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介质阻挡放电等离子体辅助糖基化对 β-乳球
蛋白抗氧化活性的影响及构效关系研究

翟娅菲，王宇浩，汤国新，牛力源，张艳艳，相启森*

（郑州轻工业大学食品与生物工程学院，冷链食品加工与安全控制教育部重点实验室（培育），食品

生产与安全河南省协同创新中心，河南郑州 450001）

摘　要：本文研究了介质阻挡放电（dielectric barrier discharge，DBD）等离子体辅助糖基化处理对 β-乳球蛋白（β-
lactoglobulin，β-LG）及其水解产物抗氧化能力的影响；通过测定其内源荧光、紫外吸收光谱、巯基含量、表面疏

水性、平均粒径以及二级结构等，分析 β-LG结构变化与抗氧化活性之间的关系。结果表明，经 DBD等离子体辅

助糖基化处理 5 min后，糖基化 β-LG的 DPPH·清除能力达到 129.8 μmol trolox equivalent（TE）/g，铁还原能力达

到 75.1 μmol Fe2＋/g；经水解后，糖基化 β-LG的 DPPH·清除能力和铁还原力分别进一步提高到 193.5 μmol TE/g和
95.5 μmol Fe2＋/g。DBD等离子体辅助糖基化处理 5 min时 β-LG的内源荧光和紫外吸收强度降低，巯基含量和表

面疏水性显著降低（P<0.05），平均粒径增大，α-螺旋相对含量降低而 β-折叠相对含量增多。综上，DBD等离子

体辅助糖基化处理可以通过改变 β-LG蛋白的结构，显著增强其抗氧化活性。
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Abstract：This study examined the antioxidant activity of β-lactoglobulin (β-LG) and its hydrolysate after the treatment of
dielectric barrier discharge (DBD) plasma-assisted glycation. The relationship between the structure and antioxidant activity
of β-LG was analyzed by measuring the internal fluorescence, ultraviolet absorption spectrum, sulfhydryl content, surface
hydrophobicity, average particle size, and secondary structure of treated β-LG. The results showed that after DBD plasma-
assisted glycation for 5 min, the DPPH radical scavenging capacity of β-LG reached 129.8 μmol trolox equivalent (TE)/g,
and the iron reduction capacity was increased to 75.1 μmol Fe2+/g. The hydrolysate exhibited further enhancement in both
DPPH  radical  scavenging  capacity  and  iron  reduction  capacity,  reaching  193.5  μmol  TE/g  and  95.5  μmol  Fe2+/g,
respectively. After DBD plasma-assisted glycation for 5 min, the endogenous fluorescence, ultraviolet absorption intensity,
the  relative  content  of  α-helix,  sulfhydryl  group  content  and  surface  hydrophobicity  (P<0.05)  of  β-LG  significantly  
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decreased,  whereas  the  average  particle  size  and  the  relative  content  of  β-fold  increased.  In  conclusion,  DBD  plasma-
assisted glycation can effectively improve the antioxidant activity of β-LG by changing its structure.

Key words：dielectric barrier discharge plasma；glycation；β-lactoglobulin；antioxidant activity；molecular structure

