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B E:hIRFR K S48 (Moringa oleifera leaf polysaccharide, MOLP) T4 Jk 9% /s R 69 4 3 B & H ALk, @
id 1 T e M2 & (Streptozotocin, STZ) # F#EkmRAARA, KRB IR RXAEFETaM, A4, MOLP 1&
AZam (100 mgkgbw)  FHI=Z4H (200 mgkgbw) « & HE4 (400 mgkgbw) A=Atk hdhie (B = F 1w
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Abstract: To explore the hypoglycemic effect of Moringa oleifera leaf polysaccharide (MOLP) on diabetic mice and its
corresponding mechanism, a streptozotocin (STZ)-induced diabetic mouse was modeled. The mice were then divided into
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groups exposed to low (100 mg/kg-bw), medium (200 mg/kg-bw), and high dosage (400 mg/kg-bw) of MOLP, with a
normal blank group, model group and a positive drug group (hydrochloric acid dimethylbiguanide, 200 mg/kg-bw). Eight
mice in each group were gavaged for 28 d. Fasting blood glucose, serum glycated protein, serum insulin, hepatic/
myocardial glycogen and other biochemical indexes were determined. Additionally, the key genes of glucose metabolism,
including liver X receptor (LXR), pancreatic-duodenal homeobox-1 (PDX-1), glucokinase (GK), phosphoenolpyruvate
carboxykinase (PEPCK), glucose 6-phosphatase (G6Pase), glucose transporter type 2 (GLUT2) and insulin receptor
substrate 1/2 (/IRS1/2) were measured in the liver and the pancreas. Furthermore, the mice's liver and pancreas tissues in
each group were stained with HE to observe their histomorphology. The results showed that MOLP exhibited a significant
hypoglycemic effect and a dose-response relationship. The level of blood glucose reduction in the MOLP high-dose group
(400 mg/kg-bw) was closest to that of the positive drug group. The underlying mechanism was that the significantly
upregulated expression of LXR and PDX-1 ameliorated the glucose metabolism disorders in diabetic mice by regulating the
expression of their downstream genes including PEPCK, G6Pase, GK, GLUT2 and [IRS1/2 mRNA. This regulation
facilitated the improvement of the damaged liver and pancreatic tissues, increased serum insulin and hepatic glycogen
content and ultimately resulted in a hypoglycemic effect.

Key words: Moringa oleifera leaf polysaccharide; STZ induced mice; lowering blood sugar; glucose metabolism; insulin
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W FRIPG S — PR DL A2 A R B, i PR
Sy IR REs G R S A FHER A T R Y, R
FE R BT IAAS B B AN X 5 2R AU IR, 3
TP AR PRI 00 PR &9t L, mT 59
S 1 BUELRIS . 2 BUELRG (Type 2 diabetics, T2DM) .
LT YRl FRIps FIIADASF RIS BB R . BRI, BE PRI
PEYT FEIRE T Y IR EAIR 2 s S AT
i, AERF MUBHAE T80 [ (SR TR E ), DT EGEE: i
WEAKT-, 3 TS5 88 P I A RE 14 A A 0 R e iAE
FHB, JEAESE, BRI B R R L BT, 45 B Anat
Sk TUTE T, BRI TG TE 3R 2R TARK
AR A T IS NIX T IE R, U TR TR
W S A5 U R, AR AR 22 IR PRI VR YT SR v, 4
A R RO b 25 HL R FATR A3 R b 24 40 Al
R—AERIEEL, T R ELR, B W NG
Tk B 2 T 008 BRI B8 325 22 52 1 R AR 77 W i M Ak
Iy ——B AR Z Wi (Moringa oleifera leaf polysac-
charide, MOLP ) iZ#iE HERARIIILL, Il AR BE2F
WFSE 2 PTG IXT 5P

