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Identification and Enzymatic Properties of the Key D-Lactate
Dehydrogenase in Leuconostoc pseudomesenteroides HL.64

LI Peng’, LIU Lan, WANG Tong, HUANG Xiaoping

(Institution of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China)

Abstract: D-Lactic acid was produced with high purity by Leuconostoc pseudomesenteroides HL64. However, the key
lactate dehydrogenase responsible for this biosynthesis remained undetermined. To address this, a systematic approach was
implemented: Complete genome sequencing was conducted to annotate potential dehydrogenase genes, semiquantitative
PCR was utilized to prioritize target candidates, and the putative D-lactate dehydrogenase gene was cloned in vitro,
expressed heterologously, and purified for biochemical analysis. Enzymatic properties including substrate affinity and
thermostability were characterized, establishing a foundation for subsequent strain engineering aimed at metabolic pathway
optimization. The catalytic properties of LDH2 (OYT93 08575) were systematically characterized through biochemical
assays. It was identified as encoding the key D-lactate dehydrogenase, with optimal reaction conditions determined to be
pH8.0 and 30 “C. Kinetic analysis revealed that the K values were calculated as 0.578 mmol/L for pyruvate and
0.275 mmol/L for NADH. Notably, catalytic constant (K,,) of 45.04 s™" and catalytic efficiency (K/K,,) of 7.88x
10* L/(mol-s) were observed for pyruvate, respectively, suggesting superior substrate affinity and turnover capacity.
Substrate specificity profiling demonstrated that oxaloacetic acid and phenylpyruvate were also catalytically converted by
this enzyme, though with lower efficiency compared to the primary substrate.
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FLIR (lactic acid, LA) & H- A = A HLR TSELN, A2 B PCR 5 F B E T D-FLR G

Z—, TR HTES. BT, BRRLIR AL
T D-FLAR K L-ZLIRWIFN [R5 5444, B Ak H g
AR L-ZLI2, {45 L-ZLEe 7 2 hh A Tl s A B
e AT, I H L-FLIR AT 58 F O A& Ay Dy s T
KB HIE, AT D-FLIR, fk W & lrdr= L-2LIR
PAAHDCH AR Bz . SR, — 5T, D-FLIR 2 Fh
FHACE G BRI, 55—J71H, SessliBs D-FL
1 FE IR FLIR A AL 0 i I & N FH , 32304 3R %) D-
FLIR T R 2RI it

SGIBUR A=t AN 2 WA T AR/ Yod L e
TTLAA LR . SR, AR b4 G U & S T
125, AR R A LR B A 7 i AR T 5 L I
R SAF IR N B RAS AR A B, s & sz Lt
HE el R i) EBaa M, FRefs R nT
KRR KA A WA LR B9 2 2 FQRH P R Sefk R
FLER A, HATC A LR =400 11 A~ ES. 35
HZAE LA Z2 14 7 D-FLIR 10 2% T R AR 60 i 188 FC LA
PR FZEAZLAT R

FLIE T P FLER & A4 AU SR HE LR L R
fitf (lactate dehydrogenase, LDH), MR ¥E#EILF =M 094~
W, LDH 4 D-LDH( EC 1.1.1.28) &% L-LDH( EC
1.1.1.27) W, S BIE A0 PN iR R 0338 5 7= A= D-ZLIR
o L-FLFR . FLFR AL 418 B AL &% £ LDH Znh
FEE, gk, — i HA — el LDH (e A A0k
ik H B AL IE M, Wiz BB SR BRI ATCC8293 3t
2L 7 4~ LDH Zmfid Ik K, 4R ot & 3 2 AT
LEUM 1756, LEUM 2043 f1 LEUM_0445 — 4~
LDH REASAT AR, 11 U5 F 24 0% ZFE A ZLAT PR Y
=~ LDH, A LDHI1 BBUEAT R AE AL PN BRI R A S5 =
A LIRS, SR BLG  & AE AE AT B R BR B RO
AT, 2T FLER B b LDH mlE# e R it ot i £,
sk AP AT BRRFLAFEE Y LR 2L
PR PR LCRLAF B U A ICELFF B TS i EaH Hp 2k
PR 2 HE 2RI RLAT Y Ak is B R BR AT A5 gty
) LDH P RfEeA 0 O e

