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Effect of Low Temperature Plasma Sterilization on Myosin Degradation
and Related Cathepsin Activity of Oncorhynchus mykiss
SUN Xiejun, CHEN Xiaoqiao, LI Xiuxia, LI Jianrong’

(College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center for
Storage, Processing and Safety Control Technology of Fresh Agricultural Products, Jinzhou 121013, China)

Abstract: To clarify the mechanism of the effect of low temperature plasma sterilization on the degradation of
Oncorhynchus mykiss and related cathepsin activity, Oncorhynchus mykiss fillets were treated with 70 kV dielectric barrier
discharge low temperature plasma (DBD) sterilization and storage under ice temperature for 8 d. Changes in texture, TCA
soluble peptides, amino acid nitrogen, myofibrillar fragmentation index (MFI) of Oncorhynchus mykiss fillets from different
storage days were analyzed, and the activities of cathepsin B, D, and L in the fillets and their degradation effects on myosin
were explored. The binding of the main active substance NO;~ produced by DBD sterilization with cathepsin was further

analyzed through molecular dynamics simulation. The results showed that 70 kV DBD treatment had no significant effect
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on the hardness and elasticity of Oncorhynchus mykiss fillets during early storage (P>0.05), and the reduction of hardness

and elasticity was delayed during the storage. It also delayed the increase of TCA soluble peptides, myofibrillar

fragmentation index (MFI), and amino acid nitrogen content. The activity of cathepsins B and L were significantly inhibited

(P<0.05), and the degradation of myosin light chain MLC-2 fragment was slowed. The activity of cathepsin B, D and L was

significantly reduced after DBD sterilization (P<0.05). Molecular dynamics simulations showed that the binding free

energies of cathepsin B, D and L with NO; were —10.937, —5.0555, and —19.112 kcal/mol, respectively, and the hydrogen

bonding frequencies of cathepsin B, D, and L with NO;~ were 13.56%, 15.02%, and 31.23%, respectively, indicating

stronger hydrogen bonding between NO,™ and cathepsin L. The degradation of fish protein and activity of cathepsin could

be delayed by DBD sterilization, and the texture of fish fillet was maintained. The greatest effect on cathepsin L was shown

by the active ingredient NO;™ produced by DBD sterilization, which could exist in a stable way in its active center and had

low binding free energy.

Key words: low temperature plasma sterilization; Oncorhynchus mykiss; myosin; cathepsin; texture
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F 347 35 7 AR W 22 43 1 (Root-mean-square devia-
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WEPET O FEES S AT . AN RMSD P15 J5 194 B2 Ry
30 ns P HEEHL T 600 ML, FH TS HBRET
B ) AMBER20 "4 % 1) MM/GBSA J5 i Fll
Nmod #iE, NO; 5 Cathepsin B, D, L #9454 H
fiE: AG,=AE\+AG, ~TAS. Hrf1 AE,,, &< A h
EHEWSHSERMARZ S FII¥EZ 2,
AE\ v AP ER R AHEAER AE, 0 FITEAEAEFRH
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H A HBERITTRR, AG,=AG 101+ AG o mopors FFELRTHT
ik B BB (AG, ) B BTHR ) I B (GB) A7
T3S R, B K AH B AE XS R 40 3 B BE Y 5T
R C AGgqnopor) 18 I3 75 71 1T Ao 2% 1T AL ok K0 ) 52 -
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AGginopor—Vsasa b, ¥ 7l Al I 1 2% 1 B SASA
LCPO FEFITHASH, v F1 b BUEAETT b 43 el is
B A 0.005 keal-mol F1 0 kcal-mol, TAS 728 %)
#54 A thREAY TTHR
1.3 HIELIE

IR SIEG I HEAT 3 IR L LA AYSEATINE AT 2 I
e L L B I AE, I RE 45 SR DA SR v I 22
FoR o fHiFH SPSS 26.0 HF A B ZE ANOVA
) Duncan 7% Z 5 HLEAK B0 A T B & 1430, P<0.05
FoRZEF B, IR Origin 9.0 /1423 A .
2 HBRESH
2.1 HEKERRMSFESIESR

