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基于高光谱成像技术和近红外光谱技术的
金冠苹果货架期判别及其品质分析
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2.计量仪器与系统国家地方联合工程研究中心，河北保定 071002；
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4.中国农业大学食品科学与营养工程学院，北京 100083）

摘　要：为实现金冠苹果的货架期及可溶性固形物含量（SSC）和酸度（pH）的无损分析，利用高光谱成像系统

（400~1000 nm）和近红外（800~2500 nm）光谱仪分别采集了金冠苹果的六个不同货架期（采后 0、7、14、21、
28和 35  d）的光谱信息，采用了卷积平滑（Savitzky-Golay，SGS）、一阶导数平滑（Savitzky-Golay  First
Derivative，1D）、标准正态变换（Standard Normal Variate，SNV）和归一化（Area Normalize，Normalize）四种

预处理方法，利用竞争性自适应重加权采样算法（Competitive Adaptive Reweighted Sampling Aglorithm，CARS）
和无信息变量消除法（Uninformative Variable Elimination，UVE）提取特征波长，并建立了反向传播神经网络

（Back  Propagation  Neural  Network，BP）和最小二乘支持向量机（Least  Squares-Support  Vector  Machine，LS-
SVM）货架期分类模型。在对 SSC和 pH的预测中，采用灰度共生矩阵（Gray  Level  Cooccurrence  Matrix，
GLCM）提取金冠苹果高光谱图像中的 8种纹理特征，采用 CARS对预处理后的高光谱图像的光谱数据、高光谱

图像的光谱与纹理融合数据以及近红外光谱数据提取特征变量，建立偏最小二乘（Partial  Least  Squares
Regression，PLSR）和最小二乘支持向量机两种模型。结果表明，近红外光谱和高光谱成像技术均可实现对金冠

苹果货架期的判别，判别最优模型为基于高光谱图像的 1D+UVE+BP模型，判别准确率为 100%；对金冠苹果

SSC的定量预测中，基于近红外光谱的 1D+CARS+PLSR模型预测效果最好，预测集相关系数（Rp）和均方根误

差（Root Mean Square Error of Prediction Set，RMSEP）值分别为 0.9323和 0.4036；对金冠苹果的 pH定量预测

中，基于近红外光谱的 SNV+CARS+LS-SVM模型预测效果最好，Rp 和 RMSEP值分别为 0.8749和 0.0417，研究

结果为金冠苹果的无损检测提供了技术支持和依据。

关键词：近红外光谱技术，高光谱成像系统，苹果，货架期，定性判别，定量预测
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Abstract：In order to achieve non-destructive analysis of shelf life, soluble solid content (SSC) and pH of Golden Delicious
apples, the spectral information of six different shelf life (postharvest 0, 7, 14, 21, 28 and 35 d) of apple was collected by
hyperspectral  imaging  system  (400~1000  nm)  and  near-infrared  spectroscopy  (800~2500  nm),  respectively.  The
spectroscopy data was pro-processed by savitzky-golay (SGS), savitzky-golay first derivative (1D), standard normal variate
(SNV),  and area normalize (Normalize),  competitive adaptive reweighted sampling aglorithm (CARS) and uninformative
variable  elimination  (UVE)  were  used  to  extract  characteristic  wavelengths,  and  the  shelf-life  classification  models  were
established  by  back  propagation  neural  network  (BP)  and  least  squares  support  vector  machine  (LS-SVM).  In  order  to
predict  SSC  and  pH  of  apple,  gray  level  cooccurrence  matrix  (GLCM)  was  used  to  extract  8  texture  features  from  the
hyperspectral  images  of  apple.  Feature  variables  were  extracted  from  the  spectral  data  of  pre-processed  hyperspectral
images, spectral and texture fusion data of hyperspectral images, and near-infrared spectral data by CARS, and predictive
models  were  established by partial  least  squares  regression (PLSR) and LS-SVM. The results  showed that  both NIR and
hyperspectral  imaging  techniques  could  determine  the  shelf  life  of  Golden  Delicious  apples.  The  optimal  model  was
established by 1D+UVE+BP based on hyperspectral images, and the accuracy rate was 100%. The quantitative prediction
models  for  SSC  were  established  using  a  1D+CARS+PLSR  approach  based  on  near-infrared  spectroscopy,  which
demonstrated the most effective predictive performance. The correlation coefficient of the prediction set (Rp) and the root
mean  square  error  of  prediction  set  (RMSEP)  values  were  found  to  be  0.9323  and  0.4036,  respectively.  The
SNV+CARS+LS-SVM  model,  utilizing  near-infrared  spectroscopy,  demonstrated  the  most  effective  predictive
performance, with Rp and RMSEP values of 0.8749 and 0.0417, respectively. The findings of this research offer valuable
technical support and a foundational basis for the non-destructive testing of Golden Delicious apples.

Key  words： near  infrared  spectroscopy； hyperspectral  imaging  system； apple； shelf  life； qualitative  discrimination；