ZRIN, R A BH ER ER P SRR Y LDH AR oA X
/b, 3 HARFESRYE R LDH e A 45 07 A EAE e
RS T TAIES, ARUREH AR LA & el
Sy B T —RFLER B, S TR, 4 M B I
A FRERFE HL64, KMo R BRI RAE A B
24l 99.8% LU L) D-FLAE; IF H & BE 24 h ] LAy=
A= 62.18 g/L 1% D-FLIR, il i #bFufi I, K BF 72 h
J&, D-ZLRRp =t 3 T 78.74 /LU, ARERIZ
PR D-ZLER -G i 1, Je £t D-FLIR & plii i
T FCa4pedm A T AL 2RO, SR, H BT ANTE 2B 1%
WAk 757 D-FLIR & R B FLER IR Al . KT
Ik, AT LA R gl D-2LIR A B B I 52
ERE HL64 MAFFEXt 42, i 4L PR e, UM
7 BB ER BR TAT HL 64 TATRRIE R 4H rh i 7E ) LDH 4w

JR AR LDH FE [, 78 E. coli 11X LDH it K #kf7
ik Malifh, 5T e LDH MY BEAIE R, 45
NFAG IR pH K HBh 14580,
1 MRIEREE%E
1.1 MRS
AT FEPL T A TR AR RN BOR, R4S B L3R 15 DL-
FLERARME S, 25 Sigma 4N F); BIERE . AR, BE
BIMy . IR ek . BElEHE L S N - B-D- A L
FLBEF PTG A A TAY TR By
BRZSF]; AR EL DNA G0 . Josg salbeilil . i
ELRCERTR & . Bk R ORI & . RNA 70 &
B L MEREAE MR B A BR S R 5 e 2k PRl 20
DNA #2807 & RARAERH (AEs) A BRA 7
TATRTR . S 2R . PRI AR . ol 1% . NADH
VBT RL T AR AR A R A F] S

R AT R RN ER

Strains and plasmids used in this study
FE[R B A

F-, merAA(mrr-hsd RMS-merBC), ¢80, lacZAM15,
Alac X 74, recAl,araA139,A(ara-leu) 7697, galU, g
alK, rps, (Strr) endA1, nupG/Novagene

F-, ompT, gal, dem, lon, hsdSB(rB— mB-),
(DE3)/Novagene

Table 1

TR/ UL

EAIREH] AR
HL64

KIAFFETOP10

KIFF#BL21(DE3)

pACYCDuet-1 P15A ori, lacl, cat, two MCSs/Novagene
pACYCldhl LDH 1A BTk AR 2
pACYCldh2 LDH2 A TR/ AT I b
pACYCldh3 LDH3 3k R A BTG 12

HE-120 /KSFHL KA . VE-180 T B HL KX . 5200
Multi B84 ¥ R EERHE A BR 2 7] ; TI00PCR
% ZE[E Bio-Rad A Fl; ZWY-2102C FEK  _LHGEE
WM AR A B F] s SPX-250B-Z B34t I
RSO A RS Al BRI T 4T 5 D30 4t

