Mechanism of Relieving Alcohol and Protecting Liver of Yigancao Herbal Tea Based on Network Pharmacology and Molecular Docking Technology
-
摘要: 目的:通过网络药理学方法和分子对接技术,探讨益肝草凉茶解酒保肝的作用机制。方法:利用中药系统药理学分析平台(Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform,TCMSP)、中医药综合数据库(Traditional Chinese Medicines Integrated Database,TCMID)、中药分子机制生物信息学分析工具(A Bioinformatics Analysis Tool for Molecular MechANism of Traditional Chinese Medicine,BATMAN-TCM)、SwissTargetPrediction和TargetNet等数据库,检索益肝草凉茶中9味中药的活性成分及相关靶点;通过比较毒理基因组学数据库(The Comparative Toxicogenomics Database,CTD)、功能关联蛋白网络数据库(Functional Protein Association Networks,STRING)以及蛋白数据库(Universal Protein,Uniprot)数据库获取肝病相关的靶点;通过药物作用靶点及肝病靶点互作筛选益肝草凉茶解酒保肝的靶点,进一步构建解酒保肝靶点的蛋白相互作用网络;通过生物学信息注释数据库(Functional Annotation Bioinformatics Microarray Analysis,DAVID)数据库进行靶点蛋白的基因功能与通路分析;采用Cytoscape软件进行网络构建与分析;借助AutoDock软件,将关键成分与重要靶点进行分子对接验证。结果:本研究共收集到益肝草凉茶的活性成分186个,可作用于298个靶点,其中涉及到肝脏疾病的靶点有78个。预测靶点主要作用于癌症的途径、钙信号通路、神经活性配体-受体相互作用、5-羟色胺能突触、cGMP-PKG信号通路等通路发挥保肝护肝作用。结论:本研究揭示了益肝草凉茶可通过多成分、多靶点、多通路的作用特点调控网络发挥解酒保肝的功效,为其治疗酒精性肝病的研究和临床应用提供科学依据。Abstract: Objective: To explore the mechanism of relieving alcohol and protecting liver of Yigancao herbal tea by network pharmacology and molecular docking technology. Methods: The active components of 9 traditional Chinese medicines in Yigancao herbal teawere obtained through Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), Traditional Chinese Medicines Integrated Database (TCMID) and Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine (BATMAN-TCM). The related targets were predicted by Swiss Target Prediction and Target Net databases, while the targets related to liver disease were collected by The Comparative Toxicogenomics Database (CTD), Functional Protein Association Network (STRING) and Uniprot database. The targets of Yigancao herbal tea were screened by drug action target and liver disease target interaction, and the protein interaction network of liver protection target was further constructed. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways involved in the targets were analyzed using the Databasefor Annotation, Visualization and Integrated Discovery (DAVID), and the network was constructed and analyzed by Cytoscape software. With the help of Auto Dock software, the key components and important targets were verified by molecular docking. Results: The results showed that 186 active components of Yigancao herbal tea were screened and 298 targets were obtained, including 78 targets related to liver diseases. These targets were mainly involved in Pathways in cancer, Calcium signal pathway, Neuroactive ligand-receptor interaction, Serotonergic synapse, cGMP-PKG signaling pathway and other pathways to protect liver. Conclusion: This study revealled that Yigancao herbal tea could exert the effect of relieving alcohol and protecting liver through the regulation network of multi-components, multi-targets and multi-pathways, which provides a scientific basis for the research and clinical application of Yigancao herbal tea in the treatment of alcoholic liver disease.