β-乳球蛋白（β-lactoglobulin，β-LG）是一种具有

球状结构的可溶性蛋白质，由 162个氨基酸残基组

成，分子量为 18.4 kDa，包含一个游离半胱氨酸和两

个二硫键[1]，存在于大多数哺乳动物的乳汁中，约占

乳汁总蛋白质的 10%或乳清蛋白的 50%[2]。由于其

独特的理化性质、脂质转运功能以及免疫调节、抗氧

化和降低胆固醇等多种生物活性[3]，β-LG可作为食

品乳化剂、稳定剂和营养补充剂等被广泛应用于各

种食品体系中[4]。β-LG是一种温和的抗氧化剂，高

温加热会导致其抗氧化活性显著降低[5]。此外，β-
LG虽然可以作为生物活性物质的天然载体，但仅凭

其固有的抗氧化能力不足以保护其他成分免受脂质

氧化[6]。为进一步提高其在食品工业中的需求，需要

对其进行加工改性，以增强其抗氧化性。

蛋白质的糖基化修饰是增强天然蛋白质功能特

性的有效途径，能够改善包括溶解度、黏度、乳化能

力、胶凝能力、热稳定性和抗氧化活性在内的多种功

能特性[5]。糖基化反应主要是糖的羰基与蛋白质氨

基的共价结合。Dong等[7] 将水解的 β-乳球蛋白与

葡萄糖在 90 ℃ 下加热 18 h，发现 β-乳球蛋白的抗

氧化活性有所提高。然而单独的糖基化反应消耗时

间较长，需要温度高，对有些蛋白的改性效果不够显

著。研究表明，非热加工与糖基化协同处理可缩短处

理时间，提高改性效果。通过动态高压微射流联合糖

基化修饰 β-LG，可显著降低 β-LG的致敏性[8]。脉

冲电场（PEF）辅助糖基化处理可以促进乳清分离蛋

白的糖基化，提高蛋白的溶解度和乳化性[9]。常压介

质阻挡放电（DBD）等离子体是一种温度接近室温

（30~60 ℃）的等离子体，在其工作过程中，氮气（N2）

和氧气（O2）等粒子与电子碰撞从而产生臭氧（O3）、

羟基自由基（·OH）和氮氧化物等活性氧和活性氮，这

些高能自由基可断裂共价键并引发一系列化学反

应[10]。有文献报道等离子体可以促进蛋白糖基化发

生，Yu等[11] 和 Ji等[12] 通过冷等离子体处理花生蛋

白和乳糖或葡聚糖混合物，结果发现花生蛋白可在

2 min内发生糖基化，并可使产物的溶解性和乳化性

增加。而且，有研究发现等离子体单独处理也可以显

著改善花生蛋白的发泡能力和乳化特性[13]。因此，

DBD等离子体处理不仅可以通过自身产生的多种活

性物质改变蛋白的功能特性，还可促进蛋白质糖基化

的发生，从而进一步改变其功能特性[14]。然而，目前

国内外对等离子体辅助糖基化改性蛋白的抗氧化能

力研究很少，对其作用机制尚不明确。

本论文以 β-LG为研究对象，采用单独 DBD等

离子体处理及 DBD等离子体辅助糖基化处理对 β-
LG进行改性，并将改性后的样品酶解，测定其抗氧

化活性的变化及结构变化，并建立两者间的构效关

系，为 DBD等离子体辅助糖基化技术在蛋白改性领

域的应用提供理论依据。

 1　材料与方法

 1.1　材料与仪器

β-乳球蛋白、1，1-二苯基-2-三硝基苯肼（1,1-
diphenyl-2-picryl-hydrazyl radical，DPPH）　中国上

海源叶生物科技有限公司；α-乳糖　天津市科密欧化

学试剂有限公司；8-苯胺 -1-萘磺酸（8-anilino-1-
naphthalenesulfonic  acid，ANS） 、乙二胺四乙酸

（ethylene diamine tetraacetic acid，EDTA）、5，5-二硫

代双（2-硝基苯甲酸）（5,5'-dithio bis-（2-nitrobenzoic
acid），DTNB）、胃蛋白酶（3000 U/mg）、胰蛋白酶

（250 U/mg）　中国上海麦克林生化有限公司；三吡

啶三吖嗪（tripyridine triazine，TPTZ）　上海阿拉丁

试剂有限公司；Bradford蛋白检测试剂　上海碧云天

生物技术股份有限公司；氯化钠、氯化钾、磷酸氢二

钠、磷酸二氢钠　天津市大茂化学试剂厂。

CTP-2000K型等离子体实验装置　南京苏曼电

子有限公司；Multiskan GO型全波长酶标仪　美国

Thermo Fisher Scientific公司；5427R型高速冷冻离

心机　德国 Eppendorf公司；UV-1800PC型紫外-可
见分光光度计　上海美析仪器有限公司；Spark型多

功能酶标仪　瑞士 Tecan公司；PHSJ-3F型 pH计　

上海仪电科学仪器有限公司；Chirascan圆二色光谱

仪　英国 Applied Photophysics公司；F-7000型荧光

分光光度计　日本 Hitachi公司；ChemiDoc Go型化

学发光成像系统　美国 Bio-Rad公司；Nano-ZS90
型纳米激光粒度仪　英国Malvern公司。

 1.2　实验方法

 1.2.1   样品处理　将 β-LG和乳糖以 1:1的质量比

溶解于磷酸缓冲液（0.01 mol/L，pH6.5）中，使蛋白浓

度为 4 mg/mL，室温下混合均匀。使用 DBD等离子

体在 57.6 W功率下分别对 β-LG溶液以及 β-LG和

乳糖混合溶液处理 1、3和 5 min，使 β-LG与乳糖发

生糖基化反应，以未经处理的 β-LG作为对照。所有

样品经 3K超滤管在 10000 r/min超滤 10 min，弃去

滤出液并在内管中加入磷酸缓冲液，重复以上超滤过

程五次，以去除未反应的糖和小分子活性粒子。将

DBD等离子体处理 1、3和 5 min的样品分别命名

为 P1、P3和 P5，等离子体辅助糖基化处理 1、3、
5 min的样品分别命名为 G1、G3和 G5，所得样品保

存在 4 ℃ 冰箱中用于后续分析，最多保存 2 d。

 1.2.2   糖基化程度（DG）的测定　参考 Yu等[11] 的方

法，并稍作改动，将邻苯二甲醛（o-phthalaldehyde，
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OPA）（40.0 mg）溶于 1.0 mL甲醇中，加入 20%（w/w）