quantitative prediction

金冠苹果果面金黄、色泽鲜艳、外形美观，深受

消费者喜爱，然而金冠苹果不耐贮藏，常温货架期较

短，硬度和酸度快速下降[1]，导致果实的品质下降。

苹果的质地、酸度（pH）、可溶性固形物（SSC）等是直

接影响消费者购买决策的重要质量参数[2−3]。金冠苹

果在货架期内表面颜色变化并不明显，肉眼难以准确

判断其货架期和内在品质。因此，无损预测苹果所处

的货架期十分重要。传统的水果品质检测方法效率

低下、操作复杂且具有破坏性[4]。近年来，光谱技术

因其能够提供农产品质量的快速和非破坏性测量而

受到欢迎[5]。高光谱成像集成了机器视觉和光谱学，

能够从被检查的物体中同时获取空间和光谱信

息[6]。近红外光谱技术作为一种快速、无损的检测技

术广泛应用于食品的贮藏时间和质量检测研究[7]。

Guan等[7] 用近红外光谱法检测香榧籽粒贮藏时间，

成功区分不同贮藏时间的香榧籽粒，准确率达到了

97.33%。Weng等[8] 用高光谱成像技术对草莓贮藏

时间进行无损检测，区分不同贮藏时间的草莓，准确

率为 100%。Bobelyn等[9] 用近红外光谱预测苹果采

后品质，基于不同季节、产地、品种和贮藏条件的苹

果数据集，构建了近红外预测模型，预测 SSC的

RMSEP值在 0.6~0.8范围。Zeng等[10] 利用近红外

光谱预测苹果果肉的可溶性固形物含量，取得了较好

的预测结果，Rp 最高为 0.96。Li等[11] 利用高光谱成

像技术研究了樱桃果实不同成熟期的 SSC与 pH关

系，证明了通过近红外高光谱成像技术检测樱桃果实

的质量是可行的。Ma等[12] 利用可见光-近红外空间

分辨光谱快速无损地预测猕猴桃的硬度、可溶性固

形物含量和 pH。Xuan等[13] 利用可见光-近红外高

光谱成像技术测定秋葵采收成熟度及水分含量。上

述研究和现有金冠苹果光谱检测研究主要集中在单

一系统下的病害、损伤识别及 SSC等无损检

测[14−15]，但利用近红外光谱技术和高光谱成像技术同

时对金冠苹果货架期及品质进行预测鲜有报道。

高光谱成像技术将光谱信息与图像信息相结

合，能够获得每个像素点的光谱数据，可避免近红外

光谱技术点采集的平均化，且基于模型，可实现预测

指标的空间可视化反演。800~2500 nm波长范围的

近红外光谱包含更多的内部成分信息，通常比可见光

波段具有更好的预测性能，故本文选取了 800~
2500 nm的近红外光谱。尽管 1000~2500 nm范围

的高光谱图像同样具有相同的波段优势，但成本远高

于 400~1000 nm的高光谱相机。且苹果的外观特征

常常与内部指标（如 SSC和 pH）之间存在关联，基于

高光谱图像中提取的纹理特征也有助于内部指标的

预测。综合成本和技术特点，本文选取了 800~
2500 nm的近红外光谱技术和 400~1000 nm的高光

谱成像技术进行对比研究，探讨一种对于苹果品质指

标更有效且更具性价比的检测方法。

已有研究证实通过高光谱成像技术和近红外光

谱技术对苹果的 SSC和 pH的预测是可行的，并且

SSC和 pH是苹果质地的重要评价指标[16−17]。同时

SSC和 pH也是消费者购买后最直接的感官评价，所

以对 SSC和 pH进行无损测定是非常有必要的[18]。

尽管已有大量文献对多种苹果的品质指标预测进行

了研究，然而大部分均基于单一技术，并没有针对单

一品种的具体检测问题，同时对基于高光谱成像技术

和近红外光谱技术的检测方法进行对比分析和讨

论。本文针对金冠苹果的货架期分类问题，常见品质

指标 SSC和 pH的定量预测问题，确定一种最佳的
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检测方法，为苹果质量的无损检测提供理论参考。

综上所述，本文以金冠苹果为研究对象，利用高

光谱成像 （ 400~1000  nm）技术和近红外光谱

（800~2500 nm）技术建立金冠苹果货架期判别模型

和 SSC、pH回归模型，对比选取较合适的模型，为无

损检测金冠苹果的货架期及品质预测提供技术

支持。 

1　材料与方法 

1.1　材料与仪器

金冠苹果　保定市易县商品果园，采后的金冠

苹果挑选无病虫害和机械伤的果实，在室温（18±
2 ℃）和相对湿度 60%下贮藏 35 d，每隔 7 d（0、7、
14、21、28和 35 d）取出 79个果实，共 474个样本用