-
Key words:
- Yigancao herbal tea /
- relieving alcoholism /
- protecting liver /
- network pharmacology /
- molecular docking /
- mechanism
-
表 1 中药-活性成分-靶点网络中度值排名前30的化合物信息
Table 1. Information of the top 30 compounds in the traditional Chinese medicine-active ingredient-target network
编号 PubChem CID 化合物名称 来源 度值 C9 5281855 鞣花酸(Ellagic acid) 覆盆子 84 C181 5460988 没食子酸(Gadelaidic acid) 甘草 79 C10 5280343 槲皮素(Quercetin) 甘草、枸杞子、大枣、栀子、
苦丁茶、鱼腥草、覆盆子,蒲公英73 C34 5363269 油酸乙酯(NF)(Ethyl oleate (NF)) 栀子 73 C180 3349565 二十碳五烯酸(Icos-5-enoic acid) 甘草 73 C53 5281707 香豆素(Coumestrol) 大枣 72 C31 5281232 番红花酸(Crocetin) 栀子 71 C11 5280863 山柰酚(Kaempferol) 甘草、栀子、苦丁茶、鱼腥草、覆盆子 69 C29 10970376 5-羟基-7-甲氧基-2-(3,4,5-三甲氧基苯基)
色原酮 (5-hydroxy-7-methoxy-2-(3,4,5-trimethoxyphenyl)chromone)栀子 69 C170 5318869 熊竹素(Jaranol) 甘草 69 C33 5282184 甘露醇(Mandenol) 枸杞子、栀子 67 C183 5317768 刺果甘草查耳酮(Glypallichalcone) 甘草 66 C98 N/A (E,E)-1-乙基十八烷基-3,13-二烯酸酯
((E,E)-1-ethyl octadeca-3,13-dienoate)枸杞子 65 C162 5316900 槲皮素(Quercetin der.) 甘草 64 C30 5280862 3-甲基山柰酚(3-Methylkempferol) 栀子 63 C139 11558452 1,3-二羟基-9-甲氧基-6-苯并呋喃[3,2-c]
色原酮(1,3-dihydroxy-9-methoxy-6-benzofurano[3,2-c]chromenone)甘草 62 C142 5318679 异槲皮酚(Isotrifoliol) 甘草 62 C182 5318999 甘草查耳酮B(Licochalcone B) 甘草 61 C52 10146 核黄素(Nuciferin) 大枣 59 C167 5281654 异鼠李素(Isorhamnetin) 甘草 58 C179 354368 7-甲氧基-2-甲基异黄酮 (7-Methoxy-2-methyl isoflavone) 甘草 58 C55 5280537 穆坪马兜铃酰胺(Moupinamide) 大枣 57 C92 N/A 7-O-甲基木犀草素-6-C-β-葡萄糖苷_qt (7-O-Methylluteolin-6-C-beta-glucoside_qt) 枸杞子 56 C159 10881804 (E)-1-(2,4-dihydroxyphenyl)-3-(2,2-dimethylchromen-6-yl)prop-2-en-1-one 甘草 56 C28 638072 角鲨烯(Supraene) 栀子 55 C127 15380912 kanzonols W 甘草 54 C176 92503 驴食草酚(Vestitol) 甘草 54 C172 25015742 7,2',4'-三羟基-5-甲氧基-3-芳基香豆素
(7,2',4'-trihydroxy-5-methoxy-3-arylcoumarin)甘草 52 C6 5280378 芒柄花黄素(Formononetin) 甘草、葛根 51 C161 336327 苜蓿素(Medicarpin) 甘草 51 表 2 有效靶点作用于肝病的信息
Table 2. Information of effective targets acting on liver disease
疾病ID 疾病名称 疾病类别 注释基因数量 MESH:D008107 肝病 消化系统疾病 78 MESH:D008103 肝硬化 消化系统疾病|病理学(过程) 44 MESH:D008106 肝硬化,实验性 消化系统疾病|病理学(过程) 35 MESH:D008113 肝肿瘤 癌症|消化系统疾病 28 MESH:D006528 癌, 肝细胞 癌症|消化系统疾病 23 MESH:D056486 化学和药物诱导 消化系统疾病 17 MESH:D005234 肝损伤 消化系统疾病 13 MESH:D048550 脂肪肝 消化系统疾病 9 MESH:D065626 肝功能不全 消化系统疾病 8 MESH:D002780 非酒精性脂肪肝 消化系统疾病 7 MESH:D006501 胆汁淤积,肝内 消化系统疾病|代谢性疾病| 6 MESH:D017093 肝性脑病 神经系统疾病 6 MESH:D006529 肝衰竭 消化系统疾病 6 MESH:D008105 肝肿大 消化系统疾病|病理学(解剖条件) 5 MESH:D058625 肝硬化,胆汁性 消化系统疾病|病理学(过程) 3 表 3 关键成分及对照药与NOS2、PTGS1、ESR1、CYP19A1的结合能
Table 3. Binding energy of key components and control drugs with NOS2, PTGS1, ESR1 and CYP19A1
类别 来源 化学成分 靶点 Energy of Binding
(kcal/mol)化学药物 熊去氧胆酸
