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北风类芽孢杆菌木葡聚糖酶的表达、性质及
在苹果渣木葡寡糖制备中的应用

田嘉欣1，杨　行2，赵玉琪1，闫巧娟2，李延啸2,3, *，江正强1,4

（1.中国农业大学食品科学与营养工程学院，中国轻工业食品生物工程重点实验室，北京 100083；
2.中国农业大学工学院，北京 100083；
3.中原食品实验室，河南漯河 462300；

4.南京财经大学食品科学与工程学院，江苏省现代粮食流通与安全协同创新中心，江苏南京 210023）

摘　要：苹果渣含有丰富的木葡聚糖，是制备具有多种功能活性的木葡寡糖的优良原料，利用新型木葡聚糖酶水解

苹果渣有望实现其高值利用。本研究将北风类芽孢杆菌来源的 GH74家族木葡聚糖酶基因（PbXEG74B）在大肠杆

菌 BL21（DE3）中异源表达，对其酶学性质进行表征，进而利用该酶水解苹果渣制备木葡寡糖。结果表明：木葡

聚糖酶（PbXEG74B）在大肠杆菌中的表达量为 18.0 U/mL。该酶最适 pH为 5.5，最适温度为 55 ℃，在 pH4.5~
8.5和 40 ℃ 以下具有良好的稳定性。该酶水解木葡聚糖主要产生聚合度 2~9的寡糖。在最适条件下，利用 PbXEG74B
水解低共熔溶剂预处理的苹果渣能够制得聚合度 2~9的木葡寡糖，得率为 2.79 g/100 g苹果渣，其中聚合度 2~4、
5~6和 7~9的寡糖占比分别为 67.0%、11.5%和 21.5%。木葡聚糖酶（PbXEG74B）的酶学性质和水解特性优异，

在木葡寡糖制备中具有良好的应用潜力，为苹果渣的高值化利用提供了理论基础和实践依据。
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Abstract：Apple  pomace  (AP)  is  rich  in  xyloglucan,  serves  as  a  substrate  to  produce  xylogluco-oligosaccharides  with
various functional activities. The hydrolysis of AP by novel xyloglucanases is conducive to the high-value utilization of AP.
In  this  study,  a  novel  GH74  xyloglucanase  gene  (PbXEG74B)  from Paenibacillus  borealis was  cloned  and  expressed  in
Escherichia  coli  BL21  (DE3).  The  enzyme  was  characterized  and  further  used  to  hydrolyze  AP  for  xylogluco-  
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oligosaccharides production. It was expressed in E. coli with an expression level of 18.0 U/mL. The optimal conditions of
PbXEG74B were pH5.5 and 55 ℃. It showed good stability in the pH range of 4.5~8.5 and temperatures up to 40 ℃. The
enzyme hydrolyzed xyloglucan to produce xylogluco-oligosaccharides with degrees of polymerization (DP) of 2~9. AP was
pretreated with deep eutectic solvents (DESs) and hydrolyzed by PbXEG74B to produce xylogluco-oligosaccharides. Under
optimal conditions, the yield of xylogluco-oligosaccharides with DP 2~9 was 2.79 g/100 g AP, containing 67.0%, 11.5%,
and 21.5% of xylogluco-oligosaccharides with DP 2~4, 5~6, and 7~9, respectively. PbXEG74B with good enzymatic and
hydrolytic properties shows great potential in the high value utilization of AP.

Key words：Paenibacillus borealis；xyloglucanase；apple pomace；xylogluco-oligosaccharide；deep eutectic solvents

功能性寡糖的聚合度（degree of polymerization，
DP）是影响其功能的重要因素之一，不同聚合度寡糖

的作用位置和功能活性往往不同[1]。例如，低聚合度

和多支链的果寡糖有利于近端结肠有益菌的快速增

殖，而高聚合度的果寡糖能够促进远端结肠有益菌增

殖[2]。作为一种新型功能性寡糖，木葡寡糖（xylog-
luco-oligosaccharides，XyGOs）是木葡聚糖（Xyloglu-
can，XyG）降解得到的寡糖，具有改善食品特性、调

