与分析 

2.1　样品水分检测结果

采用规定方法对紫菜水分进行测定，得到样品

水分含量频率分布直方图和正态分布曲线见图 3。
由图可见 2022年年末一茬紫菜以及 2023年四茬紫

菜的水分含量数据均呈正态分布，且数据集具有代表

性，适合进行模型训练及验证。
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图 3    2022年紫菜水分含量分布图（a）和 2023年紫菜水分含
量分布图（b）

Fig.3    Distribution of water content of samples in 2022 (a)
and 2023 (b)

  

2.2　光谱采集结果

使用近红外光谱仪对紫菜样品进行光谱采集，

得到光谱数据如图 4所示。由于光谱数据受随机噪

声、样品表面散射及光程变化等因素的影响，吸收

光谱线带较宽，特征吸收峰不明显，无法直接建模

分析。 

2.3　光谱数据预处理结果

将采集到的光谱数据输入 CNN模型进行训练

之前，需要先对数据进行预处理。本文共选择 MSC、
SNV、FD、SD和 S-G平滑共 5种单类预处理方法，

并在此基础上进行优化。本文所选五种方法对于光

谱数据的预处理效果各有不同，其中，MSC和 SNV
法可以消除样品因颗粒分布不均或颗粒大小不同而

导致的散射[22]；S-G平滑法可用于消除光谱中的随机

噪声[23]；一、二阶导数变换能够消除光谱中基线的平

移和漂移，提高分辨率和灵敏度[24]。

由图 5（f）可以看出，除 MSC之外，其他四种单

类预处理方法处理后的数据相对于未经过预处理的

数据来说所建模型的预测效果表现均有提升。经过

预处理后，模型的 RMSEP值均有所降低，且 Rp
2 值

均有所升高。从图 5（d）可以看出，经过 MSC处理后

的光谱特征峰并不明显，同时线带宽度大，散射影响

未被有效清除，故造成其模型训练效果并不理想。

为探索两种预处理方法组合使用的方式对于模

型训练的叠加效果，本研究采用了 S-G平滑+FD、S-
G平滑+SD、SNV+FD、SNV+SD共四种组合预处理

方法，以达到“清除随机噪声+消除基线平移”或“清

除散射影响+消除基线平移”的双重效果。由图 5（f）
可以看出，经过组合方法处理过的数据所建模型的预

测效果显著优于单类方法数据所建模型。其中，通

过 S-G平滑+SD处理所得到的模型决定系数 Rp
2 值

最高，为 0.990；同时其预测均方根误差 RMSEP最

小，为 0.456，表明利用该方法预处理后的光谱数据

能够较好地适用于 CNN模型的特征识别。由

图 5（h）也可以看出，在 S-G平滑方法上进行二阶导

数的操作可以明显突出特征吸收峰，同时在一定程度

上清除毛刺噪声。 

2.4　传统定量模型结果比对

根据 1.3.1中的样本集划分方法，将 2022年和

2023年采集的三茬紫菜（2023年五茬紫菜除外，

2023年五茬紫菜单独作为验证集）按照 5:1的比例

划分为训练集和测试集。样本集划分结果见表 2。
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图 4    紫菜样品近红外光谱采集

Fig.4    Near-infrared spectrum acquisition of samples
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图 5    通过不同方法预处理后的近红外光谱及其建立的 CNN模型的预测结果

Fig.5    NIR spectra pretreated by different methods and the prediction results of the established CNN model
注：（a）FD处理；（b）SD处理；（c）S-G平滑处理；（d）MSC处理；（e）SNV处理；（f）不同预处理方法下建立水分含量预测模型的结
果；（g）S-G平滑+FD处理；（h）S-G平滑+SD处理；（i）SNV+FD处理；（j）SNV+SD处理。
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不同的模型对应有不同的最佳预处理方法，本