胶囊熊去氧胆酸 NOS2 −3.83 PTGS1 −2.58 ESR1 −2.78 CYP19A1 −3.47 化学药物 双环醇片 双环醇 NOS2 −1.34 PTGS1 −1.28 ESR1 −0.51 CYP19A1 −1.73 中药 覆盆子 鞣花酸 NOS2 −1.80 PTGS1 −2.88 ESR1 −2.14 CYP19A1 −3.83 中药 甘草 没食子酸 NOS2 −0.13 PTGS1 −0.17 ESR1 0.52 CYP19A1 −0.58 中药 甘草,枸杞子,
大枣,栀子,
苦丁茶,鱼腥草,
覆盆子,蒲公英槲皮素 NOS2 −1.93 PTGS1 −2.44 ESR1 −1.65 CYP19A1 −2.23 中药 栀子 油酸乙酯 NOS2 0.29 PTGS1 0.27 ESR1 0.90 CYP19A1 0.78 中药 甘草 二十碳五烯酸 NOS2 −0.36 PTGS1 0.20 ESR1 0.73 CYP19A1 0.31 中药 大枣 香豆素 NOS2 −3.35 PTGS1 −3.19 ESR1 −3.25 CYP19A1 −3.96 中药 栀子 番红花酸 NOS2 −2.16 PTGS1 −2.97 ESR1 −2.86 CYP19A1 −2.08 中药 甘草、栀子、
苦丁茶、鱼腥草、
覆盆子山柰酚 NOS2 −2.52 PTGS1 −2.59 ESR1 −2.33 CYP19A1 −2.21 中药 栀子 5-羟基-7-甲氧基-
2-(3,4,5-三甲氧基
苯基)色原酮NOS2 −2.24 PTGS1 −2.08 ESR1 −1.89 CYP19A1 −2.27 中药 甘草 熊竹素 NOS2 −1.90 PTGS1 −2.51 ESR1 −2.46 CYP19A1 −2.41 -
[1] Wang W J, Xiao P, Xu H Q, et al. Growing burden of alcoholic liver disease in China: A review[J]. World Journal of Gastroenterology,2019,25(12):1445−1456. doi: 10.3748/wjg.v25.i12.1445 [2] 杨柳, 薄颖异, 于冰莉, 等. 中医药防治酒精性肝病概况及相关机制研究进展[J]. 中成药,2020,42(3):719−726. doi: 10.3969/j.issn.1001-1528.2020.03.032 [3] 贵州苗姑娘食品有限责任公司. 一种益肝草植物饮料: CN201510303774.6[P]. 2015-09-23. [4] BaptisteB, KarineA, PierreD, et al. Network-based approaches in pharmacology[J]. Molecular Informatics,2017,36(10):1−11. [5] 张华敏, 刘思鸿, 高宏杰, 等. 复方中药网络药理学方法研究进展[J]. 中国医院用药评价与分析,2019,19(10):1270−1273, 1276. [6] Li B J, Rui J Q, Ding X J, et al. Exploring the multicomponent synergy mechanism of Banxia Xiexin Decoction on irritable bowel syndrome by a systems pharmacology strategy[J]. Journal of Ethnopharmacology,2019,.233:158−168. doi: 10.1016/j.jep.2018.12.033 [7] Huang P, Ke H W, Qiu Y, et al. Systematically characterizing chemical profile and potential mechanisms of Qingre Lidan Decoction acting on cholelithiasis by integrating UHPLC-QTOF-MS and network target analysis[J]. Evidence-Based Complementary and Alternative Medicine,2019,2019(2):1−19. [8] 唐吉伟, 郑叁, 曹学帅, 等. 基于网络药理学的“蒲公英-夏枯草”药对治疗乳腺癌作用机制研究[J]. 中国医院用药评价与分析,2020,20(1):44−49. [9] 赵光耀, 赵坤, 蒋文雯, 等. 基于网络药理学对蒲公英抑制α-葡萄糖苷酶活性成分及作用机制的研究[J]. 天然产物研究与开发,2020,32(3):403−413, 440. [10] 程书权. 如何合理应用抗炎保肝药物[J]. 肝博士,2018(5):43−44. [11] Forster S C, Kumar N, Anonye B O, et al. A human gut bacterial genome and culture collection for improved metagenomic analyses[J]. Nature Biotechnology,2019,37(2):186−192. doi: 10.1038/s41587-018-0009-7 [12] Hentze M W, Castello A, Schwarzl T, et al. A brave new world of RNA-binding proteins[J]. Nature reviews. Molecular Cell Biology,2018,19(5):327−341. doi: 10.1038/nrm.2017.130 [13] 梁丽, 毕倩, 董金材, 等. 具有保肝作用的天然药物开发进展[J]. 生物资源,2018,40(2):148−158. [14] 魏芬芬, 王文娟, 贺青华, 等. 枸杞多糖对小鼠酒精性肝损伤的保护作用及机制研究[J]. 药物评价研究,2019,42(5):852−857. [15] 刘馨宇. 