十二烷基硫酸钠（SDS）2.5  mL、硼砂（0.1  mol/L）
25.0  mL、β-巯基乙醇 100 μL，用去离子水定容至

50.0 mL，制备成 OPA试剂。取 1.0 mL OPA试剂

与 50.0 μL经 DBD等离子体辅助糖基化处理以及

未处理的样品混合，以 1.0 mL OPA和 50.0 μL蒸馏

水为空白对照，室温反应 5 min，在 340 nm处测定吸

光度。DG的计算公式见式（1）：

DG(%) =
A0 −A1

A0
×100 式（1）

式中，A0 为 β-LG样品的吸光度值，A1 为等离

子体辅助糖基化后样品的吸光度值。

 1.2.3   蛋白酶解　将处理 5 min的 β-LG溶解于去

离子水中，用盐酸调整 pH至 2.5，加入胃蛋白酶

（2000 U/mL），并使蛋白终浓度为 1 mg/mL，混匀后

在 37 ℃ 恒温水浴锅中酶解 120 min。利用 1 mol/L
NaOH将胃蛋白酶酶解液的 pH调至 7.5，加入胰蛋

白酶（100 U/mL），混匀后在 37 ℃ 酶解 120 min。结

束后加入胰蛋白酶抑制剂以终止反应，分别在酶解

0、60、120、180和 240  min时取样。β-LG、P5和

G5样品经酶解 240 min后的样品分别命名为 β-LG-
X、P5-X和 G5-X。

 1.2.4   DPPH自由基清除能力的测定　采用贾飞鸿

等[15] 的方法加以改动后测定未处理、单独等离子体

处理不同时间、等离子体辅助糖基化处理不同时间

和酶解后样品的 DPPH自由基清除能力。配制一定

浓度的 Trolox标准溶液（0、50、100、150、200和

250 μmol/L），取 1 mL标准溶液或浓度为 1 mg/mL
的样品溶液与 4 mL DPPH溶液（0.2 mmol/L溶于甲

醇）均匀混合后，避光反应 30 min，517 nm波长处测

定其吸光度。对照采用 PBS溶液代替样品溶液，根

据标准曲线（y=−0.0027x+0.7567，R2=0.9995）计算样

品的 DPPH自由基清除能力，结果表示为每 g蛋白

所含 Trolox当量（μmol TE/g）。

 1.2.5   铁还原能力（FRAP）的测定　采用 Zagury等[16]