节肠道菌群、降低血糖血脂、提高脂质代谢等功能活

性[3−6]。酶解法制备木葡寡糖具有高效可控、绿色环

保、操作简单等优点，是木葡寡糖最主要的生产方

法。然而，由于木葡聚糖单糖组成丰富，含有较多支

链[7]，酶法制备的木葡寡糖主要为高聚合度组分（DP
7~9），而低聚合度组分（DP 2~4）含量很少。因此，开

发含有低聚合度组分（DP 2~4）的木葡寡糖能够丰富

其功能活性，有助于木葡寡糖的应用与推广。

木葡聚糖酶（EC 3.2.1.151）能够水解由 β-葡萄

糖残基通过 β-1,4糖苷键连接的木葡聚糖主链，是木

葡聚糖水解过程中最重要的酶，分属糖苷水解酶

（glycoside  hydrolase，GH）5、9、12、16、44、45和

74家族。利用基因工程菌对木葡聚糖酶进行异源表

达是当前研究热点之一。日本纤维弧菌、污染叉丝

孔菌和土曲霉等多种微生物来源的木葡聚糖酶在大

肠杆菌、毕赤酵母、构巢曲霉等异源宿主中成功表

达 [8−10]。其中，米黑根毛霉来源的木葡聚糖酶

RmXEG12A在毕赤酵母中表达水平达 25700 U/mL，
是目前木葡聚糖酶的最高表达水平[3]。木葡聚糖酶

已广泛应用于生物炼制、饲料加工和木葡寡糖生产

等领域[11−13]。目前，用于制备木葡寡糖的木葡聚糖酶

多数来源于 GH12家族，如米黑根毛霉来源的木葡

聚糖酶 RmXEG12A[3]、意大利青霉菌来源的木葡聚

糖酶 PiGH12A[14] 和雪白曲霉来源的木葡聚糖酶

XegA[15]。该家族木葡聚糖酶主要水解未被取代的

β-葡萄糖（G）处的糖苷键，得到聚合度为 7~9的木葡

寡糖。与 GH12家族不同，一些 GH74家族木葡聚

糖酶能够水解含有 α-1,6-木糖取代基的 β-葡萄糖

（X）处的糖苷键，产生聚合度更低（DP 2~4）的寡糖[16]，

是更具潜力的木葡寡糖制备酶种。然而，目前关于

GH74家族木葡聚糖酶的研究多集中于它们的分子

结构和酶学性质，其应用研究尚不充分。

苹果渣是苹果汁生产的主要副产物，全球每年

产量超 2000万吨[17]。苹果渣中含有丰富的木葡聚

糖，是制备木葡寡糖的潜在底物[18]。然而，苹果渣中

的木葡聚糖与纤维素和木质素通过氢键和共价键相

连形成木质纤维素，难以直接水解[19]，开发合适的预

处理和水解方法对水解苹果渣制备木葡寡糖十分重

要。低共熔溶剂（deep eutectic solvents，DESs）可以

破坏木质素、纤维素与半纤维素之间的氢键，使生物

质组织结构变得疏松[20]，已成为生物质预处理的重要

方法之一。利用天然低共熔溶剂（氯化胆碱/甘油、氯

化胆碱/乳酸和碳酸钾/甘油）可以有效去除苹果渣中

的果胶[21]。目前，利用低共熔溶剂处理苹果渣制备木

葡寡糖的文献报道较少。

北风类芽孢杆菌（Paenibacillus borealis）是一种

具有固氮作用的革兰氏阳性菌，能产生多种水解酶，

分解酪蛋白、羟甲基纤维素、甲壳素、果胶和蛋黄卵

磷脂等[22]。本研究将北风类芽孢杆菌（Paenibacillus
borealis） 来 源 的 GH74家 族 木 葡 聚 糖 酶 基 因

（PbXEG74B）在大肠杆菌（Escherichia  coli）BL21
（DE3）中异源表达，对该酶的酶学性质和水解特性进

行系统研究，并利用该酶水解 DESs预处理的苹果渣

制备木葡寡糖，旨在提供一种能够用于制备木葡寡糖

的新型木葡聚糖酶，为苹果渣的高值化利用提供良好

的理论基础和实践依据。 

1　材料与方法 

1.1　材料与仪器

大肠杆菌 BL21（DE3）感受态　北京全式金生

物技术有限公司；木葡聚糖　爱尔兰 Megazyme公
司；纤维二糖（G2）、纤维三糖（G3）、纤维四糖（G4）　

阿拉丁试剂（上海）有限公司；木葡七糖（XXXG）、木

葡九糖（XLLG，在 X基础上以 β-1,2糖苷键在木糖

残基上连接一个 D-半乳糖残基为 L）　瑞士 Biosynth
公司；聚合度 7~9木葡寡糖（HPLC≥90%）　实验室

