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(1.2 %1 % R A2 A e TAFRPT, 2 JKvh /R 150086;
2. BRI BT L EE ST, LRI RIE 1500865
3.ERIT R A FIRK AT, BRI RIE 150086)

#H EHNBEILA D-FEERAAE 3- £ % FMEF (DAEase) #AET M EMZLFE, ALKHNAALFTRFHAK
B2 S A e B P EHE RS (ASR) , THT LA FEMENLEM IR DAEase 49458 55|, MET RAHK
h, BdFHEERLE)FEREE T DABase A13 F#tiToEF M A & iE, o, TR TEMOIHESTFHAF
18T T DAEase A13 #AL 2 MIGR DT hLh], LR EW, AT ASR FEPT#E6) A1370 °C BH¥ RMAATik 8.4h,
AR nEFTE (WT) B2 Z35%, KRB EN 1%, BAFRELRST T WT 8B, shEMEREL T
FHRMABTT ASRAIZ P REAMAFKERNGEMERS T HR TS TLEHGETH, RAABTHERG L
2 RFE. FRLERIEFET ASR K& T A%k DAEase & LAAF M, FHARILMEIEIR, TIAA D-FEEAME T b4
IR BT A AL

KGR AR ) F i, D-FI& B4, D-FI & BA4E 3- 2 d 7 Mk, RA8 7 1
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Ancestral Sequence Reconstruction Enhances Thermal Stability
of D-Allulose 3-Epimerase

GUAN Lijun'?, ZHU Ling'?, WANG Kunlun'?, LI Jialei"’, GAO Yang'?, YAN Song"?, ZHANG Xindi'?,
CHEN Qing"?, JI Nina®, LIBo">"

(1.Food Processing Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China;
2.Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China;
3.Soybean Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China)

Abstract: To solve the problem of poor thermal stability of the current D-allulose 3-epimerase (DAEase), the ancestor
sequences of DAEase with different catalytic domains were reconstructed by big data mining, reasonable modification and
ancestor sequence reconstruction (ASR) strategy under the guidance of phylogenetic information. The expression vectors of
the ancestor sequences were constructed, and DAEase A13 with significantly enhanced thermal stability was screened by
recombinant expression and molecular docking, and its enzymatic properties were characterized. In addition, the molecular
mechanism of thermal stability enhancement of DAEase A13 was revealed based on structural analysis and molecular
dynamics. The results showed that the half-life of A13 constructed based on ASR strategy could reach 8.4 h at 70 C,
indicating that its thermal stability was significantly enhanced compared with that of wild-type (WT) enzyme. The
maximum conversion rate of A13 reached 31%, indicating that the catalytic activity of A13 was slightly higher than that of
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WT enzyme. The structural and molecular dynamics analysis revealed that the increase in hydrogen bonding and

hydrophobic interaction in ASR A13 was the main factor responsible for maintaining the stability of the enzyme's molecular

structure at high temperatures. The results showed that ASR strategy could modify DAEases to enhance the stability,

activity or hybridity, which could provide superior biocatalyst sources for various industrial applications of functional

sugars.

Key words: ancestral sequence reconstruction; D-allulose; D-allulose 3-epimerase; thermostability

HH 56 7 2 B 3 B R ( Ancestral sequence recon-
struction, ASR) J&—Fh Fo.14 M [R] Y5 B A= 754 35 [ ) 4
B HEWT “AHH A" BB vk, Betls N AT A Y B4
5 RE K & i b AR PR R BN ), ASR il AT
{d H O A & A U B8RS T 2 859 x>k
TR RG L EW, T RER TN R
MW BARIF AN AHS S P24, ASR F=A: fFH e
A= Wy iR H B B e RS D sl 1 IR R,
HE— LG O Al AW R S2 301, Joho 46 Ak,
TN FH ASR R4S T #E A AL P R
HYS3f PET YEHY PET Bf. Gumulya 55 jlik ASR
PR FE T RSP R B T i S 1 R ) T T
P450 M. S1&5207=CHEL, ASR B ZEL#, £
FE 5 AL B BE AL A% O LTS 2 7% P A A 1YL G v
FRIRE /N0 D) R AR R IR AR E bR e ansh
e g B0 BET, MARAR ASR B T 22 M) 544
Hif FrAy AL A DGR

