
苦荞来源类外泌体囊泡对C57BL/6小鼠生理影响初探

张籍月，任朝琴，曹亚楠，任远航，彭镰心

A Preliminary Study on the Effects of Tartary Buckwheat-derived Nanoparticles on the Physiology of C57BL/6 Mice
ZHANG Jiyue, REN Chaoqin, CAO Yanan, REN Yuanhang, and PENG Lianxin

在线阅读 View online: https://doi.org/10.13386/j.issn1002-0306.2024060055

您可能感兴趣的其他文章

Articles you may be interested in

加工方式对苦荞中黄酮类化合物的影响研究进展

Research Progress on the Effects of Processing Methods of Flavonoids in Tartary Buckwheat

食品工业科技. 2021, 42(15): 351-357   https://doi.org/10.13386/j.issn1002-0306.2020070008

苦荞脆片加工工艺优化及其挥发性成分分析

Optimization of Processing Technology and Analysis of Volatile Components of Tartary Buckwheat Chips

食品工业科技. 2021, 42(17): 161-169   https://doi.org/10.13386/j.issn1002-0306.2020110185

过热蒸汽对苦荞粉中黄酮类物质及其抗氧化活性的影响

Effects of Superheated Steam on Flavonoids and Antioxidant Activity in Tartary Buckwheat Flour

食品工业科技. 2025, 46(6): 147-154   https://doi.org/10.13386/j.issn1002-0306.2024050096

苦荞粗多糖涂膜处理对中国樱桃的保鲜效果

Preservation Effect of Tartary Buckwheat Crude Polysaccharide Coating on Chinese Cherry

食品工业科技. 2021, 42(14): 296-301   https://doi.org/10.13386/j.issn1002-0306.2020060106

乳杆菌强化发酵对苦荞酵素抗氧化特性及风味的影响

Effects of Lactobacillus Enhanced Fermentation on the Antioxidant Characteristics and Flavor of Tartary Buckwheat Jiaosu

食品工业科技. 2024, 45(2): 118-125   https://doi.org/10.13386/j.issn1002-0306.2023020286

微波协同L-苯丙氨酸处理对苦荞萌发中黄酮的影响

Effects of Microwave-assisted L-phenylalanine Treatment on the Flavonoids of Tartary Buckwheat during Germination

食品工业科技. 2022, 43(5): 191-198   https://doi.org/10.13386/j.issn1002-0306.2021060227

关注微信公众号，获得更多资讯信息

https://www.spgykj.com/article/doi/10.13386/j.issn1002-0306.2024060055
https://www.spgykj.com/article/doi/10.13386/j.issn1002-0306.2020070008
https://www.spgykj.com/article/doi/10.13386/j.issn1002-0306.2020070008
https://www.spgykj.com/article/doi/10.13386/j.issn1002-0306.2020110185
https://www.spgykj.com/article/doi/10.13386/j.issn1002-0306.2020110185
https://www.spgykj.com/article/doi/10.13386/j.issn1002-0306.2024050096
https://www.spgykj.com/article/doi/10.13386/j.issn1002-0306.2024050096
https://www.spgykj.com/article/doi/10.13386/j.issn1002-0306.2020060106
https://www.spgykj.com/article/doi/10.13386/j.issn1002-0306.2020060106
https://www.spgykj.com/article/doi/10.13386/j.issn1002-0306.2023020286
https://www.spgykj.com/article/doi/10.13386/j.issn1002-0306.2023020286
https://www.spgykj.com/article/doi/10.13386/j.issn1002-0306.2021060227
https://www.spgykj.com/article/doi/10.13386/j.issn1002-0306.2021060227


 

张籍月，任朝琴，曹亚楠，等. 苦荞来源类外泌体囊泡对 C57BL/6小鼠生理影响初探 [J]. 食品工业科技，2025，46（11）：329−337.
doi: 10.13386/j.issn1002-0306.2024060055
ZHANG Jiyue, REN Chaoqin, CAO Yanan, et al. A Preliminary Study on the Effects of Tartary Buckwheat-derived Nanoparticles on
the  Physiology  of  C57BL/6  Mice[J].  Science  and  Technology  of  Food  Industry,  2025,  46(11): 329−337.  (in  Chinese  with  English
abstract). doi: 10.13386/j.issn1002-0306.2024060055