PR 1488 5 Sy £ R B — YRR R 4 B TR 1Y
1, BT AR NES AT A BT ARSI S & T,
SAPER LT B RIEA R ERREE . th3 1 i LLE
i, 70 kV DBD AbEEXSI e AT A (%) £0 PRI RE | SR TT
25200 (P>0.05 ), {H B 25 I Z58g s [A] o385 i, 4520 fa
PRIREE 2 T P A S S RIS, X P BAAFE BRI T RS
10 PIZH AU (7K S35 0 PN R BREIE PR AR AL AL R ZH
P A SN I 2 d 1), 45 DBD 4B ) 8 Py iE
I S TR BEZH (P<0.05), 3X AT HE 577 A 145 25 1~
PARTE M B 0 PR S BRIV E AR G, S T I sl B
HR AR P 7 A B A NIRRT 10 ) ILET 4k A [ R R
T A X 2 1) £ PRI 3 AN R T IR EL Y 37.67%,
1M DBD Ab 2l (1) £ RS B S w1 4R {E 1Y 57.02%, 1
AHIE B FL R 9 DBD &b BRBEA AU AR L% IR A B T [
PR . XA AR T A5 B AR NG M 06T B I AR
SEBRAEFH, PN 2 T 5O i B A Re RS, FEIE i
25 8 d A, X HE4H Ay sk FL AR PR AR (P<0.05), iX 1]
BEJE R X R4 A0 £ TR HR B 8 1 BT A R A el
A5, 1 DBD AbFH FE S 7E AL [ FiE 28 FL 45y ph AR FR
BE, PTAEZZR 1 BT s R B
2.2 fI3KEHR TCA-AIAMMEENEL

TCA- MG H T Wl fa A5t fm 25 (s
Ffids It . TR 1 R, el fa /) ih TCA-RT
PR & 128 0.82 pmol BEZAR/g, M4 DBD 4hE ),
H TCA-ATIEPERK & 1.07 pmol BYERR/g, P
DBD ZbEEX R Fh 2R 1 T i B LA HEshE L X
JE A B AR TG T B AR AR P i TR )
W H R A A —E R AR . FEI e R R,
TCA-FTEHEIR & B Wi T, X2 T HEE S

1 PRI PN AN TR, BRSNS BRI ST R AR IR
SrF R Z AR, BEEHIE EGE R, B SR AR AR R
AT AENW RS, XHELHAY TCA- R ERK & Foby
b DBD &b P P, T G 19 il RBE b YT R AT B
DBD X RIS/ EFHIRZE T TCA- MRk
LR, [hlAst, X BRZH kA i ) A A B e, g
VA {1 B PR AR DA B R P X IS A e i J Wi 0 14
T A e A 1 4 MR B BRI B 1 TR five by 22
BRI SR A, % REZH A1 DBD AR R fa Py
TCA-T] PR IR & 2 S A T 09 2.7 £5 80 2.3 15,
i) DBD AbERERAEAE—E R B F ARG fa PR R
A fif
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Fig.1 Changes of TCA-soluble peptides in Oncorhynchus

mykiss fillets during ice temperature storage
T AR ING TR R R 8] A 1% 22 5 (P<0.05); A~
[F K5 TR A R R B A 3 22 57 (P<0.05), [ 2~
[Zgl 4 Iﬁjo

23 AR Fies (MFD TaHh

TE RIS R PEY T, WUBRET 4/ A8 B0 5
FHRVEAL PO 0% 180, MFT BT, UL PR ST R 3 ik
o VKB AR T MFL AR E A an gl 2 frs, 78
Zt3t 70 kv DBD AbEE 2 min J&, A MFI &% PR ZH
F IR FZEH(P>0.05)., Luo &R & imsmEr 455
TRACIEFE ) S5 min, AT UL LT 485 1 S5, i
MFI I H. Yong &P SRORTE—E 05 N Y55 251
ARAE AN ZXF MFI AT B 38 52 M, 33X 5 AR S0 45 0 —
4, PAH 70 kV DBD ARF 2 min SJ i it B R ET ¢k R
FIREARTCAS RS2 . Vg A (8] B B, AT X2
MFI i 3 - (P<0.05), iX—45 R 5 1 aF b A ULEx
T AFNPENSHER A AR T A 26, s T AR
ERAEEREP A I (R X BEZH AN DBD AR BH2H 1)