15 = eppendorf 2 &l 5 €2695 1=y JE W AR (4 3% 4 .
2414 FRZERTIM A . 2489 EAMEMIAS  35E Waters
ANEIR
1.2 SKWHE
1.2.1 B3R5 RSB BBk HL64 HH MRS
Wi (R0 10 g/L | BERERY 10 g/L. AR 5 g/L.
KH,PO, 0.25 g/L. K,HPO, 0.25 g/L.. MgSO,-7H,O
0.4g/L . MnSO,-5H,00.02 g/L.. FeSO,-7H,00.02 g/L .
NaCl 0.02 g/L, pH6.8) 55 3%, 30 °C #% IR ¥R % 15 3%
16 ho Kz A1 BE AH G B AR LB 15 3% 3k (2& 1 iR
10 g/L. W8y 5 g/L. NaCl 5 g/L) 533, T 37 °C #%
IRIRZ 153 12 h ARPE AR P InAFA P2
1.2.2 Rz B B 2R B HL64 4 5L 4H e 91 I a2 %
FLRH R AN LR DNA $EBGRF &, #%
R H 5 TR 25 R BB S HH R BR A HL64 St
K20 DNA J5, >k FH — 1t illumina & =4, Nanopore
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M7 B2 AR AH &S A a7 7500 R B BH ER R B
HL64 4= 3L FEH 751, o Dl g Bl 57 RS 7 58
% o B FE, illumina M J¥ 3k A5 12941726 255 2%
reads, f#i F P32 T.H Unicycler (version: 0.5.0) X} —
AR 7 3RAG Y reads FEATLH %S, RS HL R 4 B 2009,
H K, Nanopore M| J7 3K 15 222881 45 F i K N
6811.5 bp 1Y) reads, F-FI FHIZE e T FE R 4H B 2R34T
P, BRI EA SR BRES HL64 197838 SLHZH
FE3, 354238 2 NCBI GenBank $0HRZE, 4 2
CP113947. A Prokka (version: 1.14.6) TRI{E iz
AESHA BB BR B HL64 43k PRI 241 A4 g fich 226 [ 20, Jf3m 2ot
5 nr FESEA T EEXS T st 3L L EE . FIH CDD %%
o2, XF T A AR L HEAT B & [RR % 4325 (clusters
orthologous group, COG 43 & ) B, 43 51 F| H
RNAmmer?? X tRNAScan-SE?!iH 5l rRNA 2 2\
T tRNA FHAH

1.2.3 FEH PCR DL MRS 53, Sy Bl 4e
20. 24 F 48 h M iz B BH B 2R P& HL64 353524, Fl
FH RNA 38 32050] &5, #% B Ut B 3 4E, i3 2
RNA, /] DNase [ T 37 °C 403 RNA 5 min, JH1bFR
By 3k N 40 DNA J&, il A a6 5% 5% 3 57 & & Ak
cDNA. 333t ldnhl | 1dh2 B ldh3 WER SRS 1)
ldhl-qF/R. Idh2-qF/R X Idh3-qF/R( & 2) , il i
gqPCR TR ¥ P 3G 23R (FEHIAE 90%~110% 2
[P, L cDNA H 4R, PL Idhi-qF/R. ldh2-qF/R
Ko 1dh3-qF/R N 5181, PCR Y"1 Idhl. 1dh2 }% 1dh3
Y] cDNA( & PCR 5514~ 94 °C 5 min, (94 C
30 s-55 °C 30 s-72 °C 10 s)f&E¥f 25 ¥X, 72 °C 5 min),
2% BRUIRAHEE IS HL IR AG I PCR P24, a8 ok ] W &5
A 5 55 43 AT R — 2 B W ldnl | 1dh2 3% 1dh3 1)
mRNA /K25,

2 ARG
Table 2 Primers used in this study

519 FFo1(5°-3")
ldh1-qF ACTCGTCAATGCCTCTCGTG
ldh1-qR ATGCGCTCATCTGCTATCCC
ldh2-qF GTTGGGCACCAACAATTGGG
Idh2-qR CGCATACAATTCGTCCAGCG
ldh3-qF CGTGGATCGTGCTAGTGGTT
ldh3-qR TGGTGAGTAAGCCGCAACAT
IdhIF tcatcaccacagecaggatccgATGACTAGTGTTCGAAA
TGATGAAGAA

ldhIR  gccgagetegaattcggatcc TTATATTTCATGTGTTGAAGTGGCG
Idh2F  tcatcaccacagccaggatccgATGAAGATTTTTGCTTACGGTATTCG
ldh2R  gccgagetegaattcggatccTTAATATTTAACTGCAATAGCTGGCG
Idh3F tcatcaccacagccaggatccgATGAAAATTTTAATGTATAACGCCGT
ldh3R gecgagcetcgaattcggatcc TCATCTCAAAATTTCATTTTCGGT

1.2.4 LDH idZFEiRakMAmtgs DR BRI 2 ek
B HL64 3 K 2H M Bib , 533 LA IdhIF/R. [dh2F/R
e 1dn3F/R R5148) (3 2), 1 D-ZL0R N S B 2m 7
JLH Idhl | 1dh2 T 1dh3, F)FHIG4E ve e a0 Sofe L
YR 2 pACYCDuet-1 [ BamHI 37 5, 245 3K )51

B pACYCldhl ., pACYCldh2 } pACYCldh3.