D-Ri] 74 BRI S —Fh 2SN 22 S A 0, AR
A RE T DAk 1) FEAE Y 70%, {H#RE A 0.2 keal/
gl 7', Ak, D-ByE IR EAT 2R AR BLVE F, andt
AERE L Povs o . POsEIRPS . Db Fneh 20837 4E
FHUON, R, D-BATyss R 7 B 5 A B 25 554 Tl B
A EZENFAMER Y, D-FVEIRNH 3-22 7] SR
(DAEase) #& 3L T Izumoring ZRHE HH D-RBEA Y&
A% D-Bn] 3% T A G B, JFC AR b R S TR BE Ol 55~
65 CP*2, HAELATHLIE 1Y DAEases K H G K5
A RS 4R S P A A T P, (H AR B R 25, Tovk
TESEBRAE = 1) T 254 F AP . Zhang 455081 ik
T K IR T Treponema primitia ZAS-1 1Y) DAEase
(TpDAE), ETE 70 °C £F Mk 500 g/L D-SRMHH;
1t D-B V& EAAS 7= 137.5 g/L, 4630 27.5%,
{EIEE 1 h JaistEseased . b, KRIET Clostri-
dium cellulolyticum W) DAEase 7E 60 °C 251 F B2
TN 10 min™?, SRIRT Christensenellaceae.mi-
nuta ¥] DAEase 7E 50 °C &4 T 2288 40 minPY,
I, FAR SRR PRS2 P41 DAEase J2& 4717
SIS o

Ao BT HA B S I IE R TpDAE &5 H
PN I RAH S A B R ST oY, S T B AN R
Aegh Ik tHS ST A . s, A IR RS AR T )7
Y H 1Y DAEase( Al 1 A13) LK F5, #ygdt T 5
ZH 3R R 5 KR I AT P B 20 IR T AR, XIS 1Y
DAEase ¥ 14lifb 53RAE, Hbh A13 BEFA= (WT) il

PARCE M R . TS T S T Bl AR
HISLEHRER T DAEase 258 PEFAVEBALTE PHEHG 58 1Y Y
N DA EBFgR R, $H50 P2 S S il LA
H B0 R APMEREAY 22 ] A4, BB BAHTRR R
B E D FA R TR T R AR .
1 SR
1.1 MRIEEE
Escherichia coli IM109. Escherichia coli BL21

(DE3) . pET22b(+) ¥ Ryszi 28 447; Nde 1. Xho I

KiEFAY) Takara o &) Bk /DRI & . /VE
DNA B 4lifk [Pl Y& 33855 &2 Omega Bio-Tek 2\ Al ;
Luria-Bertani(LB )} 3755 HERHFRE RN 5 g,
F#r 10 g F1 NaCl 10 g, % F 1000 mL ZE4 K+,
121 °C &K B 20 min; A o225 o Brdk
¥k A Sigma-Aldric 2 F8AE T AW TR (L) i
A BRAF

HYG-II B [a]jg 20E e s F8 RAE. TR

H b4 BR A 7] DY CZ-24D BUAZ I HL Ik AL
JEIE T AS—A1L28) 5 Agilent 1260 YR ARAH (B5AX

b i 3 R 2 AL AR A PR 2 F 5 Agilent 1260
Infinity 78 A& GGy 2 HERRH A BRA A5
kA& ES #E-w(5 um, 4.6x250 mm)  FEER K
HIRFHL A FH]
1.2 SEEAE
12,1 DB 3-22 1 SN0 2R 58 K B T 5
HAE) P E i A5 R FireProtASR (https://
loschmidt.chemi.muni.cz/fireprotasr) 11T R G A B HE
Wr ALY P FE . K TpDAE 192517 51 i A
FireProtASR #4743 #7, FireProtASR i i SwissProt
I Catalytic Site Atlas X} DAEase [ & F: B8 17 51 i
ATEESFPEPEAL, 2 Y6, E152, E158. D185, H211,
R217 1 E246 fEALFRIEVE R PR-F X, FireProtASR
B S A PSI-BLAST X NCBI ¥ ¥ /%2 ) DAEase
PEAT OIS LA AR B[R M P 415 kG 3T ClustalQ
X RSP Z3EA T 2 7 20 Ee X R IQTREE 41444
HEWTIHL R Ge R B SR 22791 X 48 SRR T
RGERBMHIA RAXML kit —3 9 RHE RS A
B ARG R BRI L2 R S ARl
JH Lazarus J5y 8 PALM A4 50 DL HE @ HAH S
%1, FireprotASR 35 R A /&R hinAs el )= He g vk 4k
PR, FHHET 50 Ik A 26 LLISIE R Gl 1bAt, 515
R B RYE A 5~100, KZEL ASR 5 51951
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FAEKT 70, AT S EASREERGR . SRAH Disco-
very Studio 2019 X} F &) ASR DAEase #4753 F
XS
1.2.2 Al A13 YT FRIXE A4tk fHE
Jy 4 @5 1 DAEase X H S AR gmfith L8 i 4k
AR A RS F A B ffi A pET22b(+) 24K 1
Nde I F1 Xho I BR il P Py DIz 5 2 () 44 2 E 20 2%
1A, M PR S £ o KR TChif%E A E. coli BL21
(DE3) 1, 3R T84 50 pg/mL KAREEZX Y LB [#
B FE I BH A T

