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大豆分离蛋白-多糖-淀粉减盐凝胶体系的
构建及性质表征

杨思琪1,2，张谦谦1,2，许英茹1,2，林志雄1,2，张　怡1,2,3，郑宝东1,2，曾红亮1,2,3, *

（1.福建农林大学食品科学学院，福建福州 350002；
2.闽台特色海洋食品加工及营养健康教育部工程研究中心，福建福州 350002；
3.农业农村部食用菌加工及综合利用技术集成科研基地，福建福州 350002）

摘　要：本文分别以魔芋葡甘聚糖、卡拉胶和黄原胶构建基于大豆分离蛋白-多糖-木薯淀粉减盐凝胶。研究结果表

明，大豆分离蛋白-魔芋葡甘聚糖凝聚物和大豆分离蛋白-卡拉胶凝聚物对猪舌上的钠离子有较强的滞留能力，有利

于咸味感知。电子舌结果表明，相较于卡拉胶和黄原胶，大豆分离蛋白-魔芋葡甘聚糖-淀粉减盐凝胶体系

（ST+SPI-KGM+1.5% NaCl）与 2% NaCl淀粉凝胶（ST+2% NaCl）咸味最相似。在微观结构上 SPI-KGM与淀粉

发生交联后形成了连续的致密的网络结构，X射线能量色散能谱表明钠离子在 ST+SPI-KGM+1.5% NaCl呈现不均

匀分布。相较于 2% NaCl淀粉凝胶，大豆分离蛋白-多糖-淀粉减盐凝胶持水能力和质构特性（硬度、咀嚼性和内

聚性）均显著增加（P<0.05），其中 ST+SPI-KGM+1.5% NaCl效果最优。利用大豆分离蛋白-多糖复合凝聚物富

集 NaCl来调控盐在食物基质中的不均匀分布，能够实现减少 25%盐含量而不降低咸味。本研究开发了一种具有

不均匀盐分布的减盐凝胶体系，同时保持其质地感知，为降低淀粉基固态食品盐含量提供新的思路。

关键词：减盐，氯化钠，淀粉基凝胶，大豆分离蛋白，魔芋葡甘聚糖，卡拉胶，黄原胶
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Abstract：In this paper,  salt-reducing gel based on soybean protein isolate-polysaccharide-cassava starch was constructed
with  konjac  glucomannan,  carrageenan  and  xanthan  gum,  respectively.  The  results  showed  that  soy  protein-Konjac
glucomannan  condensates  and  soy  protein-carrageenan  condensates  had  strong  retention  capacity  for  sodium ions  on  pig
tongue,  which  was  conducive  to  salty  perception.  Electron  tongue  analysis  showed  that  compared  with  carrageenan  and  

收稿日期：2024−04−24            
基金项目：十四五国家重点研发计划“食品制造与农产品物流科技支撑”重点专项项目（2022YFD2101301）；2022 年度福州市海洋科创高地“揭榜挂帅”项目

（2022-ZD-017）。

作者简介：杨思琪（1998−），女，博士研究生，研究方向：食品科学，E-mail：sqyang247@163.com。

* 通信作者：曾红亮（1986−），男，博士，教授，研究方向：食品科学，E-mail：zhlfst@fafu.edu.cn。 

第  46 卷  第  11 期 食品工业科技 Vol. 46  No. 11
2025 年  6 月 Science and Technology of Food Industry Jun. 2025
 

https://doi.org/10.13386/j.issn1002-0306.2024040377
https://doi.org/10.13386/j.issn1002-0306.2024040377
https://doi.org/10.13386/j.issn1002-0306.2024040377
mailto:sqyang247@163.com
mailto:zhlfst@fafu.edu.cn


xanthan gum, the salt-reducing gel system of soy protein isolate-Konjac glucomannan-starch (ST+SPI-KGM+1.5% NaCl)
and 2% NaCl starch gel (ST+2% NaCl) had the most similar saltiness. In microstructure, SPI-KGM and starch were cross-
linked to form a continuous and dense network structure. X-ray energy dispersion spectroscopy showed that sodium ions in
ST+SPI-KGM+1.5%  NaCl  presented  an  uneven  distribution.  Compared  with  2%  NaCl  starch  gel,  the  water  holding
capacity  and  texture  properties  (hardness,  chewiness  and  cohesiveness)  of  soybean  protein-polysaccharide-starch  salt-
reducing  gel  were  significantly  increased  (P<0.05),  among  which  ST+SPI-KGM+1.5%  NaCl  had  the  best  effect.  The
concentration of NaCl by soybean isolate protein-polysaccharide complex condensates to regulate the uneven distribution of
salt in the food substrate could reduce 25% salt content without reducing the saltiness. This study developed a salt reduction
gel system with uneven salt distribution while maintaining its texture perception, providing a new idea for reducing the salt
content of starch-based solid foods.