的方法加以改动后测定 FRAP。将乙酸钠缓冲液

（300  mmol/L，pH3.6）、TPTZ溶液（10  mmol/L）和
FeCl3（20 mmol/L）三种溶液按 10:1:1（v/v/v）混合均

匀得到 TPTZ工作液。配制浓度为 0、 25、 50、
75和 100 μmol/L的 FeSO4 溶液作为一系列标准溶

液。取 1 mL上述样品溶液或标准溶液（FeSO4 溶

液）与 4 mL TPTZ工作液混合，593 nm波长处测定

其吸光度，对照使用 TPTZ工作液。根据标准曲线

（y=0.003x+0.0978，R2=0.9996）计算出样品的铁还原

能力，结果表示为每 g蛋白所含 Fe2+的当量（μmol
Fe2+/g）。

 1.2.6   结构测定

 1.2.6.1   SDS-PAGE分析　采用 Luo等[17] 的方法加

以改动，调节蛋白质浓度为 1 mg/mL，取 80 μL未处

理、单独等离子体处理 5 min、等离子体辅助糖基化

处理 5 min及其酶解后的样品，加入等量的上样缓冲

液，煮沸 5 min，冷却后吸取 10 μL上样，分离胶浓度

为 15%，浓缩胶浓度为 6%。电泳分离在 70 V下进

行 30 min，然后在 120 V下进行直至结束。结束后

取出胶板，用 0.5%考马斯亮蓝 R-250染色凝胶，并

在成像前脱色。

 1.2.6.2   粒径和电位测定　采用 Ma等[18] 的方法加

以改动后测定上述样品的粒径、电位。用磷酸盐缓

冲液（0.01  mol/L，pH6.5）将不同样品溶液稀释至

0.5 mg/mL，用离心机在 10000 r/min下离心 10 min，
然后在 25 ℃ 下使用纳米激光粒度仪测定其粒径和

电位。设置程序为 11次单独运行 10 s、平衡 120 s，
在 173°散射角下进行检测。结果由马尔文标准操作

程序（SOP）软件自动获得。

 1.2.6.3   内源荧光光谱扫描　参考杜童申等[19] 的方

法，用 0.01 mol/L、pH7.0的磷酸盐缓冲溶液将上述

样品稀释至质量浓度为 0.5 mg/mL，测定参数设置

为：激发波长 280 nm，扫描速度 1200 nm/min和范

围 300~420 nm，电压为 400 V，激发和发射狭缝宽度

均为 5 nm，平行测三次。

 1.2.6.4   紫外吸收光谱检测　参考 Ma等[18] 的方法，

将上述样品使用去离子水调整为浓度 0.05%（w/v），
使用紫外可见分光光度计在 25 ℃ 下进行测定，记

录 UV光谱扫描范围为 250~400 nm，采样间隔为

1.0 nm，扫描速度设置为高速，每个样品扫描三次。

 1.2.6.5   游离巯基和总巯基含量的测定　采用 Liu
等[20] 的方法加以改动后测定上述样品的巯基含量。

将 4 mg 5,5-二硫代-双 2-硝基苯甲酸（DTNB）溶解

在 1  mL Tris-甘氨酸-SDS缓冲液（0.1  mol/L  Tris、
0.1  mol/L甘 氨 酸 、 4  mmol/L  EDTA、 0.5%  SDS
（w/v）、pH8.0）中制备 Ellman试剂。将样品溶于含

8 mol/L尿素的 Tris-甘氨酸-SDS缓冲液中，使其终

浓度为 1 mg/mL，取 1 mL与 5 μL的 Ellman试剂混

合，并将混合物在室温下避光放置 30 min。在 412 nm
的波长下测定吸光度值，以计算总巯基含量。使用与

上述相同的方法测定游离巯基含量，但使用 PBS缓

冲液代替 8 mol/L尿素。分别根据公式（2）和（3）计
算总巯基和游离巯基含量：

总巯基(μmol/g) =
73.53×As1

C 式（2）

游离巯基(μmol/g) =
73.53×As2

C 式（3）

式中：As1 为溶于含尿素溶液的样品在 412 nm
处的吸光度，As2 为溶于不含尿素溶液的样品在

412 nm处的吸光度，C为样品浓度（mg/mL）。

 1.2.6.6   表面疏水性测定　根据 Wang等[21] 的方法，

采用 ANS荧光探针法测定各组样品的表面疏水性，

用 0.01  mol/L的 PBS溶液配制浓度分别为 0.02、
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0.1、0.25和 0.5 mg/mL的 β-LG溶液，取 1 mL稀释