MR BREC 34 B Gy i) B L A 3 &2 75
A 50 pg/mL FKAREEZE Y 200 mL LB ¥5353E, 37 C
220 r/min 54 F 35 3R . M B AR S B (ODgg,) i5 3
0.6~0.8 B, I A 0.2 mmol/L 578 FeaiAC 2L
(IPTG)IFFHFEHFTL. ££ 16 C 110 t/min Fiff—
H1EFE 12 h, fli DAEase 281831k, 7£ 4 °C 5000 1/
min £ B0 15 min IEE B, H 0.85% EFEEL
IKGEGPHIR

40 M £ Lysis buffer( 50 mmol/L Tris-HCI,
10 mmol/L Bk I | 500 mmol/L. NaCl #1 1 mmol/L
DTT, pH7.5) F#EAR%#% 10 min, Z£ 4 °C 10000 r/min
FAF T ES L 30 min RERAUIEAE A . B IEWS Ni-
NTA W I8 Fe 5045 & J5 In A Ji4E, FH 10 mL Lysis
buffer #1 Elution buffer( 50 mmol/L Tris-HCI,
500 mmol/L Bk B | 500 mmol/L NaCl #1 1 mmol/L
DTT, pH7.5) 43 Bk, Elution buffer BE)E 14 HiiE
WERD Ry His bric i EH B B W - FIFH SDS-PAGE
Aer 8 8 1 ik M AR, I Nanodrop 2000 {1l
EAALE AR R, T e 2am e .
1.2.3 A3 PERAYRAE  AE 40~80 °C I W AfiE iR
B XF 40 56 41 5 i )5 DAEase A13 i M 19 52 i
pH 2 e P fEAS [ 2% vh % (MES: pH5.5~7.0, PBS:
7.0~8.0, Tris-HCI: 8.0~9.0, CAPS: pH9.0~10.0) 15
B A3, il 1.2.4 {EPENE I E pH B LITE
A pH FasE e . R e B alifb s A13 4351
£ 50. 60, 70 F1 80 °C 4514 FWEHE , EANIRIHGES[A]TH]
B, MR IR A hEREBGE S AR, SR 1.2.4 i
WP R T IR e R AT . e . AR N 2%
T, LIRS PRGSO B, D HAR A TS
. DAEase FYRIEATG— B AR, Jify Iz
R YIHE = A Sy S g vh R AT, H WA AU
p/{TI

K. =(2.0303/T)/1g(E,/E)

t,,= 0.693/K,

o K, R ICH B By NI UR NG P E A
TUEE) N DAEase ARG
1.2.4 FEREHENE RSIEEAEECS 1.0 mL, &4
1 pmol/L A13. 50 g/L D-SRE¥EFI 1 mmol/L CoCl, F
Tris-HC1 ZZ P& (pH7.5) o 4 N AE T K g &

10 min J&Z& 1 ESO0, ME HGPE . TEAAT T, 57
i b A Al 1 pmol DB v BRBE (4 B4 e o —
WG EAAN, . A HPLC 350052 A13 76 W AR
i AR A D-BRS B Y

1.2.5 TEHRCBAR LG (HPLC) A0 D-B] 745 i 4
78 WA 2 87 H e D-SREEE AL R D-Bal 35 B 6 )
LA g gt 3 v o AR ZKAGE ) ES #E-w (5 pm,
4.6x250 mm) Fl 1260 Infinity 7% % S #6025 DE
753 BAASIN, HPLC 2517820 75% LA 25% 255
FIRAVE R s AR A BE VR, BEAEEL A 10 L, by
1.0 mL/min, H:3& 4 40 °C, 2K S 30 psi, EAE
HE R 55 CPA, MEERE =R,