自制[3]；苹果渣（苹果榨汁后的残渣烘干至恒重，木葡

聚糖含量 10%，w/w）　中国汇源果汁集团有限公司；

其他试剂若无特殊说明均为分析纯。

TU-1901紫外-可见分光光度计　北京普析通用

仪器设备有限责任公司；HZQ-X100恒温双层振荡培

养箱　江苏太仓实验设备厂；JY92-II超声波细胞粉

碎机　宁波新芝生物科技股份有限公司；GL-20B高

速冷冻离心机　上海安亭科学仪器厂；ÄKTA蛋白

纯化系统　美国 GE Healthcare公司；LEO 1530 VP
型扫描电子显微镜　德国 LEO公司；Dionex ICS-
5000+型离子色谱仪、Dionex Carbopac PA200　美
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国 Thermo  Fisher科技公司；MALDI-TOF、Q-TOF
质谱仪（Ultraflextreme）　德国 Bruker公司；1260
Infinity型高效液相色谱仪　美国 Agilent公司。 

1.2　实验方法 

1.2.1   木葡聚糖酶（PbXEG74B）序列和结构分析　

在 GenBank数据库中发掘了一个北风类芽孢杆菌来

源的假想蛋白（No.OMD45931.1），预测为木葡聚糖

酶，命名为 PbXEG74B。利用在线软件 ExPASy
ProtParam（http://web.expasy.org/protparam/）预测蛋

白质的分子量和等电点，利用 BLAST工具（https://
blast.ncbi.nlm.nih.gov/Blast.cgi）进行序列同源性比

对，使用 DNAMAN进行多序列比对分析并绘图。使

用 AlphaFold2预测 PbXEG74B结构[23]，PbXEG74B
蛋 白 与 Paenibacillus  odorifer 来 源 木 葡 聚 糖 酶

PoGH74（PDB:6MGL）的催化模块进行结构比对，模

型使用 PyMOL 2.3.1（https://pymol.org/）进行可视化。 

1.2.2   木 葡 聚 糖 酶 （ PbXEG74B） 的 表 达 　 将

GenBank数据库中来源于北风类芽孢杆菌的木葡聚

糖酶基因（GenBank：No.MPTB01000023.1  96400~
99684）序列委托擎科公司合成至 pET-28a（+）载体，

得到重组质粒 pET-28a-PbXEG74B，热激转化至大

肠杆菌 BL21（DE3）感受态细胞中，平板涂布（含

50 μg/mL卡那霉素），挑取正常生长的阳性转化子，

测序无误后获得重组菌株。将重组菌株接种于

10 mL LB液体培养基（含 50 μg/mL卡那霉素）中，

于 37 ℃、200 r/min培养 12 h左右，作为种子液。将

种子液以体积分数 1%接种量转接至 200 mL LB液

体培养基（含 50  μg/mL卡那霉素）中，于 37 ℃、

200 r/min培养，当培养液 OD600 达 0.6~0.8左右时，

添加终浓度为 1 mmol/L的异丙基-β-D-硫代半乳糖

苷（IPTG），于 16 ℃ 培养 16 h。离心（10000 r/min、
10 min）收集菌体，并用缓冲液 A（20 mmol/L Tris-
HCl，pH8.0，含有 500  mmol/L  NaCl和 20  mmol/L
咪唑）重悬菌体。置于冰水浴中超声破碎，离心

（10000 r/min、10 min、4 ℃）收集上清液（即粗酶液）。 

1.2.3   木葡聚糖酶（PbXEG74B）的纯化　利用 Ni-
NTA亲和层析柱（1.0 cm×10.0 cm）对木葡聚糖酶进

行纯化。用缓冲液 A平衡亲和层析柱，粗酶液以

0.5  mL/min的流速上样 ，分别用缓冲液 A和 B
（20 mmol/L Tris-HCl，pH8.0，含有 500 mmol/L NaCl
和 50  mmol/L咪唑）洗脱未结合蛋白与杂蛋白，