研究在利用不同方法预处理光谱数据后，分别输入四

种传统定量分析模型（SVR、PLS、MLR、ANN）进行

水分含量预测，表 3是四种传统模型及 CNN模型各

自所对应的三种最佳预处理方法处理后所得到的模

型预测效果。
  
表 3    最佳预处理方法下不同建模方法建立水分含量预测

模型的结果
Table 3    Results of water content prediction models established
by different modeling methods under the optimal pretreatment

method

模型 预处理方法 RMSEP Rp
2

MLR
FD 0.629 0.974
SD 0.632 0.974

S-G+FD 0.629 0.974

SVR
FD 0.556 0.980

S-G+FD 0.553 0.980
S-G+SD 0.556 0.980

ANN
FD 1.341 0.879
SD 1.339 0.883

S-G+FD 1.440 0.859

PLS
FD 0.753 0.963
SD 0.715 0.967

S-G+FD 0.764 0.962

CNN
FD 0.562 0.980

S-G+FD 0.494 0.985
S-G+SD 0.456 0.990

 

在四种传统定量分析模型中，SVR模型的预测

优势十分显著。在利用 S-G平滑+FD预处理后，其

预测误差 RMSEP降至 0.553，Rp
2 值达到 0.980，与

Li等 [25] 基于土壤光谱数据所建立的 SVR模型

（Rp
2 值为 0.674）相比，预测准确率更高且模型稳定

性强。同时根据 Williams等[26] 的研究结果，模型决

定系数 Rp
2 大于 0.8时，可认为模型在农业和食品工

业实际可用，本文 SVR模型的 Rp
2 为 0.980，说明基

于传统化学计量学方法的条斑紫菜水分定量模型建

立成功。

将 SVR模型与深度学习类模型 CNN对比，可

以看出在 S-G平滑+SD预处理后的 CNN模型，虽

然没有经过优化调整，但其 RMSEP值比 SVR模型

低 0.097，决定系数 Rp
2 比 SVR模型高，模型预测效

果更好。此 CNN模型相较于 Liu等[27] 基于组合传

统定量模型——偏最小二乘和支持向量机（PLS-
SVR）所建立的龙香梨水分定量模型（Rp

2 值为 0.760）
来说，表现出更好的预测性能。因此，可以看出深度

学习在建立水分预测模型的方面相较于传统化学计

量法具有明显优势。 

2.5　CNN模型分析

根据 2.3中对于预处理方法的评价，本研究选

择 SG+SD的方法作为 CNN模型最终的预处理方

法。并在此基础上，通过调整 CNN模型的学习率和

迭代次数来进一步优化 CNN的最终预测效果。 

2.5.1   学习率对模型预测效果的影响　学习率在模

型训练中起着关键作用。过大的学习率会导致训练

过程不稳定、振荡，并使模型难以收敛，预测误差

大[28]；过小的学习率则会使模型出现训练速度缓慢，

陷入局部最优解等问题[29]。

由图 6可知，当学习率逐渐减小时，模型 RMSEP
值逐渐减小，Rp

2 值逐渐增大，这是因为当学习率逐

渐减小时，模型的步长减小，可以更精确地搜索参数

空间，从而更有可能找到最优解[30]。而当学习率降

至 0.00001时，过小的步长导致模型在参数空间中移

动的速度变慢，使模型陷入局部最优解，无法达到全

局最优解，故 RMSEP值和 Rp
2 值变化趋势发生相反

的变化，模型的预测性能会下降。根据训练结果，对

于此 CNN模型来说，其学习率在 0.0001左右时预

测效果最好。
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图 6    学习率对水分含量预测模型的影响
Fig.6    Influence of learning rate on moisture content