 · 营养与保健 · 

苦荞来源类外泌体囊泡对 C57BL/6小鼠
生理影响初探

张籍月1,2，任朝琴3，曹亚楠1,2，任远航1,2，彭镰心1,2, *

（1.成都大学农业农村部杂粮加工重点实验室，四川成都 610106；
2.四川省杂粮产业化工程技术研究中心，四川成都 610106；
3.阿坝师范学院资源与环境学院，四川阿坝州 623002）

摘　要：目的：探索饮食中添加苦荞来源的类外泌体囊泡（TBDNs）对小鼠主要生理指标的影响。方法：24只
C57BL/6小鼠随机分为两组：正常对照组与添加 TBDNs组，分析体重、血液生化指标、小鼠结肠、肝脏细胞组织

学与免疫组织化学，肠道菌群变化。结果：相对正常饮食组，10 mg TBDNs 剂量组小鼠体重、甘油三酯、尿酸、

丙氨酸氨基转移酶显著下降（P<0.01）；天冬氨酸氨基转移酶 、胆固醇、高密度脂蛋白、低密度脂蛋白以及肌酐

等生理指标及肝脏、结肠组织等未见显著改变（P>0.05）；肠道中乳杆菌属 Lactobacillus、苏黎世杆菌属

Turicibacter 和 Lachnoclostridium 均显著提高（P<0.05）。结论：TBDNs摄入对小鼠生理有一定影响，但其作用机

制及对健康的意义仍需进一步探讨。研究结果为苦荞的营养评价提供了新的视角与资料。

关键词：苦荞，苦荞来源类外泌体囊泡，肠道菌群，营养健康
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A Preliminary Study on the Effects of Tartary Buckwheat-derived
Nanoparticles on the Physiology of C57BL/6 Mice
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Abstract：Objective:  To  investigate  the  effects  of  dietary  supplementation  with  tartary  buckwheat-derived  nanoparticles
(TBDNs) on key physiological parameters in mice. Methods: Twenty-four C57BL/6 mice were randomly assigned to two
groups:  a normal control  group and a TBDNs group. Changes in body weight,  blood biochemical  markers,  cell  histology
and immunohistochemistry of the colon and liver, as well as intestinal flora composition, were analyzed. Results: Compared
to the normal diet group, the 10 mg TBDNs group exhibited significant reductions in body weight, triglyceride levels, uric
acid  levels,  and  alanine  aminotransferase  activity  (P<0.01).  Physiological  indicators  such  as  aspartate  aminotransferase,
cholesterol, high-density lipoprotein, low-density lipoprotein, and creatinine, as well as liver and colon tissues, showed no
significant changes (P>0.05). The abundance of intestinal Lactobacillus, Turicibacter, and Lachnoclostridium species were
all  significant  increased  (P<0.05).  Conclusion:  Intake  of  TBDNs has  discernible  physiological  effects  on  mice,  however,  
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further  investigations  are  required  to  elucidate  its  underlying  mechanisms  and  potential  health  benefits.  These  findings
provide novel insights and data for nutritional evaluation of tartary buckwheat.

Key words：tartary buckwheat；tartary buckwheat-derived nanoparticles；gut microbiota；nutrition and health

苦荞麦 F. tataricum 属蓼科（Polygonaceae）荞麦

属（Fagopyrum）植物[1]，是传统的食药兼用谷物，富含

多种营养功能物质，如抗性淀粉、多酚、活性肽、多

糖等[2]。已有研究表明，苦荞具有降糖、降脂、降压

和改善微循环等作用，常推荐用于降低三高的饮食健

康管理谷物[3]。然而，仅从传统营养活性成分角度解

析苦荞营养作用机制尚存争议，例如，Stewart等[4] 报

道 1.2%槲皮素喂养 8周不能改善高脂饮食诱导的

胰岛素抵抗，与传统认为黄酮类成分是苦荞发挥降脂

活性的营养物质认识不一致。因此苦荞中可能尚存

其它“营养暗物质”发挥生理作用。

植物细胞向外分泌的类外泌体样纳米颗粒

（exosome-like nanoparticles，ELNs），是具有纳米样

结构的囊泡，含脂类、蛋白、miRNA等。目前，已有

大量研究证明 ELNs具有多种生理功能，如葡萄[5−7]、

生姜[8-9]、橙子[10]、蓝莓[11] 等的外泌体样纳米颗粒。

研究发现，来自葡萄、胡萝卜和生姜的外泌体样纳米

颗粒可介导小鼠肠道组织重塑和预防炎症性肠病，减

轻肠道屏障损伤引起的免疫反应[7]。蓝莓来源的外

泌体样纳米颗粒（blueberry exosomes-like nanopar-
ticles，BELNs），能改善高脂饮食（high-fat diet，HFD）