Key words：salt-reducing；NaCl；starch-based gel；soybean isolate protein；konjac glucomannan；carrageenan；xanthan gum

盐（主要成分为 NaCl）在食品中具有增味剂、结

构调节剂和防腐剂等重要作用，可以优化产品的感官

性能和质量[1]。膳食盐摄入过量与血压升高以及中

风和心血管疾病的风险增加直接相关，它是全球第二

大疾病和死亡的饮食风险因素[2]。世界卫生组织

（WHO）建议将盐摄入量从 8~11 g/d（或每天 3000~

4000 mg 钠）减少到 5 g/d（或每天 2000 mg 钠）[3]，但

现实生活中平均每天的食盐摄入量在 9至 12 g/d之

间[4]。目前，在大多数发达国家，每日盐摄入量的

75%来自加工食品，包括烘焙食品、酱汁和肉制品，

而在中国，盐摄入量主要来自烹饪中添加的调味料，

如酱油和豆豉[5]。据估计，每天减少 5 g盐可使全球

中风发病率降低 23%，心血管疾病发病率降低

17%[6]。因此，通过设计和生产低钠加工食品来减少

目前的平均盐摄入量将对公众健康产生显著的有益

影响，并且是降低全球疾病风险的最具成本效益的方

法之一。

针对加工食品减盐的迫切需求，人们提出了几

种有前景的策略，能够在保持食品中咸味可感知的同

时减少钠含量。其中包括气味诱导的咸味增强、调

整食品基质促进钠的释放、构建食品中钠的不均匀

分布以及修饰盐的晶体结构[7]。对于一些固体和半

固体凝胶食品，例如面包、奶酪和香肠，可以通过控

制食物基质中盐的不均匀空间分布和微观结构来实

现减盐，但不影响味道和品质[8]。多糖在加热时会表

现出充分的凝胶化，形成多孔网络结构有助于盐分快

速扩散，增加咸味感知[9]。但单一多糖凝胶相较于蛋

白质-多糖体系，其持水性较差，咀嚼后内部浆液释放

量较少导致盐释放速率降低[10]。此外，蛋白质-多糖

凝胶网络表现出更高的机械强度，能够克服单一多糖

或蛋白质凝胶性较差的缺点[11]。Gao等[12] 构建魔芋

葡甘露聚糖-低盐肌纤维蛋白-甜菜果胶低盐凝胶，基

于分子间相互作用形成了连续、致密的三维复合凝

胶网络，钠离子被有效地固定在紧密网络结构内，延

长了其在口腔内的滞留时间，从而增强咸味感知。蛋

白/多糖复合凝聚物的形成主要是由静电相互作用和

熵增导致的反离子释放驱动的，而这两种驱动力都取

决于 pH[13]。本研究分别利用魔芋葡甘聚糖、卡拉

胶、黄原胶与大豆分离蛋白通过酸沉淀形成蛋白质-
多糖复合凝聚物，再分别添加至木薯淀粉中形成凝

胶，构建大豆分离蛋白-魔芋葡甘聚糖-淀粉减盐凝

胶、大豆分离蛋白-卡拉胶-淀粉减盐凝胶（ST+SPI-
CG+1.5% NaCl）、大豆分离蛋白-黄原胶-淀粉减盐凝

胶（ST+SPI-XG+1.5% NaCl），测定了大豆分离蛋白-
多糖复合凝聚物对钠离子滞留的能力和不同减盐凝

胶体系的钠离子分布情况，并分析了不同减盐凝胶体

系的微观结构、质构特性及持水能力促进钠离子释

放的机制，旨在为降低凝胶食品中盐含量提供科学

依据。 

1　材料与方法 

1.1　材料与仪器

大豆分离蛋白（食品级，纯度>99%）　临沂山松

生物制品有限公司；卡拉胶（食品级，纯度>99%）、黄

原胶（食品级，纯度>99%）、木薯淀粉（食品级，纯度

>99%）　河南中辰生物有限公司；魔芋葡甘聚糖（食

品级，纯度>99%）　湖北强森魔芋科技有限公司；磷

酸二氢钾　分析纯，上海麦克林生化科技股份有限公

司；氯化钠、氯化钙、氯化钾、碳酸氢钾　分析纯，广

东西陇化工股份有限公司；荧光素钠　分析纯，上海

阿拉丁生化科技股份有限公司；猪胃粘蛋白　分析

纯，上海源叶生物有限公司。

L4-5K台式低速离心机　湖南可成仪器设备有

限公司；FTC流变仪　英国 Mecmesin公司；WSC-
S色差仪　上海申光仪器仪表有限公司；Ts2-FL倒

置荧光显微镜　北京长恒荣创科技有限公司；DF-
101S集热式恒温加热磁力搅拌器　河南省予华仪器

有限公司；EYEL4冷冻干燥机　上海爱朗仪器有限

公司；iTongue 30电子舌　浙江浙科仪器设备有限公

司；Oxford Xplore 30能谱仪　上海牛津仪器科技有

限公司；蔡司 Sigma 300扫描电子显微镜　德国卡尔

蔡司公司；TSM-Pilot质构分析仪　美国 FTC公司。 

1.2　实验方法 

1.2.1   SPI-多糖凝聚物的制备　SPI-多糖复合凝聚

物的制备方法参考李彦磊[13] 的方法，制备 1%（w/v）
SPI溶液，分别缓慢加入 0.25wt%多糖（魔芋葡甘聚

糖、卡拉胶、黄原胶），1.5%（w/v）NaCl，经 3000 r/min
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磁力搅拌 1 h。用 1 mol/L HCl调节 pH4，制得 SPI-