再用缓冲液 C（20  mmol/L  Tris-HCl，pH8.0，含有

500 mmol/L NaCl和 200 mmol/L咪唑）洗脱目的蛋

白。洗脱过程在ÄKTA蛋白纯化系统上进行，流速

为 1.0 mL/min。收集有酶活组分于 20 mmol/L磷酸

缓冲液（pH7.0）中 4 ℃ 透析（截留分子量 12000 Da）
过夜，用十二烷基硫酸钠聚丙烯酰胺凝胶电泳（SDS-
PAGE）分析蛋白纯度。 

1.2.4   木葡聚糖酶 PbXEG74B的酶活力和蛋白含量

测定　木葡聚糖酶酶活力测定采用 3,5-二硝基水杨

酸（DNS）法[24]：在 150 µL 0.3%（w/v）的木葡聚糖溶

液（50 mmol/L乙酸缓冲液，pH5.5）中加入 50 µL适

当稀释的酶液，55 ℃ 反应 10 min后，加入 200 µL
DNS溶液，沸水浴 15 min后加入 200 µL饱和酒石

酸钾钠，冷却至室温后于 OD540 测定吸光度值，以葡

萄糖作为标准品计算所产生的还原糖量。木葡聚糖

酶酶活力定义：在以上反应条件下每分钟生成

1 μmol还原糖（以葡萄糖计）所需要的酶量为 1个酶

活力单位（U）。蛋白含量测定：蛋白含量测定参照

Classics等[25] 的方法，以牛血清白蛋白（BSA）为标准

蛋白质（y=2.67x−0.16，R2=0.9992，x为 740 nm处吸

光度，y为蛋白浓度 mg/mL）。 

1.2.5   木葡聚糖酶（PbXEG74B）的酶学性质　最适

pH的测定：用不同 pH的缓冲液（50  mmol/L）在
55 ℃ 条件下按照 1.2.4中方法测定酶活力，以最大

值为 100%，分别计算各 pH下的相对酶活力。所用

的缓冲液体系及其 pH范围为：柠檬酸（Citrate）
（pH3.0~4.5）、乙酸（Acetate）（pH4.0~6.0）、2-（N-吗
啉代）乙磺酸（MES）（pH5.0~6.5）、3-吗啉丙磺酸

（MOPS）（pH 6.0~8.0）、三（羟甲基）氨基甲烷盐酸盐

（Tris-HCl）（pH7.0~9.0）和 2-（环己胺基）乙磺酸

（CHES）（pH8.0~10.0）。
pH稳定性的测定：分别用不同 pH的缓冲液

（ 50  mmol/L）稀释酶液 （稀释后蛋白浓度大于

1 mg/mL），于 35 ℃ 下保温 30 min，立即冰水浴冷

却 30 min，按照 1.2.4中方法测定酶活力，以未经处

理的酶液为 100%，分别计算各 pH处理后的相对酶

活力。

最适温度的测定：在不同温度（30、35、40、45、
50、55、60、65、70 ℃）下按照 1.2.4中方法测定木葡

聚糖酶酶活力，以最高酶活力为 100%。

温度稳定性的测定：将酶液用乙酸缓冲液

（50  mmol/L，pH5.5）稀释（稀释后蛋白浓度大于

1 mg/mL），于不同温度（30、35、40、45、50、55、60、
65、70 ℃）中保温 30 min，立即冰水浴冷却 30 min，
按照 1.2.4中方法测定酶活力，以未经处理的酶液为

100%，分别计算各温度处理后的相对酶活力。

底物特异性的测定：以不同种类的多糖为底物，

按照标准方法测定木葡聚糖酶酶活力，以 PbXEG74B
对木葡聚糖的酶活力为 100%，分别计算木葡聚糖酶

对各种底物的比酶活力。底物包括木葡聚糖、大麦

葡聚糖、地衣多糖、昆布多糖、羧甲基纤维素钠

（CMC-Na）、普鲁兰多糖、微晶纤维素、壳聚糖、桦

树木聚糖、槐豆胶、可溶性淀粉等。 

1.2.6   木葡聚糖酶（PbXEG74B）的水解特性　用乙

酸缓冲液（50 mmol/L，pH5.5）配制 1%（w/v）的木葡

聚糖溶液，添加 5 U/mL的 PbXEG74B，在 35 ℃ 下

水解 12 h，于不同时间点（0、15、30 min、1、2、4、8、
12 h）取样，样品于沸水浴中灭酶 5 min。用乙酸缓冲

液（50  mmol/L，pH5.5）配制 1%（w/v）的木葡七糖
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（XXXG）和木葡九糖（XLLG）溶液，添加 5 U/mL的