喂养的小鼠非酒精性脂肪肝病（non-alcoholic fatty
liver disease，NAFLD） 模型的胰岛素抵抗，并具有调

节脂肪酸合成基因的表达以及 Nrf2 在肝脏的分布减

轻肝脏的氧化应激反应等作用[11]。越来越多证据表

明植物来源的类外泌体样纳米颗粒（PELNs）参与人

体生理活动并发挥相关功能[12]。因此从 PELNs层
面揭示苦荞生物效应可为苦荞的质量评价提供新的

观点。

课题组前期从苦荞中提取类外泌体，体外实验

发现其能被肠道菌群吸收；生信分析与体外验证结果

表明苦荞来源类外泌体囊泡（Tartary  buckwheat-
derived nanoparticles，TBDNs）可以调节鼠李糖乳杆

菌、大肠杆菌的生长，这可能与 TBDNs中含有的脂质、

蛋白以及 miRNA等非编码 RNA有关[13]，从 TBDNs
角度阐明苦荞饮食合理性具有重要意义。《本草纲

目》记载苦荞“发风动气、能发诸病”，说明长期食用

苦荞可能对健康产生不利影响。因此本文重点考察

在正常饮食条件下 TBDNs对 C57BL/6小鼠生理指

标的影响，为进一步揭示 TBDNs对健康的影响提供

资料，也为后续苦荞营养功能评价奠定基础。 

1　材料与方法 

1.1　材料与仪器

川荞 1号种子　农业农村部杂粮加工重点实验

室；饲料　北京华阜康生物科技股份有限公司；

7~8周龄 C57BL/6小鼠　成都药康生物科技有限公

司，许可证号：SCXK（川）2020-034；丙氨酸氨基转移

酶（alanine aminotransferase，ALT）测定试剂盒、天冬

氨酸氨基转移酶（aspartate aminotransferase，AST）测
定试剂盒、肌酐（creatinine，CREA）测定试剂盒、尿

酸 （uric  acid，UA）测定试剂盒、总胆固醇 （ total
cholesterol，TC）测定试剂盒、总甘油三酯 （ total
triglycerides，TG）测定试剂盒、高密度脂蛋白（high-
density lipoprotein cholesterol，HDL-C）测定试剂盒、

低密度脂蛋白（ low-density  lipoprotein  cholesterol，
LDL-C）测定试剂盒　Mindray；HE染液套装　Leagene；
Tunel试剂盒、枸橼酸抗原修复液（pH6.0）、TLR4、
Myd88、CY3标记的山羊抗兔 IgG　赛维尔生物科