多糖复合凝聚物。 

1.2.2   SPI-多糖复合凝聚物对钠的黏附保留测定　

分别测定 SPI-魔芋葡甘聚糖复合凝聚物 （SPI-

KGM）、SPI-卡拉胶复合凝聚物（SPI-CG）和 SPI-黄

原胶复合凝聚物（SPI-XG）对钠的黏附保留，参考

Li等[7] 的研究，以去离子水为对照。猪舌取自刚被

屠宰的猪并保存在−4 ℃ 冰上。猪舌的前侧面部分

被切成 1 cm2，厚 1 mm的截面。0.005%（w/v）荧光

素钠与 SPI-多糖凝聚物溶液混合后滴在猪舌上，然

后将猪舌置于 45°角的载玻片上，采用 6 mL/min的

流速用人工唾液进行冲洗，在不同体积（0、1、2、3、

5、10、15、20 mL）的人工唾液洗脱后，采用荧光显微

镜对猪舌进行荧光拍照，比较荧光强度变化。人工唾

液的配方为 CaCl2（4 mmol/L）、KCl（10 mmol/L）、

NaHCO3（ 2  mmol/L）、NaCl（ 7  mmol/L）、KH2PO4

（6.7 mmol/L）和猪胃粘蛋白（1.0%，w/v）。 

1.2.3   大豆分离蛋白-多糖-淀粉减盐凝胶的制备　

实验组分别将 15%（w/v）木薯淀粉分散到方法

1.2.1的 SPI-魔芋葡甘聚糖复合凝聚物、SPI-卡拉胶

复合凝聚物和 SPI-黄原胶复合凝聚物分散体系中，

搅拌均匀后，在 90 ℃ 水浴中搅拌加热 15 min，使其

完全凝胶化分别生成 SPI-魔芋葡甘聚糖-淀粉减盐凝

胶、SPI-卡拉胶-淀粉减盐凝胶和 SPI-黄原胶-淀粉减

盐凝胶。对照组为 15%（w/v）木薯淀粉添加到 2%

（w/v）盐溶液中，90 ℃ 水浴加热 15 min形成淀粉

凝胶。 

1.2.4   感官评价　感官评价参考 Wu等[14] 方法并进

行了修改。感官评价成员共 20人，男 10人，女

10人，评价前经过不同 NaCl溶液浓度（0.06、0.12、

0.18、0.27和 0.35 g/100 mL）排序识别训练，以适应

标准溶液的评估尺度和强度。所有凝胶样品形状大

小统一为边长 1.5 cm正方体，用三位数随机编码。

使用表 1中列出的 100分标准对凝胶的质地、颜

色、咸味接受度、口感和整体接受度进行评估。 

1.2.5   电子舌分析　取 5 g凝胶样品加入 35 mL 蒸

馏水，4000 r/min均质离心 10 min，取上清液利用电

子舌测定咸味，不同传感器设置电压参数为 S1

10 Hz，S2 10  Hz，S3 100  Hz，S4 1  Hz，S5 1  Hz，S6

10 Hz。 

1.2.6   扫描电子显微镜观察微观结构　将凝胶在

−80 ℃ 冰箱中冷冻 12 h后进行真空冷冻干燥得到

冻干凝胶。喷金处理后，将样品固定在样品台上，然

后用扫描电子显微镜观察，加速电压设为 5.0 kV[15]。 