1.2.5 LDH W5 R Rk L alifb B 25 Rk
PACYCldhl. pACYCldh2 ¥ pACYCldh3 43 3541k,
% E. coli BL21(DE3)BAZASdififarhr, JATAHR 19 2=
5 W Bk E. coli BL21( DE3) /pACYCIldhl. E. coli
BL21( DE3) /pACYCldh2 X E. coli BL21( DE3) /
PACYCIldh3., A A, DL LDHI f %Rk 54k
M. E. coli BL21(DE3) /pACYCIldhl 3 F &
25 ng/mL BRI LB 1533k p, %578, 1% 2%
b2 B 25 pg/mL SR R M98 fF LB 15 5% 5L, 7E
200 r/min. 37 °C 538 EL & OD600 ik #] 0.5~0.6 =
M, fn A &3 B S 0.5 mmol/L B IPTG 55 &
LDHI1 W3Rik. W45 )5, 7£ 8000 r/min. 4 C B
L 5 min WWE AR . ] buffer A (25 mmol/L Tris-
HCI pH7.5, 150 mmol/L NaCl) & &k B4, il i 8 75
W B A, AR ZLM# T 12000 r/min., 4 °C 514 F
B0 45 min, PREE LW, BUCAMHEER . LT EAEEH
LDHI 7% His #7325, FIFH Ni-NTA A3 722 F12 47
afifk LDH1, # A buffer B(25 mmol/L Tris-HCI
pH7.5. 150 mmol/L NaCl. 50 mmol/L BRmM& ) 35 44
A, 48 J5 H buffer C(25 mmol/L Tris-HCI1 pH7.5,
150 mmol/L NaCl. 500 mmol/L BKME) ZelR, $545 5
PREEF LDH1, HZF)H buffer D(25 mmol/L Tris-
HCI pH7.5. 150 mmol/L NaCl. 5% Hi) i i #8 3k
Xt H 72 1 LDH1 #F17 I £k K e 4 . A SDS-
PAGE HUK&M HPREE A LDHI1 fyRiA 5465 .
1.2.6 LDH {5l Bl AT PIER R IS W A4
Z (500 ul): 0.5 ug M 1 . 0.5 mmol/L NADH,
10 mmol/L 7 il g %5 f# T- 0.1 mol/L i Tris-HCl
(pH8.0) . 1T NADH 2 5% % I, PN b ) LAAR H5
NADH 7£ 340 nm ¥ 1 &b 12 5 B 1) vk /b 3358 5 X
LDH AYE§TS o 1 min J8/> 1 pumol NADH AT 75 i K&
b1 A TE ) B, BIESTE J)=ANADH (pumol) /t
(min). 1 mg B & YRR J7 5002800 LiE 77,
B LE3E =R J1/E AR (mg), B A& EET
BCA J7 LI 72 (PRt £k 77 #2: y=0.8079x+0.6487,
R?>=0.9946) .

SR PR R0 S BORAE 35K LDH i ik
R (E. coli BL21(DE3)) U LR A 215
HAR 3% 25 fF: 24P D25, % 1 265 nm, (A%
8 SUMI-CHIRAL OA-5000(p4.6 mmx150 mm);
FE#R: 40 °C, PEEEE: 5 pL. FRi#E: 1.0 mL/min. #ish
#H: 1 mmol/L CuSO,.