A (Moringa oleifera) NIHARIIRAJE 2474
AEA, HAR | 25| i PSR RE AT B A SO EL 25 A
1H . 0 5% 3% B, Bl - JK 2 9 ( Extract of
Moringa oleifera leaves, EMO) BEN & 25 B0 IR 5
R BRI 7K L A& = 353455 9 R0 i 15, 4 Bl T
A B PER M, 4N Carrie ) 1 Toma £
il 3 s S G % 1, EMO GBS W 25 1R v B 1 2K
B, PAGEI I FR AT, HoAA W E ] . Wolde-
kidan Z50Y Fl1 Al-malki 2502 WP o 45 St 280, Ok
EMO(250 mg/kg F1 500 mg/kg)28 d ELAG T = bk .
BT IV YRR 5 2K, A E W R B Al AE
YEF . AHZCIHE R4 132 B EMO G2 4% B W BEAIG
2 TR PRI R A A U 3 L OB A I 2T 45
( Glycosylated hemoglobin, HbAlc) 17K, H JGAT
fATEERIVE DM, (H EMO WA R 20, &hH %
W PR SR S B, SR e R R P S B R

WEVERT, BRI ICES . 3 TR g o F 3R,
EMO 120 H 2 A4 (35.2%) , HiR(4.3%) %
H(5.1%) P b bege U7 HEM MOLP # A i
HE A~ EMO = /9 [ B8 75 4 1% 43, AR & F 78t 3iE B
MOLP HAG EUT- I RERRROR, anvE 55 50 F A 2
B4 85 H AR, I MOLP 43 85 15 21 P 4~ 22 5% 41 5>
MOs-2-a. MOs-2-b, H. 45 R FE B MOs-2-a, MOs-2-
b FJHE W2 NS F AT, B R A RO
Z= TGNV 3 3 B LB UE ] MOLP HLAT B30 IR
oI R BRI AR A2 2 . v BRI 2R MURE . PR I TE 1k
RSB, FIRPISTUESS T MOLP (i35 1 55tk
P, AEL R R R DA R JHE I 4 1 A R R A L o A 20
T, ATyt BEPE— 25 IR AIST

2% |, FHEHFSE 2] MOLP MR e g 3, vl
i PR BGEE IR M T R, (A AR
Tl DA IR S, TEITFIE (IR 2R 00 2R e B 2
— ) BRBRAR (AT 5 2 430 ) P AT A E R 530
I, UE R 2L o . LTI, ARBFFELL STZ i
FHE PRI /IS BROAASIRY . DOVEA QIR 423 1 £ B AT O
PRI LA IR R S AR AE A2 AR,
LEA T S IR S AR AR R AR AN A W24 ds
b, #RF MOLP X} STZ 75 S BE IR /I BRI FEHH 24
SR B AL, DA SR RARBERE 5T 2 Rk
IR EEAL R RS
1 MRIEREEZE
1.1 MR5EE

SPF WA (KM)/INRL HfEVE, 4 RIS, 745 &
(202) g, W [ A FE B3 Te 5LIR L5 sh A BRAS H],
IV ATIE S SCXK (31)2019-0004, 173137 T E P
TIWIERERE S SIS L, BUAFSY EL3RAS EE DS
JU 2 BE s 18 BE 2 51 S, bS5 oA 2023041
101B, I/ 4% 3255 6 22 LA Kz =] PR3l 4 52 5 A SO 5
PR EETAE IR SOR R A Fe bl ; DEAE-52
ARSI ARA BRAF]; SemliEpsl SmPE A
BHEABRA W #r RN gE vhie  _EHEBTR T A bR



%4534 55 19

SRR, 2 BRI BN STZ 5 SRR/ N R AR R S L - 359 -

A A BRI F]; Thie XIS A3e i 55
A E R STZ 321 Sigma 2 F]; ML INTE 8
F1(Glycosylated serum protein, GSP )iz & . IML7E Kk
B EuRa . IR S m st @l R
BRI cDNA i 5% 57] . qPCR TR B¢
AR () A BRA .