1.2.7   钠元素分布情况　凝胶中钠元素分布采用

X射线能量色散能谱分析[16]。将凝胶样品快速冷冻

后进行真空冷冻干燥，将冻干样品切成 1 mm厚的薄

片，采用能谱仪在 20 kV加速电压下观察样品及元

素分布。 

1.2.8   颜色分析　凝胶的颜色分析使用色差仪分别

测定 L*、a*、b*值。 

1.2.9   质构特性的测定　质构分析采用配有 2.5 cm
圆柱形探针的质构分析仪，力量感应元量程 500 N，

形变百分比 50，检测速度 60 mm/min，起始力 0.75 N，

检测凝胶的硬度、弹性、咀嚼性和内聚性[17]。 

1.2.10   持水能力的测定　持水能力参考 Zhang
等[17] 的研究，稍作修改。将 3 g凝胶放入含有三层

滤纸的塑料离心管中，使用离心机 4000 r/min离心

20 min，根据公式计算凝胶持水率：

持水率(%) =m2/m1×100

式中：m1 表示离心前凝胶的质量；m2 表示离心

后凝胶的质量。 

1.3　数据处理

所有实验均重复 3次，结果用平均值±标准差表

示。采用 SPSS  20.0软件进行单因素方差分析

（ANOVA）和 Duncan多重检验。P<0.05表示差异

具有显著性。 

2　结果与分析 

2.1　大豆分离蛋白-多糖复合凝聚物对钠离子滞留

能力影响

多糖在舌上的黏附能力对于钠离子在口腔中的

感知是一个重要的因素[18]。图 1表明了 SPI-KGM、

SPI-CG、SPI-XG和水样品在离体猪舌上的荧光素

钠的保留情况。以水处理作为对照，猪舌上的荧光素

钠经 1 mL人工唾液清洗后，荧光强度显著减少，经

5 mL人工唾液清洗后荧光信号基本消失。与对照组

相比，SPI-KGM、SPI-CG和 SPI-XG均延长钠在猪

 

表 1    不同凝胶体系的感官评分标准

Table 1    Sensory score criteria of different gel systems

总分（100分） 质地（20分） 颜色（20分） 咸味接受度（20分） 口感（20分）
整体接受度

（20分）

16~20 结构致密，粘弹性好，不黏手，挤压后快速
恢复，表面无裂痕 白色，有光泽 略咸，但能够接受

口感较硬，无颗粒感，无异味
乐于接受

11~15 结构较为致密，略有气泡，有弹性，略黏手，
挤压后较快恢复，表面有裂痕

白色带微黄色，
有光泽 咸或淡，但能够接受 口感较软，略有颗粒感，无异味 接受

6~10 多处出现不均匀气孔，弹性较差，挤压后
无法恢复 黄色 部分特别咸但能够接受 口感很硬，有颗粒感，略有异味 基本接受

1~5 结构软糯，不成形 深黄色 很咸很淡，不能接受 口感软，有颗粒感，有明显异味 不能接受
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舌上的保留时间，这可能是由于多糖的粘膜粘附特性