技有限公司；山羊血清　Biosharp；一抗 TLR2、NF-
KB P65　华安生物；抗荧光淬灭封片剂　Southern-
Biotech。

D3024台式高速微量离心机、D3024R台式高

速冷冻离心机、SLK-O3000-S数控摇床　美国赛洛

捷克 SCILOGEX；THZ-82A数显气浴恒温振荡器　

常熟朗越仪器制造有限公司；KZ-III-F高速低温组织

研磨仪　武汉赛维尔生物科技有限公司；BS360S全

自动生化分析仪　迈瑞 Mindray；STP420 ES快速组

织脱水机、Varistain™ Gemini ES全自动染色机　赛

默飞世尔 Thermo scientific；S1010E脱色摇床　SCIL-
OGEX；BC004组化笔 Biosharp、CX40荧光显微镜

SOPTOP、Pannoramic SCAN Ⅱ病理切片扫描仪　

3DHISTECH Kft。 

1.2　实验方法 

1.2.1   苦荞预处理　选用未受虫害影响且充实饱满

的川荞 1号种子，经过清洗、去除灰尘和杂质后，使

用 50 ℃ 的烘箱烘干 8  h，随后粉碎研磨并通过

50目筛子过滤，以备后用。 

1.2.2   TBDNs的提取流程　根据生姜外泌体提取方

法进行优化[14]，称取川荞 1号种子粉末，加适量水混

合后孵育过夜。次日，将苦荞水溶液，在 4 ℃ 条件

下，依次以 1000×g，10 min、3000×g，20 min、10000×g，
30 min进行离心操作，取上清液用 1 μm过滤器进行

过滤处理，加入 PEG-6000使终浓度为 10%并孵育

过夜。次日，在 4 ℃ 条件下，以 10000×g，30 min进

行离心，去除上清液后留下沉淀，用磷酸盐缓冲盐水

（PBS）溶液重悬，最后放−80 ℃ 保存。通过扫描电

镜、粒度分析等对外泌体进行表征。 

1.2.3   动物分组　小鼠饲养于温度 20~25 ℃、相对

湿度 45%~55%的动物房内，自由摄食和饮水，昼夜

节律正常。所有动物实验规程均由成都大学实验动

物伦理与福利委员会审核批准，动物实验涉及的所有

程序均按照中国动物福利委员会的原则和指导方针
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执行。将 24只小鼠随机分为 2组，每组 12只，分别

为：正常饮食组（C）和正常饮食+10 mg TBDNs灌胃

组（C_10），喂养 8周后进行解剖实验。基础饲料为

北京华阜康生物科技股份有限公司提供的维持饲料

（编号：1025）；TBDNs用 PBS分散后进行灌胃，空白

组灌胃 PBS作为对照。 

1.2.3.1   体重、进食量监测　每次灌胃前对每组小鼠

的体重以及进食量进行监测称量（该监测以分组后第

一天的体重、进食量作为起始点）。 

1.2.3.2   小鼠血液生化指标检测　将小鼠禁食不禁水

16 h，腹主动脉采血测定丙氨酸氨基转移酶（ALT）、
天冬氨酸氨基转移酶（AST）、总胆固醇（TC）、甘油三

酯（TG）、高密度脂蛋白（HDL-C）、低密度脂蛋白

（LDL-C）、肌酐（CREA）和尿酸（UA）八大血液生化

指标。具体实验步骤按试剂盒说明书进行操作。 

1.2.3.3   组织 H&E及油红 O染色分析　分别取小

鼠结肠组织、肝脏组织进行 H&E染色和油红 O染

色[15]，进行组织病理学检查。分析小鼠肠上皮细胞炎

性浸润以及肝脏中脂滴的累积情况。 

1.2.3.4   小鼠结肠、肝脏组织免疫荧光　对小鼠的结

肠、肝脏组织切片进行免疫荧光实验，以观察其结肠

的屏障通透性和肝脏免疫细胞的表达、分布。首先

进行石蜡切片前处理：a.石蜡切片脱蜡至水：依次将

切片放入二甲苯Ⅰ15 min，二甲苯Ⅱ15 min，无水乙

醇Ⅰ5  min，无水乙醇Ⅱ5  min， 85%酒精 5  min，
75%酒精 5 min，蒸馏水洗。b.抗原修复：向微波炉

专用容器中加入合适的修复缓冲液（柠檬酸缓冲液）

高火加热至沸腾，取出放入拨片，中火 8 min至沸，停

火 8 min，转中低火 7 min。自然冷却后将玻片置于

PBS（pH7.4）中在脱色摇床上晃动洗涤 3次，每次

5 min。c.阻断内源性过氧化物酶：切片稍甩干后用

组化笔在组织周围画圈（防止抗体流走），切片放入

3%过氧化氢溶液，室温避光孵育 15 min，将玻片置

于 PBS（pH7.4）中在脱色摇床上晃动洗涤 3次，每次

5 min。然后参考赵婉均[11] 的实验方法，稍作修改：

d.血清封闭：在圈内滴加 5%山羊血清孵育 30 min。
e.加一抗：轻轻甩掉封闭液，在切片上滴加 PBS按

1:200比例配好的 F480、CD4、MPO，切片平放于湿

盒内 4 ℃ 孵育过夜 ； f.加二抗 ：玻片置于 PBS
（pH7.4）中在脱色摇床上晃动洗涤 3次，每次 5 min。
切片稍甩干后在圈内滴加 CY3标记山羊抗兔 IgG二