PbXEG74B，在 35 ℃ 下水解 8 h，样品于沸水浴中灭

酶 5  min。薄层层析 （TLC）检测条件 ：样品于

10000×g离心 3 min，吸取上清液点样于硅胶板上，

硅胶板置于展层剂中展层两次，用显色剂完全浸润硅

胶板后吹干，烘烤至显色。展层剂为正丁醇:乙

酸:水=2:1:1，显色剂为甲醇:硫酸=95:5。标品为葡

萄糖、G2、G3、G4 和聚合度 7~9木葡寡糖。 

1.2.7   DESs预处理苹果渣与扫描电镜（ scanning

electron microscope，SEM）分析　氯化胆碱与甘油摩

尔比 1:4混合，于 80 ℃ 水浴搅拌至透明的均相溶

液，得到 DESs。苹果渣与 DESs质量比 1:7混合，

80 ℃ 水浴搅拌 24 h后，水洗离心（4 ℃、10000 r/min、
15 min）重复三次，收集沉淀 60 ℃ 烘干，过 40目筛，

得到 DESs预处理的苹果渣（处理组）。以纯水处理

的苹果渣为对照组。使用 SEM观察对照组和处理

组的苹果渣显微结构。利用双面胶将样品固定在圆

形铝板上，使用喷涂镀膜仪在样品表面镀金，测定时

加速电压为 5.00 kV。 

1.2.8   木葡聚糖酶（PbXEG74B）水解苹果渣生产木

葡寡糖　反应体系为 500 mL，底物（对照组和处理

组）浓度为 10%（w/v），缓冲体系为乙酸缓冲液

（50 mmol/L、pH5.5），PbXEG74B添加量为 200 U/g
底物，在 35 ℃、150 r/min条件下水解 12 h，水解过

程中于不同时间点（0、0.5、1、2、4、8、12 h）取样，沸

水浴灭酶 5 min，水解液经 10000×g离心 5 min，上
清液冷冻干燥后得到苹果渣木葡寡糖，室温贮存用于

后续分析。 

1.2.9   苹果渣木葡寡糖的组成分析　使用高效阴离

子交换色谱 -安培检测器（high  performance  anion
exchange  chromatography-pulsed  amperometric
detector，HPAEC-PAD）分析水解苹果渣产生木葡寡

糖的含量。流动相 A相：蒸馏水，流动相 B相：1 mol/L
NaOH，流动相 C相：1  mol/L乙酸钠。洗脱梯度：

0~5 min，10% B+3.5% C；5~12 mim，10% B+3.5%~
30%  C线 性 增 加 ； 12~12.1  min， 50%  B+50%  C；
12.1~13  min：B与 C线性恢复至 10%  B+3.5%  C；
13~17 min，10% B+3.5% C；流速为 1 mL/min，柱温

为 30 ℃。以葡萄糖、G2、G3、G4、XXXG、XLLG为

标准品。根据标准品的出峰时间对样品的聚合度进

行定性分析，根据峰面积-浓度标准曲线对样品中的

木葡寡糖进行定量分析。木葡寡糖得率计算公式为：

木葡寡糖得率(g/100 g苹果渣) =
A1

A2

式中：A1 为 100 g苹果渣经预处理和酶解后得

到的木葡寡糖质量，A2 为 100 g苹果渣。

苹果渣中木葡聚糖水解率计算公式为：

木葡聚糖水解率(%) =
B1

B2

×100

式中：B1、B2 分别为木葡寡糖和木葡聚糖含量。

使用电喷雾电离质谱法（electrospray ionization
mass spectrometry，ESI-MS）和基质辅助激光解吸电

离飞行时间质谱（matrix-assisted  laser  desorption/
ionization time of flight mass spectrometry，MALDI-
TOF）分析水解 8 h时样品组成。ESI-MS方法：气体

温度 450 ℃，干燥气 100 kPa，雾化气 1.5 L/min，ESI+

模式，电压 4000 V。MALDI-TOF方法：取 1 μL 8 h
的水解样品点在 MALDI靶上，并立即与 1 μL浓度

为 20 mg/mL 2,5-二羟基苯甲酸（溶剂为 50%（v/v）乙
腈）混合，待液滴干燥后用激光轰击。质谱扫描范围：

100~2500 m/z；采用正离子模式，电压 29 kV。结合

前期实验和质荷比对样品中的主要组分进行定性分

析[18]。 

1.3　数据处理

所有实验均重复 3次。数据间显著性分析通过

IBM SPSS Statistics 26.0软件采用单因素方差分析，

P<0.05表示数据具有显著差异。 

2　结果与分析 

2.1　PbXEG74B的序列与结构分析

PbXEG74B 基因全长为 3285 bp，编码 1094个

氨基酸。ExPASy分析表明该酶预测分子量和等电

点分别为 114.7 kDa和 5.0。将 PbXEG74B的氨基

酸序列与已报道 GH74家族木葡聚糖酶进行比对

（图 1），该酶与 Paenibacillus odorifer 来源的木葡聚

糖酶（GenBank：AIQ73809.1）相似度为 88.5%，与类

芽孢杆菌（Paenibacillus sp.）（GenBank：BAE44527.1）、
日本纤维弧菌 （ Cellvibrio  japonicus） （GenBank：
ACE84745.1）和黄单胞杆菌（Xanthomonas  campe-
stris）（GenBank：AAM41043.1）来源的木葡聚糖酶