有利于钠离子在舌上的滞留[19]。然而，5~10 mL人

工唾液足以洗掉 SPI-XG上的荧光。SPI-KGM和

SPI-CG样品保留时间最长，用 20 mL人工唾液清洗

后猪舌上的荧光素钠仍然可见。因此，SPI-KGM和

SPI-CG对猪舌的钠离子滞留能力更强，有利于咸味

的感知。 

2.2　感官评价

不同凝胶体系感官评价如图 2所示，ST+2%

NaCl被认为是颜色评分最高的凝胶，但咸味接受

度、质地、口感和整体接受度的分值均低于减盐凝

胶，质地被认为较致密，富有弹性，挤压后较快恢复但

有裂痕，整体接受度较低，品尝后略咸但是能接受，总

分为 73.30±2.08分。添加 SPI-多糖提高了凝胶体系

的质地，其中 ST+SPI-KGM+1.5% NaCl质地评分最

高，为 18.15±0.73分，结构更加致密，粘弹性好，不黏

手，挤压后能够快速恢复且表面无裂痕。此外，相较

于其他 SPI-多糖处理，减盐凝胶添加 SPI-KGM处理

后咸味接受度显著提高，这表明 SPI-KGM有利于咸

味的感知，咀嚼时未出现颗粒感，整体接受度被认为

最高，总分为 82.75±2.77。
 
 

质地

20
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16
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颜色整体接受度

口感 咸味接受度

ST+2% NaCl
ST+SPI-KGM+1.5% NaCl
ST+SPI-CG+1.5% NaCl
ST+SPI-XG+1.5% NaCl

图 2    不同凝胶体系的感官评价
Fig.2    Sensory evaluation of different gel systems

  

2.3　电子舌分析

图 3为 ST+SPI-KGM+1.5% NaCl、ST+SPI-CG+
1.5% NaCl、ST+SPI-XG+1.5% NaCl和 ST+2% NaCl
样品的电子舌 PCA结果分析图。PCA图中位于相

近位置的样品表现出相近的感官性质，样品位置距

离越远，其味觉差异越大 [20]。如图 3所示，ST+
SPI-CG+1.5%  NaCl和 ST+SPI-XG+1.5%  NaCl与
ST+2% NaCl样品在味觉方面表现出较大差异，这是

因为 ST+SPI-XG+1.5%  NaCl和 ST+SPI-CG+1.5%
NaCl凝胶体系减少 25%盐后咸味降低。ST+SPI-
KGM+1.5% NaCl凝胶体系与 ST+2% NaCl距离相

近，说明 ST+SPI-KGM+1.5% NaCl减盐凝胶体系的

咸味感知与 ST+2% NaCl相似，KGM能够实现降低

盐含量而不降低咸味。
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图 3    减盐凝胶体系的电子舌主成分分析
Fig.3    PCA of electron tongue of salt-reduced gel systems

  

2.4　微观结构

凝胶咸味感知的强弱与钠离子的释放量密切相

关，食物在咀嚼过程中会持续释放钠离子，然而大部

分钠离子是在不被感知的情况下被摄入。通过扫描

电子显微镜观察添加和不添加蛋白质-多糖凝聚物的

淀粉凝胶微观结构，如图 4所示，淀粉凝胶体系仅形

成了数个空洞，体系呈现连续的片状结构，但添加了

蛋白质-多糖凝聚物的淀粉凝胶均形成了网络结构，

这可能是由于淀粉与蛋白质-多糖凝聚物发生了交

联，降低了淀粉颗粒的聚集，这与方媛等[21] 研究一

 

Water

SPI-KGM

SPI-CG

SPI-XG

10 mL 15 mL 20 mL3 mL0 mL 1 mL 2 mL 5 mL

图 1    大豆分离蛋白-多糖复合凝聚物对钠离子滞留的能力影响

Fig.1    Effect of soybean isolate protein-polysaccharide complex condensate on the ability to retain sodium ions
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致。相较于 SPI-CG凝聚物和 SPI-XG凝聚物，淀粉

凝胶中加入 SPI-KGM凝聚物形成的凝胶网络更加

连续和致密，这种网络结构有助于钠离子的释放，促

进咸味感知[22]。这一结果有效的解释了在电子舌

PCA分析中 ST+KGM-SPI+1.5%  NaCl与 ST+2%
NaCl最接近，能够实现减少 25%盐含量而不降低

咸味。 

2.5　钠元素的分布

食盐在食物中的不同存在形式对咸味的感知产

生影响，作为减盐的有效手段之一，优化 NaCl在食

物基质中空间位置，可以提高 NaCl在口腔中的溶解

度和输送速度[5]。由图 5可知，钠离子在淀粉基凝胶

体系中呈现均匀分布，而在蛋白质-多糖凝聚物淀粉

基凝胶体系中均表现为不均匀分布，钠离子沿着网络

结构分布。与均匀分布引起的刺激相比，口腔中的对

比效应会增强来自高 NaCl浓度层味觉感受器的整

体反应，食盐的不均匀分布可以较大程度地增加食盐

与味蕾的接触面积，增强咸味感知，在不改变食品品

质和感官特性的情况下降低 NaCl的摄入量[23]。 

2.6　色泽分析

虽然有研究表明色泽不会影响凝胶特性[24]，但

对于消费者而言，色泽是影响消费者可接受性的重要

属性之一。不同减盐凝胶体系的色泽如图 6所示。

L*值反映的是亮度，L*下降，色泽变暗，a*值所反映的

 