抗覆盖组织，避光 37 ℃ 孵育 50 min。然后进行DAPI
复染细胞核、封片，最后在显微镜下观察拍照。 

1.2.3.5   16S rRNA 测序　参考 Peng等[16] 方法分析

TBDNs灌胃组与正常组小鼠肠道的粪便微生物组

成。对小鼠粪便微生物进行 16S rRNA测序，设置

的 16S引物为：Primer5'-3'：8F（5'-AGAGTTTGATC
ATGGCTCAG-3'）和 1492R（5'-CGGTTACCTTGTT
ACGACTT-3'），对提取的 RNA进行  PCR 后再建

库，建库后采用 Nanopore GridION测序仪测序，测

序试剂盒使用 MinION Flow Cell（R9.4）；此外，还进

行了 OTU聚类和注释分析。利用 α 多样性和 β 多

样性作为基础，对粪便微生态的菌落组成进行了分

析，并比较了 TBDNs灌胃处理组对肠道微生物属水

平的影响。 

1.3　数据处理

小鼠的生理生化指标、肝脏与结肠病理检测和

小鼠肠道菌群的物种丰度比较各项实验，通过

GraphPad Prism 9.5.0软件对所有实验数据进行深入

的统计学分析，使用平均值±标准差作为表示。两组

之间的差异通过 ANOVA方差统计进行对比。所有

的研究结果都在三次或更多次独立的重复实验后得

到。在小鼠肠道菌群的研究中，使用 R语言对数据

进行转化，并对 Alpha多样性和 Beta多样性进行分

析；采用 Origin 8.0制作箱式图。 

2　结果与分析 

2.1　TBDNs 对 HFD 小鼠体重、进食量的影响

在本研究中，通过差速离心与 PEG沉淀法结合

从苦荞中分离出 TBDNs样品，在透射电子显微镜

下，能够观察到典型的茶托型囊泡结构，如图 1A所

示。提取的 TBDNs经过粒径测试结果见图 1B，其
平均粒径为 182.8 nm，粒径主峰在 162.8 nm。本研

究提取出的 TBDNs与前期课题组采用超速离心法

提取的 TBDNs的表征相似[13]。因此，可以说明本文

成功从苦荞中优化提取出了 TBDNs。
  

(A)

(B)

强
度

 (%
)

粒径 (nm)

10

1

9

10

8

100

7

1000

6
5
4
3
2
1
0

200 nm

图 1    苦荞来源的纳米颗粒表征
Fig.1    Characterization of TBDNs

注：（A）苦荞来源的纳米颗粒电镜图（100000×）；（B）苦荞来源
的纳米颗粒粒径分布。
 

相关研究报道，PELNs能够被动物的胃肠道吸

收从而影响其生理状态。因此，首先考察了苦荞类外
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泌体囊泡（TBDNs）对小鼠生理的影响。PEG提取得

到的 TBDNs沉淀分离后称重，每 100 g苦荞约可提

取 10  mg的 TBDNs。根据《中国居民膳食指南

（2022）》推荐，每天摄入全谷物及杂豆类 50~150 g
（干重）[17]。因此，选用 10 mg TBDNs进行灌胃。在

本研究中，对 C57BL/6小鼠进行 10 mg TBDNs灌
胃 8 周后，TBDNs灌胃组（C_10）体重增长曲线低于

正常饮食组（C）体重增长曲线（图 2A）；TBDNs灌胃

组（C_10）小鼠体重为 25 g左右，与正常饮食喂养组

小鼠相比，体重显著降低（P<0.001）。进一步统计所

有小鼠的摄食量发现 （图 2B） ，TBDNs灌胃组

（C_10）的日均摄食量略低于正常组（C）小鼠。这些

结果表明，TBDNs可能会通过影响食欲来影响正常

饮食小鼠的体重。但 TBDNs影响小鼠体重的原因

和途径需进一步分析。 

2.2　TBDNs对小鼠血液生化指标的影响

近年来，植物来源的类外泌体在改善各种疾病

方面的潜力引起了广泛关注。本研究探讨了 TBDNs
对小鼠血液生化指标的影响，并将结果与其他植物来

源类外泌体的研究进行了比较。在本实验中，

C57BL/6小鼠经过 8周的 TBDNs灌胃处理后，对其

血液生化指标进行了测定。结果显示，与正常对照组

相比，TBDNs处理组的丙氨酸氨基转移酶（ALT）、
甘油三酯（TG）和尿酸（UA）水平显著降低（P<0.01）
（图 3A、C、H）。这一发现与其他植物来源类外泌体