prediction model
  

2.5.2   迭代次数对模型预测效果的影响　迭代次数

是模型训练过程中的重要参数，对训练效果产生显著

影响。适当的迭代次数可以帮助模型更好地理解数

据模式，提高训练精度[29]；然而，过多的迭代次数可能

引发过拟合问题，导致模型在训练集上表现良好但无

法泛化到新数据[31]。

由图 7可知，随着迭代次数的增加，模型可以逐

渐减少在训练数据上的预测误差，从而使 RMSEP值

逐渐减小；同时，模型也可以更好地拟合训练数据的

目标值，使得 Rp
2 值逐渐增大。当迭代次数增加到

1200时，模型可能过度学习了训练数据中的噪声和

随机变动，而忽略了真实的数据模式和规律，造成过

拟合，预测性能下降[31]。

为了平衡模型的拟合能力和泛化能力，本模型

最终确定合适的迭代次数大致为 800左右。

最终通过反复训练可得，当学习率为 0.0001，迭
代 800次后模型训练效果最好，其预测均方根误差

 

表 2    样本集划分结果

Table 2    Results of sample set partitioning

样本集 样本数目

训练集 332
测试集 66
验证集 81
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RMSEP降低到 0.342，决定系数 Rp
2 达到了 0.994，

说明在全波段下构建 CNN水分预测模型可行。

相较于谈爱玲等[32] 基于 1D-CNN和串行融合

光谱预处理方法所建立的水分预测模型（Rp
2 为

0.906）和沈晔[33] 通过复杂的特征波段提取后建立的

干贝水分定量分析模型（Rp
2 为 0.967）来说，本研究

所建立的深度学习模型虽未经过特定的特征波段提

取环节，但训练效果并未逊于前者。只经过简单光谱

预处理并基于全波段所建立的 CNN模型整体拟合

度较优，特征选择较为准确。 

2.6　外部验证

在对比了不同模型的预测效果后，最后将 2023
年采集的第五茬紫菜光谱数据输入 CNN模型，进行

外部验证，验证结果见图 8。Jiang等[34] 发现外部验

证相对误差值 RPD越大则预测模型的效果越好，当

RPD>3时则表明模型可以用在生产实践中的检测。

经测验，该 CNN模型的 RPD值为 6.155，说明该

CNN模型可以在实际使用场景中拥有较好的预测效

果，可以实现快速准确地预测条斑紫菜水分含量。
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图 8    外部样本模型验证结果
Fig.8    Verification results of external sample model

  

3　结论
本文分别采用多元线性回归、偏最小二乘、支持

向量回归、人工神经网络和卷积神经网络基于近红

外光谱全波段建立了紫菜水分预测模型。结果表明，

在四种传统定量水分预测模型中，SVR模型的预测

效果最佳，经过 S-G平滑+FD预处理后，其预测误

差 RMSEP降至 0.553，Rp
2 值达到 0.980。对比传统

定量水分预测模型和深度学习模型来看，在 S-G平

滑+SD的预处理方法下所建立的 CNN模型预测效

果最佳，其 RMSEP值为 0.456，Rp
2 值为 0.990，优化

后，该模型的 RMSEP值降至 0.342，Rp
2 值可以达到

0.994，大于 0.8，同时外部验证 RPD值为 6.115，大
于 3，充分证明了全波段卷积神经网络（CNN）模型实

际用于农业和食品工业中的可能性。同时，也可以看

出深度学习模型在通过近红外光谱识别干紫菜中的

非主要成分，即水分时所展现出的巨大潜力。在实际

生产现场中，厂家可在条斑紫菜烘干工艺结束后的生

产线上安装内置有该模型的近红外光谱仪，对烘干结

束后的紫菜样品实时进行水分监测，从而实现对紫菜

品质的高效控制和管理。

此次实验所测量的波长范围较小，故如游离

OH组合频波段（1920~1980 nm）[24] 等可能与本次实

验相关的波段没有被包含到数据集中。同时，近年来

集成学习和融合策略的概念逐渐被应用于近红外光

谱分析领域中。因此，之后的研究应当基于更完整的

光谱进行建模，并结合集成模型的应用，探讨更精准

的预测效果的实现。
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