后的 β-LG溶液和 10  μL  8  mmol/L的 ANS溶液

（0.01 mol/L，pH7.0）混合，检测荧光强度。参数设

定：激发波长为 390 nm、发射波长为 470 nm、狭缝

宽度均为 10 nm。以 β-LG的浓度为横坐标，以荧光

强度为纵坐标制作曲线，表面疏水性（H0）为拟合曲线

的斜率。

 1.2.6.7   圆二色光谱测定　采用李雪等[22] 的方法加

以改动，利用圆二色谱仪对 β-LG的二级结构进行测

定。将上述样品浓度调至 0.2 mg/mL，装入光径为

1 mm 的比色皿中，以去离子水作为空白组，扫描速

度、扫描范围和带宽分别设置为 100 nm/min、190~
260 nm和 1 nm，每个样品重复三次测定。然后用

CDNN Pro软件计算 α-螺旋、β-折叠、β-转角和无规

卷曲的相对含量。

 1.3　数据处理

所有数据结果均表示为平均值±标准差，每组数

据做 3个平行。采用 SPSS 27.0软件中方差分析

（Analysis of variance，ANOVA）模块的最小显著性

差异分析和 Duncan法对实验数据进行差异显著性

分析，采用 Origin 2021软件绘图。

 2　结果与分析

 2.1　糖基化程度分析

在 DBD等离子体的作用下，β-LG的氨基与还

原糖的羰基发生缩合，蛋白的游离氨基含量降低[23]。

如图 1所示，DBD等离子体处理 1 min时，β-LG的

糖基化程度为 20.3%，处理 5 min时糖基化程度显著

增加到 40.1%（P<0.05）。这一现象可能是因为 DBD
等离子体处理过程中产生的活性物质可活化蛋白质

表面基团，促进了与还原糖的缩合反应[24]。同样的，

Ji等[12] 将花生分离蛋白与葡聚糖混合溶液加热到

60 ℃ 后，使用 DBD等离子体处理 1.5 min后，糖基

化程度达到 21.62%，与本文结果相似。这表明等离

子体处理可以有效地促进蛋白与还原糖的结合，与

其他研究相比反应温度更低，速度更快。Nooshkam
等[25] 将乳清蛋白分离物在 90 ℃ 下与低酰基结冷胶

通过糖基化反应偶联 90 min，发现乳清蛋白的抗氧

化活性显著提升。Mengíbar等[26] 将不同分子量的

可溶性壳聚糖与 β-LG在 40 ℃ 下反应 7 d，发生糖

基化后 β-LG的抗氧化活性提高了 2~3倍。蛋白质

糖基化产物的还原能力提升可能与它们增加的羟基

和吡咯基团的电子供体以及还原酮化合物的氢原子

供体能力有关[25]。此外，在反应过程中，蛋白质结构

也可能发生明显变化，导致更多具有电子供体效应的

氨基酸残基暴露[27]。

 2.2　DBD等离子体辅助糖基化处理对 β-LG DPPH·
清除能力的影响

如图 2所示，β-LG的 DPPH·清除能力随着处理

时间的延长逐渐增强。单独 DBD等离子体处理

1 min和 3 min与 DBD等离子体辅助糖基化处理

1 min时，β-LG的 DPPH·清除能力与未处理组相比

没有显著变化（P>0.05）。当单独 DBD等离子体处

理时间增加到 5 min时，Trolox当量达到 117.7 μmol
TE/g，DBD等离子体辅助糖基化处理 5  min时

Trolox当量达到 129.8 μmol TE/g，与未处理组相比

显著提高（P<0.05）。这可能是因为 DBD等离子体

处理过程中，蛋白中的天冬氨酸残基在高能电子束胁

迫下受到·OH和 HO2·的攻击，生成了具有抗自由基

特性的二羰基化合物，形成了具有高抗氧化性能的产

物[28]。此外，糖基化产物可提供氢自由基，从而与

DPPH·形成稳定的 DPPH-H化合物 [29]，而 DBD等

离子体能够促进糖基化反应，因此，DBD等离子体

辅助糖基化处理后样品的 DPPH·清除能力进一步

提升。
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图 2    不同处理对 β-LG DPPH·清除能力的影响
Fig.2    Effects of different treatments on the DPPH scavenging

ability of β-LG
 

 2.3　DBD等离子体辅助糖基化处理对 β-LG的铁还

原能力的影响

FRAP法通常用于测定具有抗氧化能力的蛋白

水解产物和多肽作为还原剂的能力，过程是将多余的

电子提供给 Fe3+，将其还原为更稳定的二价铁离子

Fe2+[16]。如图 3所示，经单独 DBD等离子体处理和

DBD等离子体辅助糖基化处理的 β-LG的铁还原能

力与未处理组相比显著提高（P<0.05），并且随着处理

时间的增加，各处理组中 β-LG的铁还原能力不断提
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图 1    DBD等离子体辅助糖基化对 β-LG糖基化程度的影响

Fig.1    Effect of DBD plasma-assisted glycosylation
on the glycosylation degree of β-LG

注：不同小写字母表示差异显著（P<0.05）；图 2~图 4、图 6、
图 8~图 9同。
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高。处理 5  min时，单独 DBD等离子体处理和

DBD等离子体辅助糖基化处理使 β-LG的铁还原能

力从 20.8 μmol Fe2+/g 分别显著提高到了 56.7 μmol
Fe2+/g和 75.1 μmol Fe2+/g （P<0.05）。从结果可知，

经 DBD等离子体辅助糖基化处理相同时间的 β-
LG的铁还原能力高于单独 DBD等离子体处理的蛋

白，结果与 DPPH·清除能力一致。不同处理后 β-
LG抗氧化能力的提升差别可能与 β-LG结构的不同

改变以及具有自由基清除能力基团的不同程度增加

有关。Ma等[30] 也发现，超声辅助 α-乳清蛋白与木

糖的糖基化产物的总抗氧化能力显著高于单独超声

处理的 α-乳清蛋白。通过对 DPPH自由基清除效率

和铁还原活性的数据分析，发现 β-LG在这两个反应

体系中展现出了差异化的自由基清除能力，这表明同

一物质，在不同的抗氧化评价系统中，其表现出来的

自由基清除潜力也可能存在显著差异，这与 Li等[31]

的研究相似。由结果可得 P5与 G5抗氧化能力最

强，因此将 P5、G5组样品酶解，进行后续研究。
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图 3    不同处理对 β-LG铁还原能力的影响
Fig.3    Effects of different treatments on the FRAP of β-LG

 