序列相似度分别为 64.9%、57.0%和 36.2%。因此，

该酶是一个新型 GH74家族木葡聚糖酶。利用

AlphaFold2对该酶分子结构进行预测，PbXEG74B
中含有两个 7叶 β 螺旋结构域，两者形成一个大催

化凹槽可以容纳底物，催化残基 Asp38和 Asp445位

于催化凹槽的中心，为典型的 GH74家族木葡聚糖

酶结构（图 2）。 

2.2　PbXEG74B的纯化与酶学性质

PbXEG74B成功在大肠杆菌 BL21（DE3）中异

源表达，目的蛋白分泌在胞内，表达量为 18.0 U/mL，
粗酶液经 Ni-NTA亲和层析柱一步纯化得到电泳级

纯酶，分子量为 115 kDa，与预测分子量一致（图 3），
酶活力回收率为 51.4%，纯化倍数为 2.2。PbXEG74B
的最适 pH为 5.5（图 4a），在 pH4.5~8.5范围内保持

稳定（图 4b）；该酶的最适温度为 55 ℃（图 4c），
40 ℃ 处理 30 min仍保留 80%以上酶活力（图 4d）。
PbXEG74B对木葡聚糖的比酶活力最高，为 68.4 U/
mg，对其他底物均没有表现出活力。

PbXEG74B的分子量与大丽轮枝菌（110 kDa）
和里氏木霉（105 kDa）来源的 GH74家族木葡聚糖

酶较为相近[26−27]，高于米黑根毛霉（21.9 kDa）和鹿皮
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曲霉（24.5 kDa）来源的 GH12家族木葡聚糖酶[3,28]。

这主要是由于 GH74家族木葡聚糖酶含有碳水化合

物结合模块（carbohydrate binding module，CBM）导

致分子量偏大。PbXEG74B的最适 pH低于大部分

GH74家族的木葡聚糖酶，如高温单孢菌（pH7.0）[29]、

琼斯氏菌（pH7.5~9.0）[30] 和类芽孢杆菌（pH6.0~6.5）[31]

来源的木葡聚糖酶 ，但高于 Caldicellulosiruptor

kronotskyensis 来 源 的 木 葡 聚 糖 酶 （ pH4.5） [32]。

PbXEG74B具有良好的 pH稳定性，优于米黑根毛

霉来源的 RmXEG12B（pH5.0~6.5）和阿维链霉菌来

源的 SaGH74B（pH6.0~6.5）[33−34]。PbXEG74B的最适

温度高于土曲霉来源的 Xeg5A（45 ℃）[35]，温度稳定
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图 1    木葡聚糖酶 PbXEG74B与其他来源木葡聚糖酶序列比对

Fig.1    Multiple sequences alignment of PbXEG74B and other xyloglucanases
注：相同的残基在红色背景上显示为白色，保守残基在白色背景上显示为红色，两个保守的催化残基用红色五角星标记。
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性与 Paenibacillus odorifer 来源的 PoGH74相似[36]。

PbXEG74B的比酶活力高于大部分 GH74家族木葡

聚糖酶 ，如嗜热毁丝菌 （ 22.6  U/mg）和烟曲霉

（11.9 U/mg）来源的木葡聚糖酶[37−38]。PbXEG74B

良好的酶学性质使其具有一定的工业适应性，有利于

从生物质中水解得到木葡寡糖。 

2.3　PbXEG74B的水解特性

PbXEG74B水解木葡聚糖过程如图 5所示，水

解初期产物以聚合度 8以上的组分为主，产生少量

三糖和四糖。随着水解时间的延长，聚合度高于

9的组分逐渐减少，聚合度为 2~4和 9的寡糖浓度逐

渐增加（图 5a）。以木葡七糖为底物时，XXXG完全

被水解为 X和 XG（图 5b）。以木葡九糖为底物时，

XLLG无法被水解（图 5c）。

PbXEG74B在水解初期就产生了低聚合度的木

葡寡糖，属于过程性内切酶。PbXEG74B不仅能够

水解木葡聚糖产生 XXXG、XXLG/XLXG（木葡八

糖）和 XLLG等高聚合度木葡寡糖，还能将 XXXG

进一步水解产生聚合度更低的寡糖。目前已报道的

GH12家族木葡聚糖酶仅能在 G处水解得到 XXXG
型的木葡寡糖，无法进一步产生聚合度 2~4的木葡

寡糖[39]。前期研究表明，木葡聚糖酶−1亚位点是影

响酶水解特性的关键位点[16]。PbXEG74B的−1亚

位点有 Gly444残基，能有效地识别 X和 G，因此该

酶能够水解 XXXG产生更低聚合度的寡糖。但

PbXEG74B无法水解 XLLG，这可能是由于双半乳

糖基化阻碍了底物与酶结合[36]。 

 