RE-2000B BEfEZE KA LG WaRAEIINHER) s
BS-100A A Zh#Br U dEss B i IrEs 2
Fl; AUY 120 K HAR S HYA A AC8S AT UL
SPOGGEETT  RISTAT IR A R F]; DGJ-10C &
EERH TR IS E YR AT B A5 oL
St R4t SEEP G/ F]; Varioskan Flash £
IHHEMGEARIY . StepOnePlus S22 G E & PCR 1Y
FEER CHRBHY R MDA B2\l iCEN-24R & 205
FAVRE L. Nano-300 4y GG EE  Hohsa
TEANERA PR F] 3 A200 BEREE PCR §7 384 B B
R ES A RN F; BXA3 1R 8 WikEs  HAS B
E A B H] o
1.2 WA
1.2.1 EMO Fl MOLP Fiil#&

1.2.1.1 EMO Wy#l#& Z=FHIEED 5 ar
5%, FREL 10 g BI85, Fe Bk b 1:25 Jin A 2=
B FIK, 65 °C, K 105 Wil H#2HL 43 min, 5.0
15 min(6000 r/min) J& B 75, 4y AR AR IR
FIRIFEEE IR 1 IR, A BIEW, KIS FIE R
BEHEZE AW an, & B A R T A BAS: EMO, 2R
FH AR -t 12 725 (2% GB/T 15672-2009) . NaNO,-
Al(NO;), AL E AL (GB 5009.5-2016) M
A EMO Hr & Z 85 . SR A S m, &0 8
EMO H& 20 35.2% ., il 4.3% FMEEHIT 5.1%.
1.2.1.2 MOLP il =% Sharma 5P W57 J7 =,
HUE 5 EMO, W INZi7K %%, >R Sevag BRAE
(10 ) Ja & NiEHT4€ (43T & 3500 Da)tr, F
4 °C iBENT 24 h JEHRFEZERUAE (70 °C), FRINATC/K
AR Z AR FR S B 2 75%, 15 B kE K (028
MRUTVE, 4 °C VKFEFFE IR, B0 15 min(6000 r/min)
B BNPUUE, B8 i 18 Z WEUTIE % /5 {3 DEAE-
52 FEENTIR I Talifl, K alifb 5 TS 2 AR EE T
AR, FREeief 78 RUeHn Ja I A5 R T, BT 152
MOLP (£ 58 B i R 0 2 ZZ W2l RE N 75.8%, T4
JGTRIPERER | ST KPR 1 A D R,
A BT 4 °C vKFE PR

1.2.2 MOLP FIEEE2 — H XUIKHE B sl il 32208
0.20 mL/10 g {ARJFH-#E E 4525, KR BUE & MOLP
FER R — H R F 2818 7K 5, Bidi] 80 mg/mL 1Y)
MOLP W, ¥ HAAE T 4 °C vKFETFH o

1.2.3 ZWRNES51RE fF 60 HEBHEEM:/ N
TN PEME SR 7 d, BEPLIEE 8 HUA IEH 245 P 4H (Nor-
mal) , T4y 52 H /N Gl oo 18 s i 5 STZ(55 myy/

kg), FHHE R 0.1 mol/L #ri&2 R 4% nh ik (pH4.2) I
fift, R 1 RIESE S d, YEI AR, 25 P %) B ZH 1 5 4%
A ERRER SR vk, 5 d J5 A R i IRCR A ) HE
Z3 IR, HE ST 11.1 mmol/L Bk BRI A ¥ A il
Ty BEHLPRIE 40 SIS BT A HE IR /) BRI K
HA FHEPRIGAS I ZH (Model ) . Eh8 — F XUIRFH A 2%
Yy%f Bt 2H (Metformin, MET) . MOLP i, # . 757
#H(MOLP-L. MOLP-M #1 MOLP-H) . 3T &K I
P 4524, 25 FA14H (Control ) S5 51 2 FH A= BER /K
HEH , S BRER TSR (17, MOLP fIK. . &5
H2H HE B 435058 100, 200 F1 400 mg/kg-bw, FH
PR B ZH Eh R — FF SN 15 ) 428 200 me/kg-bw,
iR AT 020 mL/10 g IR REFE S 4258, B H
1K, S 28 do BHTRIZN BLH A AR K RS £,
2 d M HARE AR & .