于金冠苹果货架期的判别；从 474个样品中随机选

取 81个样品用于 SSC的预测；从 474个样品中随

机选取 79个样品用于 pH的预测。

MPA傅里叶变换近红外光谱仪（800~2500 nm）

　德国 Bruker公司；FX10高光谱相机（400~1000 nm）

　芬兰 SPECIM公司；PAL-1数显手持式折光计　

日本 Atago公司；AZ8601酸碱度计　台湾衡欣公司。 

1.2　实验方法 

1.2.1   光谱数据采集及提取 

1.2.1.1   高光谱数据采集及提取　使用漫反射模式

下的线扫描高光谱成像系统采集样品的高光谱图

像。参数如下：波段范围为 397.01~1004.01 nm，曝

光时间 13 ms，系统包含 6个光源，每个光源强度为

20 W，光谱和空间分辨率分别为 2.68 nm和 1 mm/
pixel。将每个苹果样品放置在平移台上，让苹果侧

面朝上并且茎萼端水平垂直于扫描线，得到三维高光

谱图像（400，400，224）。所使用的系统控制软件为

LUMOScanner。
为了减少相机的电流噪声及光源分布不均匀等

因素对高光谱图像的影响，在采集高光谱图像前进行

黑白校正。在原始图像（R1）采集相同条件下，关闭

相机镜头盖采集获得的黑色参考图像（D）；在采集平

台上放置一块标准白板（反射率为 99%的白色聚四

氟乙烯瓦）获得白色参考图像（W）。校正后高光谱图

像（R）计算如式（1），所有校正后的图像用于后续的

图像分析，提取光谱数据和数据处理。

R(%) =
Rl−D
W−D

式（1）
 

1.2.1.2   近红外光谱数据采集及提取　使用 MPA近

红外光谱仪采集样品的漫反射光谱，参数如下：波段

范围为 800~2500 nm，Pbs检测器，扫描次数 64，分
辨率 8 cm−1，背景光谱为仪器内置的金背景[19]。在苹

果样品赤道部分均等分布的三个点处各采集一次光

谱，每个果实得到 3条光谱，取其平均光谱作为该样

品的原始光谱进行后续分析。所使用的光谱采集软

件为布鲁克公司的 OPUS6.0。 

1.2.2   SSC和 pH的测定 

1.2.2.1   SSC的测定　随机选取 81个苹果进行

SSC测定，每个苹果从高光谱相机照射面取 2.5 g左

右的果肉用榨汁器挤出果汁，用 PAL-1数字折光计

进行测定[20]，每个样本重复 2次，取平均值作为其真

实值。 

1.2.2.2   pH的测定　随机选取 79个苹果进行 pH
测定，每个苹果从 ROI区域取适量果肉榨汁在

10 mL离心管中，用 AZ8601酸度计进行 pH测定，

每个样本重复 2次，取平均值作为其真实值。 

1.2.3   光谱数据预处理　对于高光谱图像数据，首先

利用 ENVI 5.1软件手动选取所照苹果整个表面作

为感兴趣区域（ROI），对每个样品 ROI内所有像素

值自动平均，作为苹果样品的平均光谱。从每个苹果

样品获取波段数为 224的高光谱图像光谱数据和波

段数为 2203的近红外光谱数据。为了提高数据信

噪比，截取首尾部分波段数据，选取其 400~1000 nm
范围共 222个波段的高光谱数据和 800~2500 nm范

围共 1903个波段的近红外光谱数据为有效信息进

行分析处理。为了消除或最小化噪声，采用卷积平滑

（SGS）、一阶导数（1D）、标准正态变换（SNV）和归一

化（Normalize）四种方法进行预处理。 

1.2.4   特征波长提取方法 

1.2.4.1   竞争性自适应重加权采样算法　竞争性自

适应重加权采样算法（CARS）模仿达尔文的“适者生

存”原则，主要通过蒙特卡罗模型进行等概率采样和

指数衰减函数，经过自适应加权采样（ARS）技术自适

应调整各波段的选择概率[21]，通过迭代过程不断调整

和优化波段选择，从而保留对模型预测最有贡献的波

段。本研究将其用于定量和定性模型的特征筛选。

使用 CARS算法时，将蒙特卡罗采样次数设置为

100次，通过 5倍交叉验证法选择 RMSECV最小的

特征波长作为最优特征波长。 

1.2.4.2   无信息变量消除算法　无信息变量消除算

法（UVE）核心是基于 PLS回归系数分析进行变量选

择[22]，利用噪声的无关变量信息统计去选择光谱自身

的特征变量，能够去除对建模共效率较小的波长变

量，选出特征波长变量，减少了建模所用的变量个数，

降低了模型复杂性。本研究将其用于定性模型的特

征筛选。使用 UVE算法时，最佳主因子数设置

为 10。 

1.2.5   图像主成分分析　主成分分析法（Principal
Component Analysis，PCA）是一种多元统计分析方

法，广泛应用于数据的降维、压缩等方面[23]。PCA是

将 N维高维特征通过正交变换转换到 K维低维空

间。其 K维的变量即为主成分。本研究对基于手动

选取的 ROI区域构建掩膜（用来屏蔽图像上不参加

处理的区域，使感兴趣区域内的图像值保持不变，而

区外图像值为 0）后的图像进行 PCA分析，选取前
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7个 PC结果图用于纹理特征的提取。 