F1 P SR A R A S (AR £l
Table 1 Changes in the hardness and spring of Oncorhynchus mykiss fillets during ice temperature storage
b 25 0d 2d 4d 6d 8d
B (o) Xffﬁﬁ 1245.0£131.1 804.1+31.6" 506.7+53.0" 484.179.9C 469.0+112.8C
DBD#h 4] 1381.6+94.6* 1017.5£100.9* 847.3+75.7°¢ 804.5+102.8° 724.4+70.4°€
- PO 0.55+0.02** 0.48+0.01°" 0.46+0.01°" 0.44+0.01°¢ 0.42+0.02°¢
DBD#h 4] 0.54+0.04 0.51£0.01°® 0.49+0.01°5¢ 0.48+0.01°¢ 0.47+0.02*¢

s AR NG FEACFAR R (5] 2 ) f 2 22 57 (P<0.05) s ANRIKRS SRR [R) IR A1 2 YA 25 22 57 (P<0.05) o
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Fig.2 Changes of MFI of Oncorhynchus mykiss fillets
during ice temperature storage
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Fig.3 Changes of amino acid nitrogen in Oncorhynchus mykiss
fillets during ice temperature storage
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(B) cathepsin D and (C) cathepsin L activity
during ice temperature storage
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HAEH, HIE 6 nl %1, NO, == 2 i 5 41 412K 11 it
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HEAH EAER, k58 3L Phe9l., Gly83 F Cys85 JE ik
FKAHEAEH; NO, 542U R D RESIE L 2 4>
SV AH B AE FH (3R 3L Gly331 F1 Val322) F1 4 Bi/K
FHEAEHFREE Leul85, Ala333, Phe332 il Ser321);
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Fig.6  Molecular docking results of NO;~ with (A) cathepsin B,
(B) cathepsin D and (C) cathepsin L

2.8 FFEINE (MD) HHER

T DBD 43 A= (1 NO™ ELA B i 4% BE Bt
], PR E$E NO> 12 DBD A4b B rf i f 0 S e 1
YRV TS SEF5T . MD B ] FH T4 M 8 1 i S
FCAR I Z5 -G A 0 S5 A RE . T A2 5% ik A il v
U3, X PR ST A — B TR NS5 & & A A 4 As
AN = Vet VYN E-S LB EY ERER (ISR PEi s TN i e
MD U TR FEBIGUE S0 25 5, DA EHRITE &
WSS R TR R HAERLERAY H o
2.8.1 ¥JFRIRZESHT(RMSD) £ MD B, 5
T ARG 22 53 AT P AR AR SR A B AR 1 BT S AR U S
Yy )a R kR M S A DE R A T . RMSD
{EBR =, LIS T G AR AR R, RVZH 2128 PB4 A4
T AREPY, NO;YEH T 4H4 44 1l RMSD 1Y
AU 7 s, SR EoR, B B.D. L 5
NO; IE G WITEALHL 20, 1 F1 40 ns J5 Y REAZ 1A 5]
ST, A RMSD {H43 528 1.75. 1.6 F1 1.8 A,
fizz/NF 0.75 A, BERELRFFINEL, BEHTX —Fh 54
IR ke v, nTH TR S0, PRI IE T
55 30 ns PEHUW LA TSE S A B BETT AT A H
ey i2 G H M . A8UE MBE L-NOy E 5 Wi
RMSD {HES K T 53 4RI 54, BiH] NO; X2 4

HANE L p0FE MR R .