1.2.7 JEEFI pH X LDH A{E A2 1588 W ik
BEH 30 °C, 43 HITEATE] pH £ vh i M 2 LDH [ i
W1, K Bl pH WG ) 2 SCR B s I, AH X i
Wi 71 100%. A [F] pH B9 2% vh % A9 Bic &l : pH3~5
(50 mmolVL ZPRENZZ M) . pH6~7(50 mmol/L
iR 22 v Wk ) . pH8~10(50 mmol/L Tris-HC1 2% w1 #% )
K pH11~13(50 mmol/L H & BRZE b ) ; & & pH
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2025 4F 6 A

M 8, 43 BITEAREIRJE (20~70 °C) HilE LDH ik
Wi 77, BSOS S B i SR N IR, AE ) R
F1°4 100%.
1.2.8 LDH2 XA [RUR Y 0BG 7 3l 77 24 5 £
A PEHCS PR R G5 F ARl R PR L o- TR R
1R N ZE PR B BRI 52 LDH2 XA [6] i 4 BTG /7, I
RiAA 2 [W] LDH2 A AP B R A8 TR ) AR 22 o I a2
LDH2 435X N BRNR & NADH Y3l J1 545 %55, SR
TEGCE IR (30 °C)FI pH(pHY) 454 k4T, TNERER
HePEEN 0.625, 1.25, 2.5, 5. 10 mmol/L(NADH ¢
>4 0.5 mmol/L), NADH #&J¥ & 0.0625., 0.125. 0.25,
0.5. 0.75. 1.0 mmol/L( N [l /&2 ¥k B & 10 mmol/
LHUel, 5z LDH2 By 3) J12#2500t, FIH GraphPad
Prism 9 By 4E £ P 0L & 53 7 3R A5 2K [C 7 #2 45 o¢
SR K, K Vo (B AN K=V /E. Fod E h
LDH2 BYHE
1.3 HELIE

AT H A ROV T B — AN, A Graph-
Pad Prism 9 AZbFHAHSCHE S
2 HBRESH
2.1 {REZFERBERTRE HL64 RIS EFEHER

152 i 5 HH B BR R HL64 19 L R 4H 45 — 4524
2.05 Mb BRI YL il e Bk, 35 I 2H i 3E AR B
fIE DL 3. YOt 2006 MEHEE H, Hp
1660 4 I HA I COG 4326 (E 1), HSHALD
M55 B ER Bk B —AE, HL64 J:FE 40 460 4 1~ rRNA
YT (16S-23S-5S), i 69 > tRNA A . 3t
TEF AR, 75 HL64 FEN2H PR B3] T =47
e85 D-FLIR A miAH & FL 1 it A Bl gm i 2L A, 53 5)
£ OYT93 01120, OYT93 08575 N OYT93 10335
(E 1) BN, OYT93 09405 5 OYT93 09400 435
gifih XylA 5 XylIB, [FIR}, HL64 3K 20 14 Zii i A M
¥z B XylP(OYT93 05960) M XylIT )[Rl E 14
(OYT93 01040), ] HL64 HAGAMEACIHEE 11, 5
BTHA Y A TS o2 A — %
2.2 FERBr S ESYmIDE F i RAK R R 4

S THfIN HL64 25 D-ZLER & I G FLER
WU, ABFFE 2 i PCR FBERIEA R ZLAR
AR mRNA K. ST IR, 55500 OYT_

0YT93_103352.0 0

<E OYT93 01120
- I!lllliiin;:‘g /] //
B W)/

OYT93 08575 o
Wyt
e

QIR
.

,l’-“}:‘\“\“ﬁ%
(TN
A I

L. pseudomesenteroides
HL64 (2.05 Mb)

@y N
N/ l&/gl‘?f'/fl]”ll.ml‘l_l\ﬁllﬂ\‘fﬂ-,_@\\\\\, L
"‘\__;“\'nl I "',»"

