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Role and Mechanism of 20-Hydroxyecdysone in Oxidative Damage
of HepG2 Cells Induced by High Glucose

WANG Mengyuan', LIU Xianjun?, MENG Xianglong’, LI Hao®, LI Zhandong®, YIN Yuhe"’

(1.College of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China;
2.College of Biological and Food Engineering, Jilin Engineering Normal University, Changchun 130052, China;
3.Department of Burns Surgery, The First Hospital of Jilin University, Changchun 130021, China)

Abstract: Objective: To explore the protective effects of 20-Hydroxyecdysone (20-HE) on high glucose induced HepG2
cells and its related molecular mechanism. Methods: In this study, high glucose (50 mmol/L glucose) was used to establish
the oxidative damage model in HepG2 cells. The CCK-8 assay, caspase-3 assay, fluorescent probe method, and colorimetric
method were used to assess the levels of cell viability, apoptosis, oxygen species (ROS), superoxide dismutase (SOD),
catalase (CAT), and malondialdehyde (MDA), respectively. The signaling pathways involved in the regulation of 20-HE
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were predicted using bioinformatics analysis. The phosphorylation level of Akt protein was detected by Western blot to

evaluate the activation level of the PI3K/Akt signaling pathway. The involvement of the PI3K/Akt signaling pathway in the
regulatory effects of 20-HE was verified using the inhibitor LY294002. Results: Treatment with 20-HE had no significant
toxic effect on HepG2 cells at concentrations lower than 20 pumol/L. In the injured cells, 20-HE could significantly improve
the viability (P<0.05), inhibit the apoptosis (P<0.05), down-regulate the level of ROS, improve the levels of SOD and CAT
(P<0.05), and down-regulate the level of MDA (P<0.05). PI3K/Akt signaling pathway was the potential downstream
mechanism of regulatory effects exerted by 20-HE. 20-HE could significantly up-regulate the level of PI3K/Akt signaling
pathway in the injured cells (P<0.05). LY294002 could reverse the protective effects exerted by 20-HE on the injured cells.
Conclusion: 20-HE exerted protective effects on high glucose induced oxidative damage in HepG2 cells by activating the

PI3K/Akt signaling pathway.

Key words: 20-hydroxyecdysone; high glucose; HepG2 cells; oxidative stress; PI3K/Akt signaling pathway
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