3.0
2.5
~ 2.0
<
215
> .
~ 1.0 — Cathepsin B
— Cathepsin D
0.5+ —— Cathepsin L
N @ O e
S \ \ \ \) \) Q
\ \) \) Q L Q \
S S &
AFTH] (ps)

K7 NO; /R N HZUE A RMSD 1L
Fig.7 Changes of cathepsin RMSD under the action of NO;~
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456 H e N U EBLEHTE LS S5 /N iR 2 8]
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T SASA WL AYAERAEF FILEE AG g mopo P4 T
HHB . AN EAE SIS LU FH A NO; /Y

ghG, M ESYIEREAIEAEN AR, SINIEE,
AFNTFEE G, (HERFEAH BEAEFRE AG,,(5rFHVE
TEAET] AEaw PRI FIAERE AG nopo) A2 TUE
i, RS, O TSR R LR BEFE 43

FEH A AR RE . S A B AR RE AG,, 1Y
DT MR 2 R T H AH B4R A STk AG,, (7 HL 3
AE, o HRMEIEFIMERE AGue) o BREUSKE, NO; fiE
% T U SRS L FTZHZR AR 1 B A L 455, 544
HEE D W GYMERRREMERE 25, X5 2.5 Tl
WA LS R —3

2.8.3 ESEAMHT 3@ MD LIS B AAT AT L
BENAERLE R, B AW G e fitse S A gt

ZEPIAASE, (A0l R v i S ) B R AT A9, 72

EYE-GAHEAE . S5 AE LN ) B RS

#2 MD R NOy S ZUE FIBGXTHE 1455 FH Hi B4 #E 52 791 (keal/mol )
Table 2 Binding free energy between NO,™ and cathepsin during MD (kcal/mol)

ﬁﬁﬁﬁﬁk AEimclc AEinlvdw AGsolnopol AGsolclc AGsol AGclc AGbind
Cathepsin B-NO;~ 107.6951 -8.2717 -1.6957 -108.665 -9.9674 -0.9696 -10.937
Cathepsin D-NO;~ 27.9337 -3.8105 -0.8507 -28.328 —4.6612 —0.3943 -5.0555
Cathepsin L-NO;~ 133.77 —5.3093 -1.8229 —145.75 -7.1322 -11.9798 -19.112
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Table 3 Hydrogen bonding of NO;™ and cathepsin during MD
Z A2 T SR Hh Bk TR (%) AHEEES (A) EL S SEIQ)
MOL_313@01 CYS_85@N 5453 13.56 2.8842 154.0103
MOL_313@03 CYS_85@N 4400 10.95 2.8859 153.7965
MOL_313@02 CYS_85@N 4236 10.54 2.8850 154.4888
MOL_313@02 GLY_86@N 4028 10.02 2.8770 152.7962
MOL 313@O1 GLY_86@N 3925 9.76 2.8793 152.9643
HYVE LGB MOL_313@03 GLY_86@N 3563 8.86 2.8767 152.6339
MOL_313@01 TYR_34@OH 3474 8.64 2.7503 160.1530
MOL_313@03 TYR_34@OH 2771 6.89 2.7539 160.3120
MOL_313@02 SER_87@N 2687 6.68 2.8799 153.0823
MOL 313@02 TYR 34@OH 2666 6.63 2.7471 160.5090
MOL _313@01 SER_87@N 2651 6.59 2.8793 153.6097
MOL_313@03 SER_87@N 2408 5.99 2.8817 153.5859
MOL_338@01 VAL 322@N 4657 15.02 2.8724 158.9153
MOL_338@O1 GLY_331@N 4258 13.74 2.8563 149.7557
MOL_338@O03 VAL_322@N 3791 12.23 2.8680 159.0352
JHSVE 1D MOL _338@O03 GLY 331@N 3614 11.66 2.8558 149.0665
MOL_338@O1 PHE_332@N 2870 9.26 2.8742 151.0729
MOL _338@O03 PHE 332@N 2286 7.37 2.8758 151.5351
MOL_338@02 VAL 322@N 2260 7.29 2.8655 158.3913
MOL_338@02 GLY_331@N 2073 6.69 2.8586 148.6934
MOL_223@03 SER_189@OG 26605 31.23 2.7680 159.0273
MOL_223@O1 SER_189@OG 25795 30.28 2.7692 158.9834
JSVE FIRIL MOL_223@02 SER_189@OG 24666 28.96 2.7670 159.0488
MOL_223@O1 LYS 18@N 14017 16.46 2.8862 160.2537
MOL 223@03 LYS 18@N 13223 15.52 2.8854 160.1019
MOL_223@02 LYS 18@N 11952 14.03 2.8857 159.7296
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