 2.4　水解对 β-LG抗氧化能力的影响

蛋白质经酶水解之后，结构会发生改变，从而影

响其抗氧化活性[32]。如图 4A所示，随着水解时间的

延长，β-LG的 DPPH自由基清除能力不断提高。可

能是酶解之后，β-LG水解成了小分子量的活性肽，暴

露出 Cys、Trp和 Tyr等更多具有强抗氧化活性的氨

基酸残基[33]。在水解过程中，改性处理的 β-LG的

DPPH自由基清除能力高于未处理组，其中 DBD等

离子体辅助糖基化组的最高，G5-X组 DPPH自由基

清除能力达到 193.5  μmol  TE/g，显著高于单独

DBD等离子体处理组（170.2 μmol TE/g）和未处理组

（137.7 μmol TE/g）（P<0.05）。在图 4B中，样品的铁

还原能力在水解过程中的变化趋势与 DPPH自由基

清除能力基本一致，P5-X和 G5-X组铁还原能力达

到 93.0 μmol Fe2+/g和 96.5 μmol Fe2＋/g，显著高于

未处理组的 44.6  μmol  Fe2+/g（P<0.05）。类似地，

Li等[34] 研究发现糖基化处理的乳清蛋白经水解后比

单独糖基化处理的乳清蛋白表现出更强的抗氧化活

性，酶解可以改变乳清蛋白的结构，产生更多具有强

抗氧化能力的肽或游离氨基酸，以达到清除自由基的

目的。Zou等[35] 通过质谱分析发现 DBD等离子体

辅助糖基化处理可以通过改变蛋白的结构增加胰蛋

白酶的切割位点，并提高某些位点的水解效率，从而

降低虾原肌球蛋白的消化稳定性。因此，DBD等离

子体辅助糖基化处理可能会通过降低 β-LG的消化

稳定性，产生更多分子量较小的肽，提供更多的自由

基反应位点[35−36]，从而提高了处理组酶解产物的抗氧

化活性。
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图 4    水解对 β-LG抗氧化能力的影响
Fig.4    Effect of hydrolysis on antioxidant capacity of β-LG

 

 2.5　β-LG结构特性分析

 2.5.1   SDS-PAGE分析　图 5为不同处理对 β-LG
分子量的影响，β-LG在 18 kDa附近出现特征条带，

DBD等离子体处理后条带发生变化，说明可能在
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图 5    不同处理后 β-LG的 SDS-PAGE图

Fig.5    SDS-PAGE diagram of β-LG after different treatments
注：Marker：标准蛋白条带；β-LG：未处理组；P5：单独 DBD等
离子体处理 5 min组；G5：DBD等离子体辅助糖基化处理
5  min组；β-LG-X：未处理水解组；P5-X：P5水解组；G5-X：
G5水解组。
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DBD等离子体的活性粒子作用下，氨基酸残基被氧

化[37]。DBD等离子体辅助糖基化处理后 β-LG条带

出现明显上移，分子量增大，说明处理后乳糖共价连

接在了 β-LG上。这一观察结果与 Luo等[17] 的研究

结果一致，β-LG与葡聚糖进行糖基化处理后，β-
LG的条带向更高分子量的位置移动，且其条带强度

降低。Chen等[38] 也发现 β-LG与半乳糖结合后，蛋

白条带的分子量增大。酶水解之后各样品的分子条

带下移，β-LG被水解成分子量更小的肽段。以上结

果进一步证明了 DBD等离子体处理可以有效促进

β-LG的糖基化反应，并且酶解后 β-LG的完整结构

发生改变。

 2.5.2   平均粒径和 Zeta电位分析　不同处理后 β-
LG的平均粒径和 Zeta电位结果如图 6所示，单独

DBD等离子体处理和 DBD等离子体辅助糖基化处

理后，β-LG的粒径增大，这可能是由于氧化和糖基化

作用使蛋白的结构展开或发生分子间聚集[39]。经水

解后产物粒径继续增大，可能是因为肠消化液的弱碱

性环境，诱导这些带正电荷的碎片与周围带负电荷的

环境发生非共价键聚合[40]，使消化产物发生聚集。

Ma等[39] 也有相似的研究结果，超声波辅助糖基化修

饰的 β-LG在酶水解后粒径显著增大。
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图 6    不同处理后 β-LG平均粒径和 Zeta电位的变化
Fig.6    Changes in the average particle size and Zeta potential

of β-LG after different treatments
 

由于 β-LG在中性溶液中的电负性，所有样品

的 Zeta电位均为负值。DBD等离子体产生的活性

粒子与 β-LG之间相互作用诱导了蛋白质分子结构

的展开以及蛋白质内部带电氨基酸残基的暴露[41]，从

而使样品的 Zeta电位绝对值增大。DBD等离子体

辅助糖基化与酶水解之后 β-LG的结构进一步改变，

可能使内部带电氨基酸残基暴露的更多，从而使

Zeta电位绝对值显著增大（P<0.05），这与光谱分析

结果一致。

 2.5.3   内源荧光和紫外吸收光谱分析　荧光强度的

变化可以反映芳香族氨基酸暴露于溶液中的程度，

常用以表征蛋白质的三级构象变化 [42]。结果如

图 7A所示，β-LG在 332 nm处荧光强度的峰值最

大，经 DBD等离子体和 DBD等离子体辅助糖基化

处理 5  min后 β-LG的最大荧光强度分别下降了

76.91%和 81.74%。酶解后 β-LG的荧光强度进一

步下降，最大波长（λmax）发生红移，蛋白质的局部环

境变得更亲水，β-LG分子的芳香氨基酸（色氨酸和酪

氨酸）残基被转移到外部极性环境中[43]。该结果说

明 DBD等离子体处理导致 β-LG的结构改变，扰乱

了 Trp的微环境，糖基化过程进一步改变了 β-LG的

结构。由于芳香族氨基酸暴露于溶剂中，可以向缺乏

电子的自由基提供质子[44]，从而提高 β-LG的抗氧化

活性。

利用紫外吸收光谱进一步分析了单独 DBD等

离子体处理与 DBD等离子体辅助糖基化处理对 β-
LG三级结构的影响。结果如图 7B所示，在 275 nm
处观察到 β-LG的强吸收峰。经 DBD等离子体处理