1.2.6 43 Fah 15 4L BT RAIRZFAITFE
( Clostridia bacterium) D-BA] 3% Wi H4 3-2= [n] 55 A4 B
(PDB ID: 7X7W) B 44544, {1 H] SWISS-MODEL
TELR R 5575 (https://swissmodel.expasy.org/) @A, 4=
A [A] Y5 B9 TpDAE il A13 19 = 4k 45 AU, Jf 3 1
PyMoL (http://www.pymol.org) 47 r #4534 o HF
TR A A Y B X2 Z SAVES 1E £k IR 55 28 (https://
saves.mbi.ucla.edu/) , ] ] Ramachandran [&] X} #5 %4
i 3D 25 S EEAT IR . TpDAE F1 A13 (192 3%
i 22 H. X 2% 43 M7 il 3 RING AR 55 2% (https://ring.
biocomputingup.it/submit) FE47, £& FH it 2% 1 B K
43 BT A8 FH 7E 28 R 34l Expasy(https://web.expasy.org/
protscale) .

KT DL B2y, TR sh J1 Ao, Leak
TpDAE F HARSeI P AN 5 A13 4ot LA R W] G
PRRCE MRS LS . RS IRIER T B R
— %k, {#iJf] AMBER 14 ¥} 151 AMBER99SB JJ
YT o3 T30 J155 (MD) Bl B I 4576 93
TE— DK+ &S T, EOa 58
FiHSEIFE S 1 nm, B Na'sl CIH RHIER SE A
fire BlJE, T IHERTEAERIAS R 32, 31 2 50h
EH/Mb, fEREE IR/ IME)S, AR SEAE 100 ps N
N 0 ZEHTHNE] 343 K(70 °C) . Helii, 7E Langevin
BEE IR N 343 K FIE S 1.0 atm 2514
AT 30 ns 43 TBI ST, ITA2EHC Y 2 fso
1.3 HiEasE

P SEE BRI LA 3 IR LI 28 R 0 I B
HEIR 22 (mean+SE ) £ 7x . Origin 9.0 #4174 15
2} GRS
2.1 D-PEERNE 3-E RS AEERELFIIER

i# i FireProt"S® FLK; 2 H 110 4~ DAEase [ A]
WIrF), FTERGE L TW AR T 110 4~ ASR J¥51
(El 1), tHelEEH AR GE R BT s P,
MY S AUAHSE DAEase #6858 AL, — I A1 2
U rtH e, Hon] ge Rl fe kit b 22 55, BRItk
AR A1 VE B . S92 Bl A ) B
AN ReAfE WS S TEE A B TR TR Y, T L EE
W T RERFASE . TEEE MO IEAN L, X E AT
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25 Ay A
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P 1204z, 0.1 = u \:l'?i' et
WP 116295 8.1 Al © T wr PP
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GH2. 14 _E“'P 166454198.1
wp 120878707 1 i3 i ‘\:jr 1186181711
e P 010270828.1
WP 147395920 wp 125025473
WP Wa7aieadl WP 12835 3.1
4760741 . 99351
p 3Lt WP gy
L et Wp g, 65014
wel _qu..‘-jf.‘\ g W, 64-1'47_,—,31
AN W8 RS W 52658 -
AT A A5 Ltz 2
we Y q,L(,g’B Wp 2124,
. ‘q_lﬂ 4% P ‘{5\1‘73 A
'\1\? lﬁrﬁ‘- ,9;7) 4’52“'!
«¥ w \%"-9“ g 5y Zipa, ;
Al O g, ™
<® oy AN " e 6‘%‘}!“:&:;
\’5"'& - ,
<& < g Y2,
& . e v
EE
y "g-; : é e
EE3
HEE
= % 0
2 &
= =
B RS9 B s S 1 A 5% DAEase
Fig.1 Resurrection of ancestral DAEase employing ancestral sequence reconstruction strategy
1 21464 ASR DAEase, # {04211 TpDAE.
F 1 MG A13 5EFAE TpDAE 975122 5%
Table 1 Sequence differences between A13 and TpDAE
(VA 2 45 48 52 61 62 71 73 74 81 82 96 104 120 125
Al3 Q \Y% S D \Y% T A G E N R G R L A
TpDAE K T E E I I T S Q P A K K K E
L, 133 135 140 145 177 182 224 225 229 232 238 242 257 268 273
Al3 E I A R H \% C I A H R T Q E 1
TpDAE K \'% K C S I S L E Q N S S D A