1.2.6   高光谱图像纹理特征提取　纹理是表征图像

特征的重要参数[24]，本研究采用纹理特征用于金冠苹

果的品质分析，采用灰度共生矩阵法（Gray Level
Cooccurrence Matrix，GLCM）提取图像纹理信息，其

利用二阶组合条件概率密度函数来统计图像特征，能

够综合反映出图像灰度关于相邻间隔、方向以及变

化幅度的相关信息[25]。纹理特征参数分别为均值、

方差、同质性、对比度、差异性、熵、角二阶矩、相

关性。 

1.3　模型建立及评价 

1.3.1   判别模型和回归模型建立　反向传播神经网

络（Back Propagation，BP）是一种按照误差逆向传播

算法训练的多层前馈神经网络[26]。利用梯度搜索技

术，使网络的实际输出值和期望输出值的误差均方差

为最小。具备较强的非线性拟合能力，以及较好的泛

化性与容错性[27]。本文利用 BP方法构建金冠苹果

货架期的判别模型。

偏最小二乘（PLSR）是一种线性预测方法，结合

了多元线性回归分析、相关分析和主成分分析技术

的建模方法[9]，能够高效解决因变量和自变量之间存

在的多重共线性问题。本文利用 PLSR方法构建金

冠苹果 SSC和 pH的回归预测模型。

最小二乘支持向量机（LS-SVM）是一种改进的

支持向量机，以 RBF核函数为映射函数，LS-SVM模

型的训练误差和复杂度由惩罚参数 γ决定，输入空间

到高维特征空间的非线性映射能力受核参数 σ影

响[21]，可以处理非线性分类和回归问题。本文利用

LS-SVM方法构建了金冠苹果货架期的判别模型，

以及 SSC和 pH的回归预测模型。 

1.3.2   模型评价　以训练集的相关系数（Rc）及其均

方根误差（RMSEC）和预测集的相关系数（Rp）及其均

方根误差（RMSEP）作为判别模型性能的指标。一个

理想的分析模型，其决定系数或者相关系数越大且越

接近于 1，回归性越好；同时还需满足 RMSEC和

RMSEP的值越小且 RMSEC值应小于 RMSEP，建
模效果的实用性越理想[21]。计算公式如下：

Rc =

√√√√√√
1−

∑Nc

i=1
[Ya(i)−Yc(i)]2∑Nc

i=1
[Ya(i)−Ym(i)]2

式（2）

Rp =

√√√√√√
1−

∑Np

i=1
[Ya(i)−Yc(i)]2∑Np

i=1
[Ya(i)−Ym(i)]2

式（3）

RMSEC =

√
1

Nc

∑Nc

i=1
[Ya(i)−Yc(i )]2 式（4）

RMSEP =

√
1

Np

∑Np

i=1
[Ya(i)−Yp(i)]2 式（5）

Nc Np式中： 和 为建模集和预测集中的样品数，

Ya Ym Yc Yp和 为样品参考值及其平均值， 和 为训练集

和预测集中的 SSC和 pH预测值。 

2　结果与分析 

2.1　金冠苹果货架期判别分析 

2.1.1   原始光谱特性　图 1（a）和（b）为 474个苹果

样本的高光谱图像原始光谱图和 6个货架期（0、7、

14、21、28、35 d）的平均光谱图。不同样本在 400~
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图 1    金冠苹果高光谱和近红外的原始光谱图和平均光谱图

Fig.1    Original and average spectra of hyperspectral and near-
infrared spectra of Golden Delicious apples

注：（a）高光谱图像的原始光谱图，（b）不同货架期的平均高光
谱图，（c）近红外的原始光谱图，（d）不同货架期的平均近红外
光谱图。
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1000 nm波段范围内反射率变化较大，但变化趋势基

本一致。对比不同货架期的平均光谱，第 35 d的光

谱 513~936 nm范围的反射率值明显高于其他货架

期的光谱。这可能是由于贮藏时间过长，金冠苹果的

叶绿素含量会随着果皮颜色的变化而降低[26]，苹果对

光吸收减少所造成的。在 680 nm波长近红外范围

吸收峰是叶绿素含量逐渐降低所导致，在 555 nm波

长近红外范围的吸收峰是花青素对光的吸收较大所

导致[27]。

图 1（c）和（d）为 474个苹果样本的近红外原始

光谱图和 6个货架期（0、7、14、21、28、35 d）的平均

光谱图。在 833~2500 nm波长范围的样品光谱曲线

变化趋势基本一致，总体呈现上升的走势。这是因为

随着苹果样品贮藏时间的增加，糖度、酸度等指标均

发生了变化。苹果中的可溶性固形物、可滴定酸含

量含有影响光谱吸收的官能团，光谱的吸收峰与苹果

中这类物质的变化有关[26]。在 980 nm附近存在较

强的碳水化合物吸收带，它们与 970 nm处的强水带

相互缠绕，形成了所观察到的宽峰[9]，在 1200 nm左

右的吸收峰与水中 O-H键的第一个泛音有关[27]，约

在 1960 nm处的吸收峰与 O-H的拉伸和弯曲振动

有关[28]。 

2.1.2   金冠苹果货架期判别模型建立　将每种货架

期（0、7、14、21、28和 35 d）的样本按照大约 3:1的

比例随机分为训练集和预测集，得到训练集样本共

355个，预测集样本共 119个。 

2.1.2.1   基于全波段的金冠苹果货架期判别模型　

为筛选出最佳预处理方法并比较不同判别模型效果，

分别采用 SGS、1D、SNV、Normaliaze四种方法对

高光谱图像光谱和近红外光谱数据进行预处理。构

建金冠苹果货架期的基于全波段的 BP和 LS-SVM
判别模型，模型结果如表 1所示。

基于高光谱图像数据的 Normaliaze+BP模型预

测集判别准确率为 99.15%，基于高光谱图像数据经

过其余预处理的 BP模型的预测集判别准确率均达

到 100%。基于高光谱图像数据的 1D+LS-SVM模

型预测集判别准确率为 95.79%。与近红外光谱判别

模型结果相比，高光谱图像数据判别模型较好。基于

近红外光谱的 SGS+LS-SVM判别模型较好，准确率

为 73.94%。在基于高光谱的判别模型中，1D预处理

为最佳预处理方式，BP模型判别性能优于 LS-
SVM模型。这可能是由于 1D预处理能够提高光谱

分辨率，且 BP为非线性拟合模型，有较强的容错

性。在基于近红外的判别模型中，SGS为最佳预处

理方式，且 LS-SVM模型判别性能优于 BP模型。

这可能是由于对于本实验数据 SGS的去噪效果更

优，LS-SVM的非线性拟合能力优于 BP。高光谱图

像光谱数据（400~1000 nm）模型的判别效果总体上

优于近红外光谱（800~2500 nm）模型，这可能是因为

不同货架期金冠苹果外观变化较内部含量变化更明

显（400~1000  nm波段与颜色相关性较高，800~
2500 nm波段与内部品质相关性较高[26]）。基于高光

谱图像光谱数据的 1D+BP模型和基于近红外光谱

的 SGS+LS-SVM模型预测集分类结果的混淆矩阵

如图 2所示。基于高光谱图像光谱数据的 1D+BP
模型的分类结果全部正确，基于近红外光谱的

 

表 1    基于全波段的金冠苹果货架期判别模型结果

Table 1    Results of the shelf-life discrimination model
of Golden Delicious apples based on all bands

预处理
方法

建模
方法

变量数

高光谱图像
光谱数据

变量数

近红外光谱数据

训练集
（%）

预测集
（%）

训练集
（%）

预测集
（%）

None

BP

222 100 100 1903 86.19 73.10
SGS 222 100 100 1903 90.98 62.18
1D 222 100 100 1903 74.92 38.65
SNV 222 100 100 1903 60.28 33.61