后在 275 nm处 β-LG的紫外吸收强度降低，DBD等

离子体辅助糖基化处理后其紫外吸收强度进一步降

低。这表明 β-LG结构展开，色氨酸（Trp）和酪氨酸

（Tyr）残基所处微环境的极性发生变化[18]。另外，色

氨酸和酪氨酸特征吸收峰逐渐消失，其可能的原因为

色氨酸和酪氨酸残基被 DBD等离子体产生的活性

粒子氧化[45]。酶解之后的 β-LG吸收强度继续降低，

可能是结构的改变使内部的芳香氨基酸进一步暴露

在溶剂中，与内源荧光结果一致。

 2.5.4   游离巯基和总巯基含量分析　二硫键是维持

蛋白质高级结构的主要化学键。游离巯基含量的变

化可以被认为是蛋白质结构展开和变性的指示，反映

了蛋白质三级和四级结构的改变程度[46]。游离和总

巯基（-SH）的含量变化如图 8所示，单独 DBD等离

子体处理和 DBD等离子体辅助糖基化处理后，β-
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图 7    不同处理后 β-LG的内源荧光光谱（A）和紫外
吸收光谱（B）

Fig.7    Intrinsic fluorescence spectroscopy (A) and ultraviolet
absorption spectra (B) of β-LG after different treatments
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LG的总巯基含量与未处理组相比均显著降低（P<
0.05），从 12.8  μmol/g分别降低至 9.3和 8.5  μmol/
g。此外，单独 DBD等离子体处理和 DBD等离子

体辅助糖基化处理后，β-LG的游离巯基含量从

11.2 μmol/g分别降低至 8.7和 8.5 μmol/g，水解之后

各组样品的游离巯基含量进一步降低至 8.9、8.1和

7.5 μmol/g。游离巯基含量降低是由于 DBD等离子

体处理产生的活性粒子具有氧化游离巯基的能力。

同时，处理引起的蛋白结构变化使包裹在蛋白内部的

巯基暴露并被活性粒子氧化，从而使总巯基含量降

低。另外，G5和 G5-X组的总巯基含量与游离巯基

含量差值最低，说明此时隐藏在内部的巯基已基本完

全暴露，等离子体辅助糖基化处理可以对蛋白的结构

造成更大的改变。从结果可知，DBD等离子体辅助

糖基化处理后，β-LG中有更多的巯基被活性氧氧

化。其氧化产物中的亚磺酸衍生物可以高效地还原

过氧自由基（ROO）等自由基[47]，这可能造成了 β-
LG的抗氧化能力提升。
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图 8    不同处理后 β-LG的巯基含量
Fig.8    Sulfhydryl content of β-LG after different treatments

 

 2.5.5   表面疏水性分析　蛋白质分子中疏水氨基酸

的疏水相互作用是维持蛋白质高级结构的关键因

素。结果如图 9所示，单独 DBD等离子体处理与

DBD等离子体辅助糖基化处理后，β-LG的表面疏水

性分别降低了 48.1%与 55.2%（P<0.05），这可能是

由于 DBD等离子体处理导致 β-LG的三维结构被破

坏，疏水性氨基酸残基被 DBD等离子体产生的活性

粒子氧化，从而使 β-LG的表面疏水性降低[48]。另

外，当 DBD等离子体辅助糖基化处理后，连接的糖

基可能会阻碍 β-LG表面疏水基团与 ANS的结

合[49]，使蛋白的表面疏水性降低。此外，各组样品在

水解之后表面疏水性继续降低，其原因可能是暴露的

疏水基团通过疏水相互作用形成聚集体，导致这些疏

水基团被埋在结构中导致测得的表面疏水性降

低[50]。β-LG经水解后，肽键被酶切割断裂，导致蛋白

质的高级结构被破坏，不再保持原有的紧密折叠状

态。这种结构的变化虽然可能使得原本位于内部的

疏水基团更多地暴露到分子表面，但由于水解产生的

多肽片段通常较小，这些片段上形成的疏水区域相对

较少且更容易通过水分子的重排来缓解疏水效应[51]，

因此整体上蛋白质水解产物的表面疏水性是降低

的。此外，酶解过程中新形成的多肽链末端可能更加

亲水，从而进一步增加了亲水性。

 2.5.6   不同处理对 β-LG二级结构的影响　圆二色

谱（CD）是一种用于分析蛋白质二级结构的光谱技

术[52]。由图 10A可知，对于未处理的 β-LG，在 214 nm
附近有一个负峰，表明 β-LG有明确的 β-折叠结构。

改性处理后，β-LG的 CD光谱中的峰值发生变化，其

对应的波长出现明显左移，表明经不同处理后 β-
LG的二级结构发生了明显的变化。从图 10B中可

知单独 DBD等离子体处理与 DBD等离子体辅助糖

基化处理后 α-螺旋和无规卷曲结构的相对含量明显

降低，β-折叠的相对含量从未处理的 23.65%显著增

加到 33.39%与 37.92%（P<0.05），水解后 α-螺旋相

对含量继续减少，而 β-折叠的相对含量继续增大。α-
螺旋主要由相邻螺旋匝间的氢键稳定，DBD等离子
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图 9    不同处理对 β-LG表面疏水性的影响