5. ASR DAEase A7 FXF 825255, LA IAE A T
eI RS FRXT A& U ASR DAEase #HE1T3RA1E,
SrFXFEESC R, AL3 [ 45F X 42{H (-CDOCKER _
ENERGY) >} 8.15, 5 TpDAE B9 8.21 332 iF, #EI I
HA 5 TpDAE FHRIMEAGEE 11, RIREVE ikt T
JECERNE LTS, I A13 S5 ¥ A TpDAE )%
Y254 30 M, WL 1
2.2 ASR DAEase BFRi&FN4h1L
AW 5T F) FH pET22b(+) TR IE E. coli BL21
(DE3) FF AR5 T Al il A13, BTN
33.56 kDa., EEFATE C i A %M Hisx6 R

£ (HHHHHH), % Ni-NTA SEFUZE AT 2510 B
i b alifk HAR B . Al #£ E. coli BL21
(DE3) H B SR SCE T AR IR, (B B3 nl ks
ik, X AT RESE T A S AL Sl A R I &
K. A13 7E E. coli BL21(DE3) H TNzl 7 Al it
23k, 4lifb )5 19 A13 7E SDS-PAGE &EBE 235 MW Y
500, RS T BHRZIN 35 kDa, {HAF1E—LEd R4
PR ML A (] 2) o LI5S R B DAEase &1
LA E 3 I R G A i s D 52 16 RS B n] P TR s
M), PR e PR B AT s ks HAHLA m e Mg
M) A13 P TSIl o 1 2 AIE
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AL AR ST YR D-FIK R 3-22 ) S AL GBS e - 125 -

Kl 2 £ E. coli BL21(DE3) A4 A1 A1 A13 )
SDS-PAGE %M1

Fig.2 SDS-PAGE analysis of the expressed and purified Al
and A13 in E. coli BL21 (DE3)
TE: M: AR E Marker; 3k3H 1: 1%} 88 (E. coli BL21(DE3) );
VKB 2: A1 TRAARBE AR B IRG VKO 3: A1 B0 5 g5 VkGE
4: 4Ll AL VK 55 A13 BEABEIE TKIE 6: A13 B0
Y IS VKIE 7. 2ifkiy A13,

2.3 Al3 BB M RIRIE

TR RS AL S N W RN R — — 7
T R AR AT T LA IR A R, s RS Sz 1y
F2, 55— T R A AT AR i A AL R I BRI
WG Y . AFERA BRI Tl A i T 2R
" i ) 7900 A A X A2 v A R RE T BB R R v A TG
P ARWFFTHE 40~80 °C MR EVER NIST T IR BE
XT A13 TS PERZ ), 25 S R0 A13 YRS TR E R
70 °C.(J&l 3A), FbiFPEN 355.5 U/mg, AR 44 F 5
TpDAE 1) #5338 75 A Eb i PR3 A —3(P¥, A13 7E
65~75 °C Z I HAGT IR m s, I 2 i [ AR
FEHE G PER 85% LA_E, ¥E 50~80 °C YR E L

A 1004

90
S 804
#H 4]
£ 70
B 601
=

50-

40

40 50 60 70 80
R (C)
=
B 100 —=— Tris-HCl
—=—CAPS

— 90
5
= %0
i
=<
= 701

60-

5 6 7 8 9 10
pH
3 (A A pH(B) XS A13 iH R
Fig.3 Effect of temperature and pH on the
activities of A13

Yy st 70% A E, T B2 A8, AR
SURIBRAR (R 3A) . X SRR A13 HA i i
JEAEYMREAFIBTW J1 . B 3B BoR T pH X A13 7%
PEFIFE S PERIRENE, 7E pHS.0 1Y PBS ZE Py, A13
o e T, IFAE 6.0~10.0 By pH I8 [ PR i
70% FHXFIE M. CARIE R Z 40 DAEase 7E M 4%
£ R (pH7.5~9.0) FE B H T AR i e, (EL P 254 T ik
IRAC A P AR AR A8 2308 55, FT AR UE = B 1 R
Eo Al3 £ pH6.0 BfYAEXIIETEN 75% LI B, AT
kA e HA AR SR P N T T o
24 A3 AR EMS¥ERER

&4 M IEHRGE K 250 DAEase FHcah SO0 g
FENTF 55~70 °C Z ], {AFERGE R A T i
WY g, ME LA I Tl A r= @R R B3, anE 4 iR,
A13 7E 60 °C DA T IZAHXELE Y, 76 60 °C 7 24 h
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