1.2.4 FEARRRAE  Benge 28 d By /NESIUHERR - Ak
BE., F-im 3t AR BRI, 5 45-2H 1 B KCEE T3 A Dol
(PN Z20) BRI i, £E 1400 1/min, 4 °C IS
B0 15 min, F—80 °C MM FIWAEFRFH . SRIMLTE
SR TR A L R A DU Sk UL /S BRUBE S VLAY )
I PRI S, T80 °C SR FIVAE, K LTI
/U S35 B 5 FIAH S PRI 3R R A 722

1.2.5 EfkFstriiie

1.2.5.1 IPENE 0 JA. 4 JEEPK/NRESE 12 h, 38
ok J RS S i = T TR S I o

1.2.5.2 PHfbimEEANE  Ba—iHEE A, /MR
M ANAEIK 12 h, IREREUM, B5.0> 15 min(1400 r/min,
4 °C) &5 A5 LTS 2 B a1l BH 15 7 2 s A b i
IHEMAEE,

1.2.5.3 MG S ENE 2.0 07145 1 7E 204
TR B U I 500 2 /) BRUINL 7 R 5 ZE K. SR T
AR — 2 e U 1 Tl B O 958 W [H 35 (ELISA) 75 o FF
A BRESS . BUR S S L (HRP) AR AT
MR AT S A5 5 ZR BT i L, kil
BIG vk . A Y U L BCE I (TMB) 2,
TMB 7£ HRP AR R A4S il (0, Fe AAETR 1Y
VEM T2 R, FHEPR{AE 450 nm P IE K
SGEE, VAR R

1.2.5.4 JA/RUEERE #0500 St il 40, KK
WO E BB L L 100 mg, BFREA SHfcd% 1:3 hn
AR R KSR, Bl 7K 20 min, FEZK A ED, B U
JEIKFERIE TR A 1% AR, [RIRT ARSI K ff e
2 5% PRI, Bl as A ShRiE, 1RSI, Wk
W S min, fFHAHUS, T K 620 nm Hht, (1504
1.2.5.5 MY BU#HUE /S B R R R 2H
21453 59 FH 22 5 R I S W 1 2 J& L SR FH IR AR - 41
(Hematoxylin-Eosin, HE) YL (a4 7l Fr, {8 Y2~
ARSI B AR L Ui B2 A0 Ak, R4
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RS IR Chamberland 2523 (RFSE 1

1.2.5.6 RNA f2IAIZOGE R T —80 °C &4
THRATLHLEASH 53 HIHL 50 mg /)N BRI AR AR 2H
2, HICH AR B ER K P 5, iIn A 200 pLL TRIzol ik
F 533 )5 A 300 pL TRIzol 3287 45 B 2H 2R3 v 1y
RNA, BHEHEI Y RNA FH AR 5366 R TG
He BE R4 B . i B8 cDNA 30 5% S 5 B B 55, %+
RNA #%5% % ¢cDNA, #% 2 pL #4 (cDNA) . 4 pL 5|
Y. 10 nL qPCR TR M 4 pL JC R E 4l 7K 1Y L)
AN GE A, B\ IE A TR 220t PCR AR N 1%
20 pL W ARFIHEST PCR JZ W . PCR 4736 5514 A
95 °C AL 5 min, 95 °C ZE M 10 s, 60 °C iRk
20 s, 72 °C EfH 20 s, BT REIEAT 40 IRTPEES. P
WeER e, LAINZ 5L N Beta-actin A 3EHE, 1@ 132020
27AACT S F U FE R mRNA AH¥ Ik &, Al Ik
PRI 43 531 Sk i %5i Bl 6 8% 2 Tt ( Glucose-6-phosphatase,
Gé6pase) . W51 ) B5 =2 TH TR 12 ¥22 Pk i ( Phosphoenol -
PEPCK) . T E X 52 {4
(Liver X receptor, LXR) . #Zi#i ¥ (Glucokinase,
GK) . R 1 — 45 1% [F R AHE 1(Pancreatic duodenal
homeobox-1, PDX-1) . %% b % iz a8 4 2( Glucose
transporter type 2, GLUT2) . JES X Z KK 1
(Insulin receptor substrates 1, JRS1) FlJ# 1% 2 Z /KK
%) 2(Insulin receptor substrates 2, IRS2) ., [ iRJLH
S|%H Invitrogen 2> FITIE AL, 5I)FF 0L 1,
1.3 BEALE