1.0
P BB ER R TR HL64 JE PRI 21 2 = VB FERY
D-FLIR M =l

Fig.1 Genome of Leuconostoc pseudomesenteroides HL64

encoded three putative D-lactate dehydrogenases (D-LDHs)
TE: 25— NI 81 ) : GC S, 55 —18l: GC & i, 2 = %
DU & {7 T IE 5 BE A (RNA K rRNA JE PR, 5 o8l ¥ 7 0
LDH #fty 3 P, 55 75 AL Rl 32T 1E 675 1 A () 1A, -3
17 COG 42k, Fe[H 4 R B FH7ELR T H proksee 211,

01120, OYT 08575 } OYT 10335 f4aR ldhl . Idh2
B 1dn3(El 1), a2 & PCR &R BN, Toisab 1]
P A= K B BY, Idh2 1 mRNA 7K ¥ 8] @ = T
Idhl X 1dh3(E 2(a)) o FHUR, ikl T FEZLR & B
R ldh F K225 . L =54 T RIS
JRCFLIR L R v, JC I LA A 2 B A 2 A Sk s YR s
Idh2 ") mRNA K - [F £ U] &b & T Idhl 1 Idh3
(E 2(b)), LA LEERFEHH, Idh2 1£ HL64 AR
B B K Sz P i i v (0 5% SRS 288 1 1dhl B 1dh3,
BN Idh2 W] Bedmfit D-FLIR G oG =i . bk,
ldhl. Idh2 J% Idh3 £ 5 AS [6) 14 8% 08 A4 45 5 57 a5,
(RBS), 4r 9l /2& GACTA. GGAGG M GGATA, i
RBS ( GGAGG) 1% HH 128 e 4R 20 % i =1 PY, & B
LDH2 19 #1524 % [RIAF 1t LDH1 M LDH3 15 -
e, BT LA AT A B E LDH21 7 I8 i 15 BH EB BR B
HL64 7 D-ZLIRI A o

%23 BN B ERTE HL64 A A FEARIE

Table 3 General features of L. pseudomesenteroides HL64 genome

FEIE L. pseudomesenteroides HL64 L. mesenteroides KNU-2 L. gelidum subsp. gasicomitatum KG16-1 L. suionicum DSM 20241
Yt fAA 5 (bp) 2050591 1973419 1965841 2026850
G+CH=(%) 39 37.9 36.9 37.6
FEH B SEHE B 2006 1957 1601 1997
rRNAFEI T H it 4 4 4 4
tRNAZE K B 69 71 67 72
iy ke 0 4 3 1
GenBank 5 (e {1k ) CP113947 CP089782 LN890331 CP015247
EZPCN ENTE [26] [27] [28]
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Fig.2 Transcription levels of Idh1, Idh2 and Idh3 compared
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LDH3 (~38 kDa) (] 3) . TZEMRSN N T, LIPS B R
MY, NADH % 7, il i3 /00 NADH 171 #E
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K3 Ni HRFZHr4ifk LDHs
Fig.3 Purification of LDHs by Ni column
affinity chromatography
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Fig.4 Reduction activity of different LDHs to pyruvate
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Fig.5 Lactic acid conformation in strain overexpressing LDH2
determined by HPLC
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R LDH2 J2 A A P R P A 7 AR il D-FLIRR, 3 ok
HPLC Kl 361k LDH2 K HG T 19 &% B =4 - L
FRIAG Y, Z55R UK 5(c) B, 78 IPTG %S Fid
2 LDH2 J&, et FiR B dknd 3 vhal LU 1) 5
bR bt D-FLER B A AH R4 B8 B a1 4 7~ 427 (21.5 min
Z2A7) (E 5(a) Bl 5(c)), FIWTiZ =k D-ZLAR. i
FEBIEXT IR, AEARTR] R B B A -0 RS 21254
B (8] 5(b)), 2B LDH2 A] LK PN i iR J5
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Fig.6 Effects of temperature and pH on the activity of LDH2
TE: (a) XS LDH2 15 PERIR2, (b)pH XF LDH2 i 4 (45
Wi, ns: 5 e TG VRO E 225, Him i YA 2
57:(P<0.05), ***; SiR mil PEAATERR i % 22 5+ (P<0.01)
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Fig.7 Reduction activity of LDH2 to other substracts
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NADH 225 .3 M 2254 3% (P<0.01)