Normalize 222 100 99.15 1903 87.60 58.82
None

LS-SVM

222 85.63 68.90 1903 100 67.22
SGS 222 83.38 68.06 1903 100 73.94
1D 222 100 95.79 1903 100 12.60
SNV 222 99.43 83.19 1903 100 53.78

Normalize 222 98.02 81.51 1903 100 65.56
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图 2    预测集分类结果的混淆矩阵图

Fig.2    Confusion matrix plot of the classification results of the prediction set
注：（a）基于高光谱图像光谱数据的 1D+BP模型预测集分类结果的混淆矩阵，（b）基于近红外光谱的 SGS+LS-SVM模型预测集
分类结果的混淆矩阵。
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SGS+LS-SVM模型预测集分类结果中，货架期 1中

有 3个判别错误，货架期 2和货架期 6中均有 7个

判别错误，货架期 3和货架期 4中均有 5个判别错

误，货架期 5中有 4个判别错误。 

2.1.2.2   特征波长提取分析　由表 2可知，采用

CARS、UVE两种变量选择方法，对经过 1D预处理

的全波段高光谱图像光谱数据筛选出的特征波长个

数分别为 12和 148个。基于高光谱特征波长的金

冠苹果货架期判别模型均展现出较好的性能，且与全

波长模型判别结果并无显著差异。说明两种变量方

法对全波长高光谱均能够很好地筛选出用于分类的

相关信息[9]，且仅通过 CARS方法提取十几个波段也

能产生很好的分类结果。两种变量选择方法筛选出

的共有高光谱特征波长为 709、669、500、487、484、

481、479、473、471、468、466、426 nm，如图 3（a）所
示分布在全波长范围内。

基于 SGS预处理的全波段近红外光谱数据的

UVE算法结果如图 3（b）所示。采用 CARS、UVE
两种变量选择方法，对经过 SGS预处理的近红外光

谱数据筛选出的特征波长个数分别为 157和 51个。

基于近红外光谱的 SGS+UVE+BP模型和 SGS+
UVE+LS-SVM模型较全波长模型判别结果明显降

低。表明 UVE方法使得关键信息丢失，降低了模型

的精确度。 

2.1.2.3   基于特征波长的金冠苹果货架期判别模型

　采用 CARS、UVE两种变量选择方法，对经过 1D
预处理的全波段高光谱图像光谱数据和经过 SGS预

处理的全波段近红外光谱数据进行特征提取。基于

筛选的特征波长分别构建金冠苹果货架期的 BP和

LS-SVM判别模型，结果如表 2所示。基于高光谱

图像数据的 1D+UVE+BP和 1D+UVE+LS-SVM模

型判别结果较好，预测集判别准确率分别达到了

100%和 97.47%。基于近红外光谱的 SGS+CARS+
BP和 SGS+CARS+LS-SVM模型判别结果较好，预

测集准确率分别达到了 60.50%和 69.74%。特征波

长数据建模判别结果与全波长数据建模判别结果相

比，总体差异不显著，建模变量显著减少，说明 UVE
和 CARS两种变量方法可以有效简化模型。综上，

金冠苹果货架期判别最优模型为基于高光谱成像技

术的 1D+UVE+BP模型。 

2.2　金冠苹果的 SSC和 pH回归预测 

2.2.1   SSC和 pH的测定结果　用于 SSC、pH指标

预测样本的描述性统计分析结果如表 3所示。81个

金冠苹果的 SSC值范围在 9.35~13.35°Birx之间，

79个金冠苹果的 pH范围在 3.76~4.18之间。在建

立回归模型时，将样品按照大约 3:1的比例随机分

为训练集和预测集。从表 3可得，两个指标训练集

的参考值范围均大于预测集的参考值范围，有利于构

建准确、稳定的模型。
 
 

表 3    金冠苹果 SSC和 pH的描述性统计分析
Table 3    Descriptive statistical analysis of SSC and pH

of Golden Delicious apples

指标 样本集 样本数 最小值 最大值 平均值

SSC（°Birx）
训练集 61 9.35 13.35 11.3484
测试集 20 9.4 13.15 11.2350

pH
训练集 59 3.76 4.18 3.9483
测试集 20 3.83 4.11 3.9785

  

2.2.2   高光谱图像数据的纹理特征提取　为了降低

数据维度，对掩膜后的苹果样本图像进行主成分分

析，提取前 7个主成分（累计贡献率为 99%以上）。

利用 GLCM法对前七个主成分进行图像纹理特征

提取[24]，纹理特征参数分别为均值、方差、同质性、

对比度、差异性、熵、角二阶矩、相关性。PC1图像

 

表 2    基于特征波长的金冠苹果货架期判别模型结果

Table 2    Results of shelf-life discrimination model of Golden
Delicious apples based on characteristic wavelength

数据来源
预处理
方法

特征选择
方法

建模方法 变量数
训练集
（%）

预测集
（%）

高光谱图像
数据 1D

CARS
BP

12 99.43 99.15
UVE 148 100 100
CARS

LS-SVM
12 96.61 95.79

UVE 148 100 97.47

近红外光谱 SGS

CARS
BP

157 82.81 60.50
UVE 51 47.88 39.49
CARS

LS-SVM
157 91.83 69.74

UVE 51 41.97 31.09
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图 3    特征波长选择图

Fig.3    Characteristic wavelength selection diagram
注：（a）两种算法筛选出的共有高光谱特征波长分布图，（b）基
于 SGS预处理的全波段近红外光谱数据的 UVE算法结果分
布图。
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相应纹理特征结果如图 4所示。基于感兴趣区域提