Fig.9    Effect of different treatments on surface hydrophobicity
of β-LG

 

190 200 210 220 230 240 250 260 270
−80

−60

−40

−20

0

20

40

椭
圆

度
 (m

dg
e)

波长 (nm)

 β-LG
 P5
 G5
 β-LG-X
 P5-X
 G5-X

(A)

β-LG P5 G5 β-LG-X P5-X G5-X
0

20

40

60

80

100

相
对

含
量

 (%
)

无规卷曲  β-转角  β-折叠  α-螺旋

(B)

图 10    不同处理对 β-LG二级结构的影响

Fig.10    Effect of different treatments on β-LG secondary
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注：A.CD光谱；B.二级结构相对含量变化。
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体产生的活性粒子会破坏氢键，导致 α-螺旋结构解

体。α-螺旋结构的展开，暴露出更多的抗氧化氨基

酸，使得样品的抗氧化能力提升。酶解之后 β-折叠

结构进一步增加，蛋白结构展开，使得更多的抗氧化

位点暴露，从而进一步提高了产物的抗氧化能力[53]。

 2.6　β-LG抗氧化性与结构变化的相关性分析

以上结果表明，DBD等离子体辅助糖基化后 β-
LG的抗氧化活性增强，酶解后其抗氧化活性进一步

增强。不同处理后 β-LG结构和抗氧化活性的

Pearson’s相关性分析结果如图 11所示，β-折叠结构

相对含量与 DPPH·清除能力（r=0.907，P<0.01）以及

铁还原能力（r=0.807，P<0.01）呈极显著正相关，α-螺
旋结构相对含量与 DPPH·清除能力 （ r=−0.944，
P<0.01）、铁还原能力（r=−0.859，P<0.01）呈极显著

负相关，表明 β-LG二级结构的变化是抗氧化活性提

高的重要原因之一。DPPH·清除能力和铁还原能力

分别与紫外吸收强度、内源荧光强度、表面疏水性强

度和巯基含量呈极显著负相关（P<0.01），与粒径、电

位绝对值大小呈极显著正相关（P<0.01），表明 β-LG
抗氧化活性的大小与三级结构的变化具有显著相关

性。酶解后 β-LG的结构出现更明显的变化，芳香氨

基酸暴露程度增大，α-螺旋相对含量进一步降低、β-
折叠相对含量进一步提升。由于等离子体处理暴露

出了更多的酶切位点，使得 β-LG酶解后可以产生更

多的抗氧化活性肽。β-LG的抗氧化肽主要为肌肽和

谷胱甘肽，可通过螯合促氧化金属离子直接清除活性

氧[54]，因此经过酶解后其抗氧化活性进一步增强。
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图 11    不同处理后 β-LG结构和抗氧化活性的 Pearson’s
相关性分析热图

Fig.11    Pearson's correlation analysis heat map of β-LG
structure and antioxidant activity after different treatments

 

基于上述分析，DBD等离子体辅助糖基化促使

β-LG抗氧化活性提高的原因总结如下：a. 等离子体

处理过程中形成具有高抗氧化性能的产物，具有抗自

由基的特性；b. 糖基化产物可以作为供氢体，从而使

得糖基化改性后的 β-LG的自由基清除能力进一步

提高；c. 改性处理后更多的芳香氨基酸暴露于溶剂

中，可以向缺乏电子的自由基提供质子，以增加抗氧

化活性；d. 游离-SH基团的含量降低，由 ROS与硫醇

反应形成的亚磺酸衍生物可以高效地还原自由基；

e. 二级结构的展开暴露了蛋白质中潜在的抗氧化

位点。

 3　结论
本研究采用 DBD等离子体辅助糖基化对 β-

LG进行改性处理，并将改性后的样品进行水解，研

究改性处理对 β-LG抗氧化活性的影响，并建立构效

关系。结果发现 DBD等离子体可以在低温、短时间

内高效地促进 β-LG发生糖基化，并显著提高了 β-
LG的 DPPH自由基清除能力和铁还原能力。处理

后 β-LG的结构发生了明显变化，更多的芳香氨基酸

暴露于溶剂中，游离-SH基团的含量降低，α-螺旋相

对含量降低、β-折叠相对含量提高，这些结构变化是

β-LG抗氧化活性改善的主要原因。综上所述，本研

究的展开为 DBD等离子体辅助糖基化处理在蛋白

抗氧化能力改善方面提供了新思路，为蛋白质功能特

性改善提供了技术指导和理论支撑。
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