SR £ Excel WIE5E11 )5 SPSS 26.0 4t
T2 50T, SCEEE LA B r i 22 RN (n=8) . £
#H [8]2R F One way ANOVA #1417 Duncan [G= L%,
W L BR FH LSD K456, P<0.05 Fon 778 M
255

pyruvate carboxykinase,

2 HBRESH
2.1 MOLP 3¢ STZ iESHERF /MR FBG IS

H# 2 s, 0 J&BT, 5 Control ZHA4H b, Model.
MET. MOLP-L. MOLP-M #lI MOLP-H £%2H Ifi B &
I B R (P<0.05), HJRK T 11.1 mmol/L, 32 EA%
XI5 4 JE S, 55 Control #H Lk, Model ZH ILKH{E 2 3
FH=5 (P<0.05), FEBH/INERMH PRIFGIN 1 AL, MUBEA B
A R A T R 2 TS s 5 Model ZHAH BB, MET,
MOLP-L. MOLP-M H1 MOLP-H 41 FBG 7/K~F43 %
2 R % 39.8%. 23.3%. 26.9%. 32.4%(P<0.05) .
5% 2 03R4 aT 0, MOLP X% FR 95 /) BRI 25 il
MRS B2, HE—EWEEER, MOLP-H 4111
HBEERCRIR T MET 4.
2.2 MOLP X} STZ i SHEhkm/ D RE K IEE AR
Al

WAk LIS 25 R U3 25 1 S A e & 2R AR R b
WAL B =400, BEAR 37 85 FA 2K T S e 3]
IR A, PTVE A PR PR £ IUH2 1R 5
FEbR, A B F ISR IT SR, RE 1 PR, 5
Control ZH4H kb, Model ZH /) ERAEAL 1L 75 25 &
B FF 31.9%(P<0.05). 5 Model 4HAHLEL, MET .
MOLP-L . MOLP-M #i1 MOLP-H B kimiEE &
SR TR 17.3%. 2.6%. 8.1%. 11.8%(P<0.05).
HH & 1 4387 7T 241, MOLP-H G887 25 R&ATE BRI /]S
ERL AR e 1 75 28 1 KT, DT 4 il /DS BROBE Daes 114 &
J&, HAE HECRAGR T 25930 1% — F SUIR, b4 RS
26 2 SR H ONAAEIE, BGIE T SRR a0 AT FErE
2.3 MOLP 3t STZESHERF MR MFRSDEH
20

Jig 5 22 02 FH R 5 B A B 43 1 1 — b B 1 TR

x£1 519F5
Table 1 Primers sequence
R Clkliich 51K (bp)
< - - 5 (bp
LS 1 (5-37) FiES 1 (5-37)

Beta-actin GGCTGTATTCCCCTCCATCG CCAGTTGGTAACAATGCCATGT 154
G6Pase CTCTGGGTGGCAGTGGTCG GCACGGAGCTGTTGCTGTAGTA 115
PEPCK TGACAGACTCGCCCTATGTG CCCAGTTGTTGACCAAAGGC 153