CBM3
Asp38 Asp445

CD X2

图 2    PbXEG74B与 PoGH74结构比对

Fig.2    Structural comparison between PbXEG74B and PoGH74
注：催化残基用红色标注；PbXEG74B与 PoGH74催化模块
（CD）用蓝色和粉色标注 ；碳水化合物结合模块 X2和
CBM3分别用紫色和黄色标注。
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图 3    木葡聚糖酶 PbXEG74B纯化前后电泳

Fig.3    SDS-PAGE of PbXEG74B before and after purification
注：M：高分子量标准蛋白；1：粗酶液；2：纯酶液。

 

(a)

4 5 6 7 8 9 10

100

80

60

40

20

0

相
对

酶
活

力
 (%

)

Citrate
Acetate
MES
MOPS
Tris-HCl
CHES

pH

100

80

60

40

20

0

相
对

酶
活

力
 (%

)

Citrate
Acetate
MES
MOPS
Tris-HCl
CHES

(b)

3 4 5 6 7 8 9 10 11
pH

100

80

60

40

20

0

相
对

酶
活

力
 (%

)
(c)

30 40 50 60 70
温度 (℃)

100

80

60

40

20

0

相
对

酶
活

力
 (%

)

30 40 50 60 70
温度 (℃)

(d)

图 4    PbXEG74B的最适 pH（a）、pH稳定性（b）、最适温度
（c）和温度稳定性（d）

Fig.4    Optimal pH (a), pH stability (b), optimal temperature (c)
and temperature stability (d) of PbXEG74B
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2.4　水解苹果渣制备木葡寡糖

DESs预处理前后苹果渣的微观结构如图 6所

示。未经处理的苹果渣颗粒表面较为平整，DESs处

理后的苹果渣表面变得粗糙、多孔。疏松多孔的结

构增加了 PbXEG74B与苹果渣中木葡聚糖的接触

面积。在最适水解条件（10%底物浓度，200 U/g加

酶量）下，PbXEG74B水解苹果渣产木葡寡糖的含

量随水解时间的延长逐渐增加，其中聚合度 2~4、

7~9和>9的组分含量增加最明显（图 7）。水解 8 h

后，聚合度 2~9木葡寡糖得率为 2.79 g/100 g苹果渣，

苹果渣中木葡聚糖的水解率达 27.9%。其中，聚合

度 2~4、5~6和 7~9的木葡寡糖的得率分别为 1.86、
0.32和 0.60 g/100 g苹果渣，占比分别为 67.0%、11.5%
和 21.5%。未预处理的苹果渣（对照组）水解 8 h后，

聚合度 2~9的木葡寡糖得率为 1.53 g/100 g苹果渣，

仅为预处理苹果渣的 55%（表 1）。
  

表 1    PbXEG74B水解苹果渣制备木葡寡糖得率
Table 1    Yield of XyGOs in enzymatic hydrolysis of pretreated