的研究结果相似。例如，Berger等[10] 发现橙汁衍生

的纳米囊泡（ONVs）能够降低甘油三酯的含量，同时

还能降低胃肠道疾病中的炎症水平和血脂水平。赵

婉均[11] 的研究也表明，蓝莓类外泌体（BELNs）可以

显著降低肥胖小鼠血清中的 TG、TC、LDL-C、AST
和 ALT的水平。
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Fig.2    Effects of feeding TBDNs on the body weight and daily
food intake of mice

注：（A）不同处理组小鼠体重增长曲线；（B）不同处理组小鼠
日均摄食量差异 ； *P<0.05； **P<0.01； ***P<0.001； ****P<
0.0001；ns P>0.05；图 3、图 4、图 7、图 9同。
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图 3    TBDNs 对小鼠肝功能、肾功能的影响

Fig.3    Effects of TBDNs on liver function and kidney function in mice
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虽然 TBDNs降低了 ALT、TG和 UA的水平，

但这些指标并未低于正常值。这种适度的调节作用

可能暗示了 TBDNs在维持生理平衡方面的潜在益

处。然而，这些生理指标变化的健康意义还需要进一

步分析。与 BELNs不同，本文的研究发现 TBDNs
对天冬氨酸氨基转移酶（AST）、胆固醇（TC）、高密度

脂蛋白（HDL-C）、低密度脂蛋白（LDL-C）以及肌酐

（CREA）水平均没有显著影响（P>0.05）（图 3B、D、

E、F、G ）。这种差异可能源于类外泌体的来源、提

取方法以及实验动物模型的不同。基于本研究结果，

认为在正常情况下摄入 TBDNs对血液生化指标的

影响相对较小。为了更全面地了解 TBDNs的生理

效应，未来的研究可以考虑增加 TBDNs的浓度，或

者在不同的生理和病理模型中进行观察。这不仅有

助于深入了解 TBDNs的作用机制，还可能为开发基

于植物类外泌体的新型功能性食品或治疗策略提供

重要依据。 

2.3　TBDNs 对小鼠肝脏、结肠的影响

膳食对肠道微生物群、屏障功能和黏膜免疫具

有重要影响，膳食摄入在炎症性肠病（IBD）发生发展

中起着关键作用[18]；同时肝脏是负责脂质代谢的主要

器官，血脂异常与肝脏脂质积累高度相关[19]。研究报

道，通过一个月的 ONVs治疗逆转了饮食诱导的肠

道改变，并调节参与免疫反应（肿瘤坏死因子 [TNF]-
α 和白细胞介素 [IL]-1β）、屏障通透性（CLDN1、
OCLN、ZO1）和脂肪吸收和乳糜微粒释放的基因的