LXR ACAGAGCTTCGTCCACAAAAG GCGTGCTCCCTTGATGACA 165
GK AAACACGTATGGAACAGGGTGC CTTAGCCAGCGGATTACAGCA 171
PDX-1 CCCCAGTTTACAAGCTCGCT CTCGGTTCCATTCGGGAAAGG 177
GLUT2 TTCCAGTTCGGCTATGACATCG CTGGTGTGACTGTAAGTGGGG 154
IRS1 TCTACACCCGAGACGAACACT TGGGCCTTTGCCCGATTATG 103
IRS2 AACCTGAAACCTAAGGGACTGG CGGCGAATGTTCATAAGCTGC 140
# 2 MOLP Xf STZ S48 IR/l FBG A2 (mmol/L)
Table 2 Effect of MOLP on FBG in STZ-induced diabetic mice (mmol/L)
JA%L Control Model MET MOLP-L MOLP-M MOLP-H
04 5.46+0.30" 17.04+1.84° 16.58+0.94* 16.88+1.03* 17.21+1.96* 17.58+1.50*
4 6.35+0.73¢ 20.26+2.30* 12.20+1.52¢ 15.54+1.62° 14.80+1.09% 13.70+0.48°

1 Control4H 445 Xt FRZ, Model 4 B IRFARAIZE, MET A5 R — F XU BAMEZ5 4% BE2H, MOLP-L, MOLP-M, MOLP-HAHUAM 24K, . "=
AL IREAE L EAR 22 2R (n=8 ) ; AN R FHF Fn 4L IR fAAE i 25 57 (P<0.05), B 1~&13, K6~ T[]
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K1 MOLP Xf STZ 5 3HE IR/ U A L35 8 1 52
Fig.1 Effect of MOLP on glycosylated serum protein in STZ-
induced diabetic mice
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Fig.2 Effect of MOLP on serum insulin content in STZ-
induced diabetic mice
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Fig.3 Effect of MOLP on liver/muscle glycogen in STZ-
induced diabetic mice
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TE: OSSR 100 400, HE Je@IfAi, LBIR > 100 pm.



%4534 55 19

SRR, 2 BRI BN STZ 5 SRR/ N R AR R S L - 363 -

2.7 MOLP X} STZ iFS#E R /) iR AT AL #E (X 15148 %
EREFIERIF M

WK 6 fr s, 5 Control 40 AH kb, Model 4H |
G6Pase. PEPCK mRNA [ A%} 235 & 2 3% EF
(P<0.05), GK. LXR Fl PDX-1 mRNA AN FeikE
i 3 TP (P<0.05) . 5 Model 40 X} kb, MET 41 .
MOLP-L., MOLP-M Fl MOLP-H #H A G6Pase Fl
PEPCK mRNA FHX A& B2 T (P<0.05), 5410
PEPCK Fll G6Pase mRNA [ #8 Xt % 15 F ¥ i 3
i BE 4K ¥ S5 MET>MOLP-H>MOLP-M>MOLP-L,
MOLP-H 2H X — 35 5t K 32 35 i A 3 0 R e B2 i
MET 41; 5 Model 0%} tt., MET. MOLP-L. MOLP-
M Fl MOLP-H 4H 9 LXR. GK Al PDX-I mRNA
FHXT ek W 3 I (P<0.05), 44 GK. LXR fl
PDX-1 mRNA [ AHXF 33k b8 I 25 7 AR N
MET>MOLP-H>MOLP-M>MOLP-L, ) MOLP-H 21
YAy B3 (P<0.05), H b GK 1 PDX-1
mRNA FHX] ik LERE S MET i b8t

B Gopase EZ=AGK =1 PEPCK
3 LXR =1 PDX-1
a a

a

g
o
X T ——

Kl 6 MOLP XJ STZ 75505 b/ U i A SCHE A
FIAB I
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Fig.7 Effect of MOLP on expression of pancreatic glucose
metabolism related genes in STZ-induced diabetic mice
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