AP by PbXEG74B

水解时间（h）
不同聚合度寡糖得率（g/100 g苹果渣） 木葡寡糖总得率

（g/100 g苹果渣）DP 2~4 DP 5~6 DP 7~9

CK 0.94±0.02c 0.11±0.01d 0.48±0.06cd 1.53±0.09c

0.5 0.56±0.02e 0.07±0.01e 0.27±0.00f 0.90±0.00e

1 0.70±0.03d 0.13±0.02cd 0.37±0.03e 1.20±0.01d

2 0.95±0.01c 0.15±0.01c 0.44±0.02de 1.55±0.00c

4 1.26±0.02b 0.24±0.04b 0.54±0.02bc 2.05±0.02b

8 1.86±0.11a 0.32±0.02a 0.60±0.08ab 2.79±0.08a

12 1.86±0.04a 0.32±0.03a 0.66±0.03a 2.85±0.10a

注：同列字母不同表示差异显著（P<0.05）。
 

氯化胆碱/甘油体系是常用的 DESs，广泛应用于

半纤维素和木质素的提取、分离或去除。经 DESs
处理后，苹果渣的微观结构发生改变，致密的纤维结

构变得松动，生物质抗降解屏障受到破坏，暴露出的

木葡聚糖更易与 PbXEG74B结合并被降解。预处

理后，苹果渣木葡寡糖得率为 2.79 g/100 g苹果渣，

是对照组寡糖得率的 1.8倍，表明 DESs处理效果显

著。经 PbXEG74B水解后苹果渣中木葡聚糖水解

率为 27.9%，效果优于已报道的大部分木葡聚糖酶。

Wang等[40] 利用太瑞斯梭孢壳霉来源的 GH74家族

木葡聚糖酶水解 DESs预处理苹果渣，还原糖产量仅

为 1.4 g/100 g苹果渣。Grishutin等[27] 用三种不同

来源 GH74家族木葡聚糖酶水解木葡聚糖，水解率

均低于 27.9%。Shi等 [41] 利用米黑根毛霉来源的

RmXEG12A水解苹果渣，木葡聚糖水解率仅为 23.3%。

利用 PbXEG74B水解苹果渣制备的木葡寡糖中，聚
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图 5    木葡聚糖（a）、木葡七糖（b）和木葡九糖（c）PbXEG74B水解产物 TLC分析

Fig.5    TLC analysis of XyG (a) , XXXG (b) and XLLG (c) hydrolyzed by PbXEG74B
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图 6    未处理（a）和预处理（b）苹果渣的微观结构（2000×）
Fig.6    Microstructure of untreated (a) and pretreated (b)

AP (2000×)
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图 7    苹果渣木葡寡糖的组分

Fig.7    Composition of AP XyGOs
注：CK：未预处理的苹果渣水解 8 h；G：葡萄糖；G2：纤维二
糖；G3：纤维三糖、G4：纤维四糖；XXXG：木葡七糖；XLLG：木
葡九糖。
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合度 2~4木葡寡糖含量明显高于聚合度 7~9的木葡

寡糖含量，这是由于木葡聚糖被 PbXEG74B水解为

高聚合度木葡寡糖后，部分高聚合度木葡寡糖继续被

水解为低聚合度的木葡寡糖。而米黑根毛霉来源的

GH12家族木葡聚糖酶 RmXEG12B仅能将木葡聚

糖水解为聚合度 7~10的高聚合度木葡寡糖[33]。 

2.5　木葡寡糖成分分析

根据 ESI-MS（图 8a）和 MALDI-TOF（图 8b）质
谱结果，并结合 Chen等[18] 的实验结果，分析质荷比

300~1700范围的木葡寡糖。木葡寡糖中低聚合度寡

糖有 [X+Na]+（m/z  335.0）、[XG+Na]+（m/z  497.0）、
[XX+Na]+（m/z 629.0）、[LG+K]+（m/z 659.1）、[XXG/
LX+Na]+（m/z 791.0）和 [FG+Na]+（m/z 805.2），高聚

合度寡糖有 [XXGG/LL/LXG+Na]+（m/z  953.6） 、

[XFG+Na]+（m/z  1099.3）、 [XLXG/XXLG+K]+（m/z
1263.4）。此外，部分寡糖以乙酰化的形式存在，如

[FG+Ac+Na]+（ m/z  847.2） 、 [XFG+Ac+Na]+  （ m/z
1141.3）、[LFG+Ac+Na]+（m/z 1303.3）、[XFXG/XXFG+
Ac+Na]+（m/z 1435.4）、[XLLG+Ac+Na/XFXG/XXFG
+Ac+K]+（m/z  1451.5）和 [XFXG/XXFG+2Ac+Na]+

（m/z 1477.5）（在 L基础上以 α-1,2糖苷键在半乳糖

残基上连接一个 L-岩藻糖残基为 F）。可见，利用

PbXEG74B制备得到的木葡寡糖中至少含有 15种

木葡寡糖，而 RmXEG12B水解苹果渣所得寡糖仅

有XXXG、XXLG/XLXG、XXFG/XFXG和XLFG[33]。
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图 8    苹果渣木葡寡糖的 ESI（a）和MALDI-TOF（b）分析
Fig.8    ESI (a) and MALDI-TOF (b) analysis of AP XyGOs

  

3　结论
本研究发掘了一个新型 GH74家族木葡聚糖酶

PbXEG74B，该酶在大肠杆菌 BL21（DE3）中成功表

达。PbXEG74B具有良好的酶学性质和水解特性，

水解木葡聚糖能够产生聚合度为 2~9的木葡寡糖。

进一步将其应用于水解 DESs预处理后的苹果渣制

备苹果渣木葡寡糖，产物中聚合度 2~4的木葡寡糖

占比达 67.0%，实现了低聚合度木葡寡糖的酶法制

备。综上，利用 PbXEG74B水解耦合 DESs预处理

可以实现苹果渣中木葡聚糖的酶法降解，将其转化为

高附加值的木葡寡糖，为苹果渣的高值化利用和低聚

合度木葡寡糖的制备提供了理论基础和实践依据。
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