mRNA水平，作为膳食补充剂保护了肠道和肝脏免

受与高蔗糖饮食相关的脂肪过载的影响[10]。此外，来

自生姜[8]、胡萝卜[7] 和葡萄[5] 的外泌体样纳米囊泡能

够减轻肠道屏障损伤引起的免疫反应，对小鼠肠道组

织重塑从而达到预防炎症性肠病的作用，蓝莓来源的

外泌体样纳米囊泡还能改善肝功能障碍[7,11]。因此，

植物来源的类外泌体可能通过多种途径影响肠道和

肝脏生理。

《本草纲目》记载苦荞“发风动气、能发诸病”，其

机理尚无合理解析。由于对 TBNDs的功能认识尚

不足，本文首先考虑在正常条件下摄入 TBDNs对小

鼠传统生理指标、肝脏以及结肠组织等的影响。HE
染色结果表明，两组肠道上皮细胞的炎性细胞浸润以

及肝组织切片均无显著变化（图 4A、B）。油红 O染

色（图 4C）和脂滴面积定量分析（图 4D）同样显示无

显著性变化（P>0.05）。进一步通过评估正常组和

TBDNs组对小鼠结肠屏障功能的影响（图 5），发现

与正常组相比，TBDNs组的肠上皮 Occludin和 ZO-
1的表达也未发生显著改变。对肝组织免疫组化检

测，评估正常组和 TBDNs组对小鼠抗原抗体的反应

（图 6）。与正常组相比，TBDNs组的 CD4、F480、
MPO的表达未发生显著变化。这些结果表明正常饮

食下添加 TBDNs对肝脏炎症、脂肪积累、肠道屏障

功能等无不良影响。 

2.4　肠道菌群分析 

2.4.1   肠道微生物多样性分析　本研究扩增 16S

rRNA 获得粪便微生态中的细菌群落结构。本实验

中所测得的样本共获得 428661条序列。通过比对

过滤后，共得到 325437条有效的序列用于后续的分

析。对粪便微生态 α 多样性的分析，可以看出，正常
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图 4    TBDNs 对小鼠肝脏、结肠的影响

Fig.4    Effects of TBDNs on liver and colon in mice
注：（A）结肠 HE染色（200×）；（B）肝脏 HE染色（200×）；（C）
肝脏油红 O染色（200×）；（D）肝脂质面积。
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图 5    TBDNs 对小鼠结肠组织中屏障相关蛋白
的影响（200×）

Fig.5    Effect of TBDNs on barrier-associated proteins in mouse
colon tissue (200×)
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组与 TBDNs组对应的 Chao1指数、Shannon指数、

Simpson指数以及 PD指数均无显著性差异（P>
0.05）（图 7），表明 TBDNs的摄入不会对正常小鼠肠

道微生态造成紊乱，仍能维持良好的肠道稳态。 

2.4.2   物种组成分析　同时，从图 8也可以看出，

TBDNs组与正常组样本间共有的 OUT数目占比高

达 99.65%（图 8A），TBDNs处理组样本间特有的

OUT数目共有 93种。对不同处理间的 β 多样性分

析结果如图 8C，本实验基于主坐标 PCoA 分析表明，

正常组的肠道微生物群落与 TBDNs处理组虽然没

有达到显著差异，但也可以看出其分布的不同，这可

能受动物个体差异的影响较大。在属水平上可以看

出，正常组与 TBDNs组的肠道微生物群落组成比例

有一定差异（图 8B）。正常组的优势菌群有乳杆菌

属 Lactobacillus、瘤胃球菌属 Ruminococcus、拟杆

菌 Bacteroides、苏黎世杆菌属 Turicibacter 和蓝绿

藻菌属 Lachnoclostridium。

相比正常组，TBDNs组的乳杆菌属 Lactobaci-
llus、苏黎世杆菌属 Turicibacter 和蓝绿藻菌属

Lachnoclostridium 的相对丰度显著增加（P<0.05）
（图 9）。研究表明，Lactobacillus 是一种益生菌，对人

体健康有着重要的作用，具有抑制有害菌的生长，维

护肠道菌群平衡，防止肠道感染和炎症的作用[20−21]。

Lachnoclostridium 与多种代谢性疾病的发生密切相

关，包括肥胖、高血压、糖尿病等，其相对丰度与血糖

水平呈负相关[22−25]。Lachnoclostridium 是一种能够

利用单糖和双糖产生乙酸的细菌，而乙酸可以通过抗

炎和免疫抑制作用有效地稳定肠道内环境[22]。此外，

乙酸还可以作为细菌的 ATP产生的氧化产物，

Lachnoclostridium 的丰度与肠道内乙酸水平呈正相

关，而且 Lachnoclostridium 还能够通过代谢 L-谷氨

酸来产生乙酸等短链脂肪酸，这些短链脂肪酸对于肾

脏保护具有重要作用，如抗炎、抗动脉粥样硬化和抗

氧化等[24]。因此，这些有益菌的增加具有潜在的健康

效益。

本文的研究结果显示，TBDNs组中的瘤胃球菌

属 Ruminococcus 的相对丰度显著降低（P<0.05）。
研究发现，活跃期炎症性肠病（IBD）通常伴随着瘤胃

球菌（Ruminococcus gnavus）的增加[26]。由于炎症促

进黏膜氧化应激，这可能会形成土著微生物群落，有

利于兼性厌氧菌的生长，如 Ruminococcus gnavus[26]，
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它被认为是 IBD中改变的微生物群的重要菌群。此