a ST+2% NaCl b ST+SPI-KGM+1.5% NaCl

c ST+SPI-CG+1.5% NaCl d ST+SPI-XG+1.5% NaCl

100 μm 100 μm

100 μm 100 μm

图 4    不同凝胶体系的微观结构（200×）
Fig.4    Microstructure of different gel systems (200×)
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图 6    不同凝胶体系的颜色分析

Fig.6    Color analysis of different gel systems
注：图中不同小写字母表示差异显著 P<0.05，图 7、图 8同。
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图 5    钠元素在不同凝胶体系中的分布情况

Fig.5    Distribution of sodium in different gel systems
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是红绿度，负值越小，颜色越绿，b*反映的是蓝黄度，

正值越大颜色越黄[25]。与 ST+2% NaCl样品相比，

ST+SPI-KGM+1.5% NaCl和ST+SPI-CG+1.5% NaCl
的 L*值显著增加（P<0.05），表明两组减盐凝胶体系

的亮度更高。与 ST+2% NaCl样品相比，ST+SPI-
KGM+1.5%  NaCl和 ST+SPI-XG+1.5%  NaCl的 b*

值显著增加（P<0.05），表明两组减盐凝胶体系的颜色

偏黄。其中 ST+SPI-KGM+1.5% NaCl组表现出的

颜色为多黄绿而少红蓝，并有一定的光泽。这可能是

由于加热凝胶化过程中温度提高会加快蛋白质的水

解，产生更多的游离氨基，与淀粉和多糖的羰基化合

物发生褐变反应使颜色加深[26]。蛋白质和多糖之间

的美拉德反应增强了偶联物的空间效应和分子亲和

力，这种相互作用能够产生物理屏障影响钠离子在复

杂体系中的分布，可以有效增强咸味[10]。 

2.7　质构特性

硬度、弹性、咀嚼性和内聚性等质构特征参数对

食品质量至关重要，可以系统地反映亲水胶体的适口

性、口感和吞咽性等特性[27]。硬度表示压缩牙齿之

间或顶部和舌头之间的食物所需的力[28]。弹性代表

凝胶被压缩然后弹回的能力[29]。内聚性，即食物基质

断裂前牙齿之间的压缩程度，与凝胶的内部强度和结

构完整性有关[30]。咀嚼性是指将凝胶爆裂至准备吞

咽状态所需的能量[28]。如图 7所示，与 ST+2% NaCl

样品相比，ST+SPI-KGM+1.5% NaCl、ST+SPI-CG+

1.5% NaCl、ST+SPI-XG+1.5% NaCl的硬度、弹性、

咀嚼性和内聚性显著提高（P<0.05），这表明在低盐情

况下添加 SPI-多糖复合凝聚物能够提高凝胶的质构

特性，实现降低盐含量不降低凝胶品质。ST+SPI-

KGM+1.5% NaCl的硬度和内聚性均显著高于其他

组，分别为 10.68±0.29 N、0.72±0.02，形成的连续的

致密网络结构有利于提高质构特性，进而促进钠的释

放，该结果与高珊珊[31] 研究趋势一致，KGM使得小

麦淀粉形成网络凝胶，有助于改善淀粉凝胶质构性。

添加 SPI-XG和 SPI-CG凝聚物的淀粉凝胶质构特

性指标较低。可能是卡拉胶在酸性条件处理后，易发

生水解，黏度下降，凝胶能力降低；具有双螺旋结构的

黄原胶经长时间热处理后，螺旋结构伸展为无序的卷

曲链[32]。 

2.8　持水能力

持水能力是评价凝胶食品品质的重要参数之

一，采用高速离心法测定离心前、后水分的损失以评

估凝胶的持水能力，结果如图 8所示。结果表明，

ST+2% NaCl样品凝胶持水性为 51.02%±0.56%，持

水性相对较差。与 ST+2%  NaCl相比 ，ST+SPI-
KGM+1.5% NaCl、ST+SPI-CG+1.5% NaCl、ST+SPI-
XG+1.5% NaCl的持水率分别提高了 11.48%、7.14%
和 2.65%（P<0.05），这是由于 ST+SPI-KGM+1.5%
NaCl的凝胶形成了更致密均匀的结构，能够更好地