LINERPZ AT NADH )i, £ LDH2 5l )R
A R IGE LDH2 X AR R A& NADH 1143 1242
K Ko M K /K, o LDH2 X P4 i i &% NADH
1 K,, 535124 0.578 mmol/L A 0.275 mmol/L, X P
B 1 1Y) Ko 22 KooK, 57 51 28 45.04 s7' J2 7.88%
10* L/(mol-s), X NADH #J K_,, & K_/K,, 575K
29.04 s7' f 11.45x10* L/(mol-s) (& 4), HEX LDH2
XTSRRI K /K, /N T 1 BB 5 2R T ATCC8293
B4 LDH1(LEUM1756) A& LDH2(LEUM2043), {H$%
T A ICFLAT A9 LDH, He Al 9 #LAT B B9 LDH /Y
K /K, = 1A%, 5 RU, Rin BRI S 2k HL64

K4 BRI Lod rhILRRIN SME LDH2 193h )12 241
Table 4 Kinetic parameters of LDH2 from L. pseudomesenteroides 1L64

B AT ER B T FEIRFUT I TEIFUAT B 1 RSP R PR AT T S BR T
ISR HHL64 LDH2 D-LDH D-LDH ATCC8293 D-LDH1 ATCC8293 D-LDH2
PIEER NADH PIEER P ERRR I ERER P ERRR
K, (mmol/L) 0.578+0.05 0.275 0.2 2.7 0.58 1.27
Ko (s7) 45.05+4.2 29.04 26.3 91.3 2900 421
(L/(mol's)) (7.88+1.48)x10* 11.45x10* 11x10* 3.4x10* 4.99%10° 33.1x10*

Sk B K [1s]

[15] (8] [16]
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K, HAA— 0 D-FLER A i 771 .
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A 30 Ak XU I H R R P HL64 4= SLHIZH
RN AE , HARBE] T =45 D-FLERG A Ay
D-ZL 2 Wi & B, Al FH 2F 2 & PCR # x¢ LDH2
(OYT93_08575) J&: 1157 D-FLIR & BL A S . LA
Az AP SR ER B HL64 LRI 4H AR, ettt 17 —
AW FE LDH g i 35t PR 19 2 41 38 38 3k R pACY-
Cldhl. pACYCldh2 ¥ pACYCldh3, 7 K #7 #T &
BL21(DE3) B S S iRk, il 4 Py B {44k
S, BE—HUESE LDH2 2B A7 AR AH BB BR B HL64
i 57 D-FLERG L ME —ZLIR I A . 5 HAhFLER
P D-LDH B9~ SR bk, LDH2 X PN R BR S 1Y
SRR AR S A FRFUT B LDH 322307, B 5k
TAEPIZLAT A LDH., #R100, LDH2 HY#erEdse 22,
AT BRI T He s i R IS LR v T o B T AL
PR A LR 4, LDH2 1A BAAHEAL IS DN AR
FeAb s v, (B TE PR RN . 2P ZF L ZLAF R b D-
LDHI1 (4 307 & FEERFEIE Tle 2745 Met J&, T3
HARAES DIERBR A0 75 E il S5 RS, WAL P B ER (4 16
PERZE TR . FEA AT B ITE LDH2 FARXS B 47
‘B, HI 308 DA Met TiAE Tle 323, AT BEIE S22 64
SRR 2L S BT LDH2 X 2 DS ER R (1 1%
T, PR, 38 O 2 AR AE M3081 7T BE G 12 12 &
LDH2 XN BRI LG . Befm, (IR R ek
PR HL64 LR 2H gt 5 AW iz SR D s & 1
XylP(OYT93_05960) . XylT(OYT93 01040). XylA
(OYT93_09405) X XylB(OYT93_09400), FHiZ
IR R HAREN W 1, Je2nT D24 iam et 3L 5
TR AR T B S R A I B FR ER B HL64 I FH AT LT
Y UR R LR B RE 1, MU R LIR e I AlAS o
ABSE L5 Ry e S B % IS B ER TR HL64 &
iz e D-FLERPE RS
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