外，R. gnavus 还与其他免疫相关疾病如儿童哮喘、婴

儿湿疹、脊柱关节炎、系统性红斑狼疮、超重肥胖和

一些代谢疾病（II型糖尿病、非酒精性脂肪肝等）有

关，大部分研究认为，瘤胃球菌属与 II型糖尿病呈正

相关，但也有小部分研究结果不一致[27−35]。研究表

明，在减肥手术和糖尿病缓解后，Ruminococcus
bromii、Ruminococcus obeum 丰度增加，而 Rumino-

coccus torques 丰度降低[36−38]。这些现象可能是由于

瘤胃球菌偏好植物中的多糖，如果肠道中有过多的瘤

胃球菌，细胞会吸收更多的糖，不可避免地导致体重

增加[39]。因此，肠道中瘤胃球菌属的丰度会受到饮食

的影响，但饮食的作用似乎很复杂，该复杂作用可能

源于瘤胃球菌属的复杂构成。瘤胃球菌属包括有益

菌和有害菌。例如，已知 Ruminococcus bromii 对健

康具有有益效果。当长期食用水果和蔬菜时，瘤胃球
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图 9    TBDNs对小鼠肠道菌群影响的物种丰度比较

Fig.9    Comparison of species abundance of TBDNs on the gut microbiota of mice
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菌属能够发酵复合糖类，产生乙酸酯、丙酸盐以及具

有抗炎效益的丁酸盐 [39]。而肉食会增加有害菌

Ruminococcus gnavus，部分瘤胃球菌属已被证明具

有促炎性，除了肉食之外，高盐饮食、大豆、抗性淀粉

也会增加瘤胃球菌的丰度[40−43]。

灌胃 TBDNs也显著降低了拟杆菌属 Bacteroi-
des 的丰度（P<0.05）。不同拟杆菌种类与不同炎症

性肠病程度相关，炎症性肠病患者粪便微生物分析显

示，拟杆菌门、厚壁菌门和疣微菌门的丰度下降，而

变形菌门、放线菌门和梭杆菌门的丰度增加。在

48名克罗恩病患者中，粪便样本中的拟杆菌细菌丰

度不到健康个体的 10%[44−46]。然而，大多数研究表

明，拟杆菌因内毒素而表现出促炎特性，并影响细胞

因子的产生，从而导致炎症性肠病[47]。总的来说，相

对正常组，TBDNs的部分微生物发生了显著变化，但

其对小鼠生理作用的影响是否存在因果关系仍需进

一步验证、探明。 

3　结论
本文通过差速离心结合 PEG沉淀法从苦荞中

分离得到 TBDNs。TBDNs呈典型的茶托型囊泡结

构，平均粒径为 182.8 nm，粒径主峰在 162.8 nm。考

察了正常饮食条件下添加 TBDNs对小鼠生理生化

及免疫的影响。结果表明 ，相对正常饮食组 ，

TBDNs组小鼠体重、甘油三酯（TG）、尿酸（UA）、丙

氨酸氨基转移酶（ALT）显著下降（P<0.01）；天冬氨酸

氨基转移酶（AST）、胆固醇（TC）、高密度脂蛋白

（HDL-C）、低密度脂蛋白（LDL-C）以及肌酐（CREA）

水平均未发生显著性变化（P>0.05）；其它组织学指

标、肠道屏障以及免疫组化（CD4、F480、MPO）指标

未见显著改变（P>0.05）。肠道菌群分析发现，TBDNs
的摄入还能提高肠道中一些有益菌如乳杆菌属

Lactobacillus、苏黎世杆菌属 Turicibacter 和 Lachno-
clostridium 的水平。综上所述，TBDNs的摄入对小

鼠整体生理健康无显著影响，少量指标的变化是否与

肠道微生态改变有关尚需验证，其生理意义亦需进一

步阐明。未来可进一步加大摄入浓度，对 TBDNs的
吸收过程及引起的代谢变化进行深入研究。

© The Author(s)  2025.  This  is  an  Open  Access  article
distributed  under  the  terms  of  the  Creative  Commons  Attribution
License (https://creativecommons.org/licenses/by-nc-nd/4.0/).
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