保留水分[33]。此外，体系中引入了具有亲水性基团的

多糖填充了凝胶基质内部的孔隙结构，从而增强了与

水分子的结合[10]。减盐凝胶体系持水能力的增加有

利于钠离子的释放，进而提高咸味的感知强度[34]。 
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图 7    不同凝胶体系的质构特性

Fig.7    Texture properties of different gel systems
注：a：硬度、b：咀嚼性、c：弹性、d：内聚性。
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3　结论
本研究分别构建了 ST+SPI-KGM+1.5% NaCl、

ST+SPI-CG+1.5%  NaCl和 ST+SPI-XG+1.5%  NaCl
减盐凝胶，首先在猪舌上评估了 SPI-多糖凝聚物滞

留钠能力，结果表明 SPI-KGM凝聚物和 SPI-CG凝

聚物具有较强的钠滞留能力。对 SPI-多糖-淀粉减盐

凝胶的微观结构、钠元素分布情况分析表明：与淀粉

凝胶相比，SPI-多糖凝聚物的加入形成了网络结构，

能够使钠不均匀的分布在凝胶中，这种结构有利于增

强咸味感知。经电子舌 PCA分析表明含有 1.5%
NaCl的 ST-SPI+KGM+1.5%  NaCl凝胶的味道与

2% NaCl淀粉凝胶最接近。此外，与 2% NaCl淀粉

凝胶相比，减盐凝胶光泽度、持水能力、质构特性（硬

度、弹性、咀嚼性和内聚性）均显著增加，其中

ST+SPI-KGM+1.5% NaCl减盐凝胶效果最好。因

此，综合分析得出 ST+SPI-KGM+1.5% NaCl减盐凝

胶能够实现减少 25%盐含量而不降低咸味和凝胶

品质。
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图 8    不同凝胶体系的持水能力

Fig.8    Water-holding capacity of different gel systems

 · 50 · 食品工业科技 2025年  6 月

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1111/1541-4337.12524
https://doi.org/10.1016/j.ijbiomac.2023.126852
https://doi.org/10.1016/j.ijbiomac.2023.126852
https://doi.org/10.1016/j.ijbiomac.2023.126852
https://doi.org/10.1016/j.foodhyd.2017.08.033
https://doi.org/10.1016/j.foodres.2014.05.014
https://doi.org/10.1016/j.foodres.2014.05.014
https://doi.org/10.1016/j.foodhyd.2017.05.043


备 、 表 征 及 性 能 研 究 [J].  食 品 科 技 ，2022，47（7）：224−230.
［FANG Y, ZHANG D, WEI L F, et al. Preparation and properties
of protein/polysaccharide-starch composite microgels[J]. Food Sci-
ence and Technology，2022，47（7）：224−230.］

 ［22］ WANG X,  FENG T,  XIA S. Saltiness  perception  related  to
salt release of surimi emulsified sausages：Modulation in texture and
microstructure by polysaccharides[J]. International Journal of Food
Science & Technology，2021，56（8）：3893−3902.

 ［23］ VINITHA K, SETHUPATHY P, MOSES J A, et al. Conven-
tional  and  emerging  approaches  for  reducing  dietary  intake  of
salt[J]. Food Res Int，2022，152：110933.

 ［24］  NAGARAJAN  M,  BENJAKUL  S,  PRODPRAN  T,  et  al.
Characteristics  and  functional  properties  of  gelatin  from  splendid
squid  （Loligo  formosana）  skin as  affected  by  extraction   tempera-
tures[J]. Food Hydrocolloids，2012，29（2）：389−397.

 ［25］ 马相杰, 孟少华, 赵建生, 等. 蒸汽爆破对猪皮冻凝胶体系及

其 品 质 的 影 响 [J]. 食 品 与 发 酵 工 业 ，2024，50（17）：255−260.
［MA X J, MENG S H, ZHAO J S, et al. Effect of steam blasting on
frozen  gel  system  and  quality  of  pig  skin[J].  Food and  Fermenta-
tion Industries，2024，50（17）：255−260.］

 ［26］ 吴惠玲, 王志强, 韩春, 等. 影响美拉德反应的几种因素研究

[J].  现 代 食 品 科 技 ，2010，26（5）：441−444,440.  ［WU  H  L,
WANG  Z  Q,  HAN  C,  et  al.  Factors  affecting  the  maillard
reaction[J].  Modern  Food  Science  and  Technology，2010，26（5）：
441−444,440.］

 ［27］ WANG J, MA Q, CAI P, et al. On the investigation of com-
posite cooling/heating set gel systems based on rice starch and curd-
lan[J]. Food Chemistry，2024，438：137960.