取每个苹果样品的平均纹理特征，共生成包含 56个

纹理变量（7×8=56）的新数据集。将高光谱图像光谱

的 222个波段与纹理数据融合变成 278个波段的融

合光谱，为确保不同类型特征具有可比性和一致性，

对融合数据进行归一化处理。

 
 

 (a) 均值  (b) 方差  (c) 同质性  (d) 对比度

 (e) 差异性  (f) 熵  (g) 角二阶矩  (h) 相关性

图 4    纹理特征图
Fig.4    Texture feature image

  

2.2.3   金冠苹果可溶性固形物含量无损检测模型　

为比较不同的预处理和建模方法对金冠苹果 SSC预

测的影响，同时简化模型，用 CARS对预处理后的高

光谱特征、高光谱特征与纹理特征融合、近红外光谱

特征三类数据提取特征变量，建立 PLSR和 LS-
SVM两种回归模型对 SSC进行预测。 

2.2.3.1   特征波长提取分析　基于近红外光谱的

1D+CARS+PLSR模型预测结果最好，经过 CARS
变量选择后，建模变量数由 1903个变为 222个，筛

选后的特征波长分布如图 5所示，其中 1847 nm波

长附近也被 Zhang等 [28] 用于苹果 SSC的无损测

量。本研究的预测结果（Rp=0.9323，RMSEP=0.4036）
优于 Zhang等 [28] 基于高光谱（1000~2500  nm）的

CARS-SPA（SPA为逐次投影算法）+PLS模型结果

（Rp=0.917，RMSEP=0.453）。
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图 5    基于 1D预处理的近红外光谱筛选后的特征
波长分布图

Fig.5    Feature wavelength distribution after NIR spectrum
screening based on 1D pretreatment

  

2.2.3.2   基于高光谱图像数据的金冠苹果可溶性固

形物含量无损检测模型　基于高光谱的金冠苹果可

溶性固形物含量无损检测结果如表 4所示。整体上

LS-SVM模型的预测性能比 PLSR模型好，基于高

光谱无预处理（None）波段的 LS-SVM模型性能

最好 ，预测集 Rp 和 RMSEP值分别为 0.6983和

0.6779，Normalize+CARS+LS-SVM模型性能较好，

预测集 Rp 和 RMSEP值分别为 0.6823和 0.6757。
这可能是由于 LS-SVM是非线性模型，能更好地拟

合光谱特征与 SSC之间的复杂关系。
 
 

表 4    基于高光谱的金冠苹果可溶性固形物含量
无损检测结果

Table 4    Results of non-destructive detection of soluble solid
content in Golden Delicious apples based on hyperspectrum

预处理+
特征选择方法

建模方法 变量数
训练集 预测集

Rc RMSEC Rp RMSEP

None

PLSR

222 0.8110 0.5554 0.5497 1.2614
None+CARS 16 0.6816 0.6869 0.5422 0.9187
SGS+CARS 16 0.7288 0.6823 0.6260 0.8245
1D+CARS 7 0.7017 0.6791 0.5879 0.8907
SNV+CARS 12 0.7308 0.6657 0.5604 0.8337

Normalize+CARS 23 0.7862 0.6195 0.5620 0.8265
None

LS-SVM

222 0.7811 0.6167 0.6983 0.6779
None+CARS 16 0.6399 0.8236 0.4309 0.5522
SGS+CARS 16 0.6187 0.8187 0.5757 0.6029
1D+CARS 7 0.6715 0.7277 0.6391 0.7399
SNV+CARS 12 0.7011 0.6758 0.6762 0.7855

Normalize+CARS 23 0.6903 0.7197 0.6823 0.6757
  

2.2.3.3   基于高光谱图像的光谱与纹理融合数据的

金冠苹果可溶性固形物含量无损检测模型　为确保

不同类型特征具有可比性和一致性，对高光谱融合数

据进行归一化（Normalize）处理[29]。基于融合特征的

金冠苹果 SSC无损预测结果如表 5所示，整体上

LS-SVM模型预测性能优于 PLSR模型，Normalize+
SGS+CARS+LS-SVM模型预测性能最好，预测集结

果如图 6所示，预测集  Rp 和  RMSEP 值分别为

0.7248和 0.7090。融合数据集模型结果与高光谱图

像数据结果相比，融合数据建模效果较优。说明在信

息融合的过程中，纹理特征携带了部分有效信息，且

这些信息与苹果样品中 SSC含量相关性较强。 

 

表 5    基于高光谱图像的光谱与纹理融合数据的金冠苹果
可溶性固形物含量无损检测结果

Table 5    Non-destructive testing results of soluble solid content
of Golden Delicious apples based on spectral and texture fusion

data of hyperspectral images

预处理+
特征选择方法

建模
方法

变量数
训练集 预测集

Rc RMSEC Rp RMSEP

Normalize

PLSR

278 0.8132 0.5511 0.5094 1.0300
Normalize+CARS 22 0.7340 0.6491 0.5467 0.8623

Normalize+SGS+CARS 22 0.8448 0.5184 0.4527 1.0105
Normalize+1D+CARS 4 0.7313 0.6659 0.5472 0.8459
Normalize+SNV+CARS 10 0.7256 0.6416 0.5113 0.9910

Normalize

LS-SVM

278 0.9930 0.1158 0.5517 0.7894
Normalize+CARS 22 0.7711 0.6284 0.5855 0.7692

Normalize+SGS+CARS 22 0.7568 0.6112 0.7248 0.7090
Normalize+1D+CARS 4 0.6831 0.7629 0.6501 0.5332
Normalize+SNV+CARS 10 0.6722 0.7007 0.6163 0.8430
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2.2.3.4   基于近红外光谱的金冠苹果可溶性固形物

