LIU Shifeng, DONG Wenjing, YANG Lan, et al. Improvement and Mechanism of Ganoderma lucidum Polysaccharides and Its Flora Metabolites on Insulin Resistance in HepG2 CellsJ. Science and Technology of Food Industry, 2023, 44(23): 314−321. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023020035.
Citation: LIU Shifeng, DONG Wenjing, YANG Lan, et al. Improvement and Mechanism of Ganoderma lucidum Polysaccharides and Its Flora Metabolites on Insulin Resistance in HepG2 CellsJ. Science and Technology of Food Industry, 2023, 44(23): 314−321. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023020035.

Improvement and Mechanism of Ganoderma lucidum Polysaccharides and Its Flora Metabolites on Insulin Resistance in HepG2 Cells

  • Objective: To investigate the effects of Ganoderma lucidum polysaccharides and its flora metabolites on the insulin resistance status of HepG2 cells and its mechanisms. Methods: Insulin resistant HepG2 (IR-HepG2) model was established with the combination of insulin (10−3 µmol/L) and dexamethasone (10 µmol/L). The cytotoxicity of Ganoderma lucidum polysaccharides (GLP) and Ganoderma lucidum polysaccharide flora metabolite (GLP-F) was evaluated using the CCK-8 method. The effects of GLP and GLP-F on glucose consumption and glycogen synthesis in IR-HepG2 cells were evaluated using the glucose kit and glycogen kit methods. Western blot assay was used to detect the effects of GLP and GLP-F on the phosphorylation or expression of IRS-1, AKT, GSK-3β, GLUT2, and PEPCK, key proteins in the insulin signaling cascade in IR-HepG2 cells. Results: Both GLP and GLP-F significantly increased glucose uptake and glycogen synthesis in IR-HepG2 cells (P<0.05). GLP-F promoted glucose consumption in IR-HepG2 cells significantly more than GLP (P<0.05). Western blot experiments showed that both GLP and GLP-F promoted IR-HepG2 cells IRS-1, P-AKT, P-GSK-3β, GLUT2 protein expression and inhibited PEPCK protein expression, and the inhibitory utility of GLP-F on PEPCK was significantly higher than that of GLP (P<0.05). Conclusions: GLP and its metabolism by intestinal flora-mediated production of GLP-F have the same biological effect of alleviating hepatic insulin resistance, and GLP-F has a more significant effect than GLP in promoting glucose consumption in IR-HepG2 cells and inhibiting their gluconeogenic rate-limiting enzyme activity.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return