 ［28］ YUAN  C,  XU  D,  CUI  B,  et  al. Gelation  of  κ-carrageenan/

konjac  glucommanan  compound  gel：Effect  of  cyclodextrins[J].
Food Hydrocolloids，2019，87：158−164.

 ［29］ TAO H T,  GUO L, QIN Z,  et  al. Textural  characteristics  of
mixed gels improved by structural recombination and the formation
of  hydrogen bonds  between curdlan and carrageenan[J]. Food Hy-
drocolloids，2022，129：107678.

 ［30］ MIN C,  MA W H, KUANG J W, et  al. Textural  properties,
microstructure and digestibility of mungbean starch-flaxseed protein
composite gels[J]. Food Hydrocolloids，2022，126：107482.

 ［31］ 高珊珊. 脱乙酰魔芋葡甘聚糖对小麦淀粉糊化和老化特性

的影响[D]. 郑州：郑州轻工业大学, 2022. ［GAO S S. Effects of
deacetyl  konjac  glucomannan  on  gelatinization  and  retrogradation
properties of wheat starch[D]. Zhengzhou：Zhengzhou University of
Light Industry, 2022.］

 ［32］ 杨镕, 臧一宇, 吴鹏, 等. 多糖类食品胶体的功能特性及其在

食品加工中的应用研究进展[J]. 食品科学，2024，45（5）：283−292.
［YANG R, ZANG Y Y, WU P, et  al. Research progress on func-
tional properties of polysaccharide-based food colloids and their ap-
plication  in  food  processing[J].  Food  Science，2024，45（5）：283−
292.］

 ［33］ 王枫, 艾连中, 赖凤羲, 等. 小分子糖-罗望子多糖复合凝胶

特性研究[J]. 中国食品学报，2024，24（4）：69−79. ［WANG F, AI
L Z, LAI F X, et al. Studies on the gelling properties of complex be-
tween small molecular sugars and tamarind seed[J]. Journal of Chi-
nese  Institute  of  Food  Science  and  Technology，2024，24（4）：69−
79.］

 ［34］ LI Y, CHENG Q, GUO J, et al. Structuring meat analogs by
citrus  fiber  with  reduced  salt  intake[J].  Journal  of  Food  Science，
2023，88（8）：3204−3215.

第  46 卷  第  11 期 杨思琪 ，等： 大豆分离蛋白-多糖-淀粉减盐凝胶体系的构建及性质表征 · 51 · 

https://doi.org/10.3969/j.issn.1005-9989.2022.7.spkj202207033
https://doi.org/10.3969/j.issn.1005-9989.2022.7.spkj202207033
https://doi.org/10.3969/j.issn.1005-9989.2022.7.spkj202207033
https://doi.org/10.3969/j.issn.1005-9989.2022.7.spkj202207033
https://doi.org/10.7506/spkx1002-6630-20230410-083
https://doi.org/10.7506/spkx1002-6630-20230410-083
https://doi.org/10.1111/1750-3841.16690

	1 材料与方法
	1.1 材料与仪器
	1.2 实验方法
	1.2.1 SPI-多糖凝聚物的制备
	1.2.2 SPI-多糖复合凝聚物对钠的黏附保留测定
	1.2.3 大豆分离蛋白-多糖-淀粉减盐凝胶的制备
	1.2.4 感官评价
	1.2.5 电子舌分析
	1.2.6 扫描电子显微镜观察微观结构
	1.2.7 钠元素分布情况
	1.2.8 颜色分析
	1.2.9 质构特性的测定
	1.2.10 持水能力的测定

	1.3 数据处理

	2 结果与分析
	2.1 大豆分离蛋白-多糖复合凝聚物对钠离子滞留能力影响
	2.2 感官评价
	2.3 电子舌分析
	2.4 微观结构
	2.5 钠元素的分布
	2.6 色泽分析
	2.7 质构特性
	2.8 持水能力

	3 结论
	参考文献