含量无损检测模型　基于近红外光谱的金冠苹果可

溶性固形物含量无损检测结果如表 6所示。全波长

与特征波长建模结果相比，特征波长数据预测集结果

较优。CARS+1D+PLSR模型性能最高，预测集结果

如图 7所示，预测集 Rp 和 RMSEP值分别为 0.9323

和 0.4036。这可能是由于全波长近红外光谱数据包

含了许多无关信息，降低了模型的预测精度。
 
 

表 6    基于近红外光谱的金冠苹果可溶性固形物含量
无损检测结果

Table 6    Non-destructive testing results of soluble solid
content of Golden Delicious apples based

on near-infrared

预处理+
特征选择方法

建模方法 变量数
训练集 预测集

Rc RMSEC Rp RMSEP

None

PLSR

1903 0.9990 0.4285 0.1030 1.1032
None+CARS 73 0.9920 0.1210 0.9097 0.4262
SGS+CARS 73 0.9896 0.1425 0.8785 0.4751
1D+CARS 222 0.9975 0.0669 0.9323 0.4036
SNV+CARS 52 0.9851 0.1597 0.8511 0.5860

Normalize+CARS 84 0.9920 0.1220 0.9060 0.4291
None

LS-SVM

1903 0.9903 0.1297 0.1438 1.0325
None+CARS 73 0.9314 0.3779 0.8166 0.4261
SGS+CARS 73 0.9242 0.3739 0.7775 0.6144
1D+CARS 222 0.9998 0.0176 0.8380 0.5867
SNV+CARS 52 0.9842 0.1819 0.8959 0.3571

Normalize+CARS 84 0.9639 0.2696 0.8761 0.4086
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图 7    1D+CARS+PLSR模型预测集结果
Fig.7    1D+CARS+PLSR model prediction set results

综上所述，基于高光谱的 LS-SVM模型的预测

性能比 PLSR模型好，基于融合数据的 LS-SVM模

型的预测性能比 PLSR模型好。这可能是由于 LS-
SVM是非线性模型，相较于线性建模算法 PLSR，能
更好地拟合数据中的复杂关系。基于近红外光谱建

模预测集效果比高光谱图像数据好，这可能是因为近

红外光谱范围内包含较多与 SSC的相关信息。与全

波长相比，特征波长建模预测集效果较优，这可能是

由于全波长有冗余信息导致模型精度的降低。与高

光谱图像数据预测集结果相比，融合建模效果较优，

说明纹理特征携带了部分有效信息，有利于模型对

于 SSC的预测。 

2.2.4   金冠苹果 pH无损检测模型　为比较不同的

预处理和建模方法对金冠苹果 pH预测的影响，同时

简化模型，用 CARS对预处理后的高光谱特征、高光

谱特征与纹理特征融合、近红外光谱特征三类数据

提取特征波长，建立 PLSR和 LS-SVM两种回归模

型对 pH进行预测。 

2.2.4.1   特征波长提取分析　基于近红外光谱的

SNV+CARS+LS-SVM模型预测结果最好 ，经过

CARS变量选择后，建模变量数由 1903个变为

39个，筛选后的特征波长分布如图 8所示，其中

965 nm波长附近也被 Dong等[30] 用于苹果 pH的无

损测量。本研究的预测结果（Rp=0.8749，RMSEP=
0.0417）与 Dong等[30] 基于高光谱（900~1700 nm）的

SPA+LS-SVM模型结果（Rp=0.882，RMSEP=0.057）
相当。
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图 8    基于 SNV预处理的近红外光谱筛选后的特征
波长分布图

Fig.8    Feature wavelength distribution after NIR spectrum
screening based on SNV pretreatment

  

2.2.4.2   基于高光谱图像数据的金冠苹果 pH无损检

测模型　基于高光谱的金冠苹果 pH无损检测结果

如表 7所示。SNV+CARS+LS-SVM模型性能最

好，预测集 Rp 和 RMSEP值分别为 0.4027和 0.0835。
SNV+CARS+PLSR模型性能较好，预测集 Rp 和
RMSEP值分别为 0.3037和 0.0882。各个模型对

pH预测的总体效果都不太理想，说明本研究利用高

光谱成像技术对 pH的预测还需进一步提高。 
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图 6    Normalize+SGS+CARS+LS-SVM模型预
测集结果

Fig.6    Normalize+SGS+CARS+LS-SVM model
prediction set results
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2.2.4.3   基于高光谱图像的光谱与纹理融合数据的

金冠苹果 pH无损检测模型　基于融合数据的金冠

苹果 pH无损检测结果如表 8所示，Normalize+1D+
CARS+LS-SVM模 型 性 能 最 好 ， 预 测 集 Rp 和
RMSEP值分别为 0.3119和 0.0918。融合数据预测

结果与高光谱数据预测结果相比，融合数据建模效果

略差，但总体差异不显著。这可能由于在信息融合过

程中，纹理特征虽携带了部分有效信息，但这些信息

与苹果样品的 pH的相关性较小，增加了部分无用

信息。
 
 

表 8    基于融合数据的金冠苹果 pH无损检测结果
Table 8    Non-destructive testing results of pH
of Golden Delicious apples based on fusion data

预处理+
特征选择方法

建模方法变量数
训练集 预测集

Rc RMSEC Rp RMSEP

Normalize

PLSR

278 0.4155 0.0848 0.1150 0.0932
Normalize+CARS 3 0.3726 0.0821 0.1093 1.1027

Normalize+SGS+CARS 3 0.3931 0.0795 0.1972 0.1053
Normalize+1D+CARS 14 0.5404 0.0793 0.0732 0.0990
Normalize+SNV+CARS 27 0.5091 0.0801 0.1364 0.1025

Normalize

LS-SVM

278 0.9734 0.0136 −0.4667 0.1239
Normalize+CARS 3 0.3226 0.0804 0.1029 0.1040

Normalize+SGS+CARS 3 0.3957 0.0845 0.1251 0.0901
Normalize+1D+CARS 14 0.5329 0.0764 0.3119 0.0918
Normalize+SNV+CARS 27 0.5040 0.0774 0.0466 0.0962
  

2.2.4.4   基于近红外光谱的金冠苹果 pH无损检测模

型　基于近红外的金冠苹果 pH无损检测结果如

表 9所示。全波长与特征波长建模结果相比，特征

波长数据预测集结果较优。SNV+CARS+LS-SVM

模型性能最高。预测结果如图 9所示，预测集 Rp 和
RMSEP值分别为 0.8749和 0.0417。基于近红外光

谱全波长的 PLSR模型预测集 Rp 和 RMSEP值

分别为 0.1327和 0.1165。基于近红外光谱全波长

的 LS-SVM模型预测集 Rp 和 RMSEP值分别为

0.4752和 0.0811。

综上所述，基于近红外光谱建模预测集效果较

好，与全波长相比，特征波长建模预测集效果较优。

高光谱图像数据预测效果稍差，在本研究中，高光谱

成像技术对 pH的预测仍需进一步提升。与高光谱

融合数据预测结果相比，融合建模效果并无显著差

异，说明纹理特征虽携带了部分有效信息，可这些信

息与苹果样品的 pH的相关性较小，不利于模型对

pH的预测。 

3　结论
本文基于高光谱成像技术和近红外光谱技术对

金冠苹果进行货架期判别及其品质分析。在金冠苹

果货架期判别模型中，基于高光谱图像数据的最优模

型为 1D+UVE+BP模型，判别准确率为 100%。基

于高光谱图像数据的最优预处理方法为 1D法。

UVE和 CARS两种方法均适用于高光谱图像数据

的特征波长筛选。基于近红外光谱的最优模型为

SGS+LS-SVM模型，判别准确率为 73.94%。基于近

红外光谱的最优预处理方法为 SGS法，CARS方法

优于 UVE方法，且 UVE方法使得关键信息丢失，降

低了模型的精确度。基于高光谱图像光谱数据

（400~1000 nm）模型总体上优于近红外光谱（800~

2500 nm）模型。

在金冠苹果 SSC无损预测模型中，基于近红外

光谱的 CARS+1D+PLSR模型预测效果最好，预测

 

表 7    基于高光谱的金冠苹果 pH无损检测结果

Table 7    Non-destructive testing results of pH
of Golden Delicious apples based on hyperspectral

预处理+
特征选择方法

建模方法 变量数
训练集 预测集

Rc RMSEC Rp RMSEP

None

PLSR

222 0.4122 0.0819 0.1009 0.1006
None+CARS 6 0.2980 0.0865 0.0683 0.1023
SGS+CARS 6 0.2946 0.0871 −0.0672 0.0999
1D+CARS 2 0.1717 0.0864 −0.2897 0.1105
SNV+CARS 23 0.4886 0.0806 0.3037 0.0882

Normalize+CARS 4 0.2752 0.0809 0.0866 0.1120
None

LS-SVM

222 0.6806 0.0653 0.2589 0.0943
None+CARS 6 0.2578 0.0862 0.0655 0.0994
SGS+CARS 6 0.2218 0.0913 0.1172 0.0864
1D+CARS 2 0.0780 0.0858 0.0648 0.1075
SNV+CARS 23 0.4768 0.0806 0.4027 0.0835

Normalize+CARS 4 0.3688 0.0841 0.2218 0.0935

 

表 9    基于近红外的金冠苹果 pH无损检测结果

Table 9    Non-destructive testing results of pH
of Golden Delicious apples based on near-infrared

预处理+
特征选择方法

建模方法 变量数
训练集 预测集

Rc RMSEC Rp RMSEP

None

PLSR

1903 0.8994 0.0387 0.1327 0.1165
None+CARS 64 0.9790 0.0185 0.8239 0.0603
SGS+CARS 64 0.9655 0.0248 0.8287 0.0498
1D+CARS 255 0.9521 0.0270 0.5580 0.0860
SNV+CARS 39 0.9656 0.0237 0.8132 0.0600

Normalize+CARS 56 0.9911 0.0125 0.8489 0.0493
None

LS-SVM

1903 0.9450 0.0214 0.4752 0.0811
None+CARS 64 0.8170 0.0541 0.4995 0.0730
SGS+CARS 64 0.8203 0.0546 0.3870 0.0738
1D+CARS 255 0.9998 0.0015 0.4439 0.0762
SNV+CARS 39 0.9536 0.0280 0.8749 0.0417

Normalize+CARS 56 0.9171 0.0381 0.7068 0.0564
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图 9    SNV+CARS+LS-SVM模型预测结果

Fig.9    Prediction results of SNV+CARS+LS-SVM model
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集 Rp 和 RMSEP值分别为 0.9323和 0.4036。基于

近红外光谱建模预测集效果比高光谱图像数据好。

全波长与特征波长相比，特征波长建模预测集效果较

优。高光谱融合数据预测结果与高光谱数据预测结

果相比，高光谱融合数据建模效果较优，表明图像纹

理信息能够有效提高模型对 SSC的预测性能。

在金冠苹果 pH无损预测模型中，基于近红外光

谱的 SNV+CARS+LS-SVM模型性能最高，预测集

Rp 和 RMSEP值分别为 0.8749和 0.0417。高光谱

成像技术对 pH的预测还有待提高。全波长与特征

波长相比，特征波长建模预测集效果较优。高光谱融

合数据与高光谱数据预测结果相比，融合数据建模效

果略差。本研究利用高光谱相机和近红外光谱仪为

金冠苹果货架期判别及 SSC和 pH的无损分析提供

了理论依据技术支撑。
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