蒲公英甾醇对小鼠酒精性和免疫性肝损伤保护作用及机制研究[D]. 吉林: 延边大学, 2018: 13-18. [16] 张海全, 钟晓坤, 黄勤英, 等. 酶法提取苦丁茶熊果酸的工艺优化及其对CCl4致小鼠肝损伤的保护作用[J]. 食品工业科技,2019,40(17):161−166. [17] Karimi M Y, Fatemi I, Kalantari H, et al. Ellagic acid prevents oxidative stress, inflammation, and histopathological alterations in Acrylamide-Induced hepatotoxicity in Wistar rats[J]. Journal of Dietary Supplements,2019:1−12. [18] Zhang C, Sheng L, Yang T, et al. Effects of ellagic acid on inflammation and oxidative stress induced by AKT gene transfection in mice with fatty liver disease[J]. China Journal of Chinese Materia Medica,2019,44(9):1869−1875. [19] Afifi N A, Ibrahim M A, Galal M K. Hepatoprotective influence of quercetin and ellagic acid on thioacetamide-induced hepatotoxicity in rats[J]. Canadian Journal of Physiology and Pharmacology,2018,96(6):624−629. doi: 10.1139/cjpp-2017-0651 [20] Zhou Y, Jin H, Wu Y, et al. Gallic acid protects against ethanol-induced hepatocyte necroptosis via an NRF2-dependent mechanism[J]. Toxicol In Vitro,2019,57:226−232. doi: 10.1016/j.tiv.2019.03.008 [21] Guo X P, Lin H K, Liu J J, et al. Quercetin protects hepatocyte from ferroptosis by depressing mitochondria-reticulum interaction through PERK downregulation in alcoholic liver (P06-056-19)[J]. Curr Dev Nutr,2019,3(Suppl 1). [22] 宋鑫华. 甘草香豆素预防和治疗肝癌的作用及机制研究[D]. 北京: 中国农业大学, 2018: 23-32. [23] Zhang W L, Zhong W, Sun Q, et al. Hepatic overproduction of 13-HODE due to ALOX15 upregulation contributes to alcohol-induced liver injury in mice[J]. Scientific Reports,2017,7(1):8976. doi: 10.1038/s41598-017-02759-0 [24] Marin V, Poulsen K, Odena G, et al. Hepatocyte-derived macrophage migration inhibitory factor mediates alcohol-induced liver injury in mice and patients[J]. Journal of Hepatology: The Journal of the European Association for the Study of the Liver,2017,67(5):1018−1025. [25] Kumamoto T, Togo S, Ishibe A, et al. Role of nitric oxide synthesized by nitric oxide synthase 2 in liver regeneration[J]. Liver International,2008,28(6):865−877. doi: 10.1111/j.1478-3231.2008.01712.x [26] Khristi V, Ratri A, Ghosh S, et al. Liver transcriptome data of Esr1 knockout male rats reveals altered expression of genes involved in carbohydrate and lipid metabolism[J]. Data in Brief,2019,22:771−780. doi: 10.1016/j.dib.2018.12.089 [27] Khristi V, Ratri A, Ghosh S, et al. Disruption of ESR1 alters the expression of genes regulating hepatic lipid and carbohydrate metabolism in male rats[J]. Molecular and Cellular Endocrinology,2019,490:47−56. doi: 10.1016/j.mce.2019.04.005 [28] Nuria OV, Simona H, Sabineu V, et al. Calcium signaling in liver injury and regeneration[J]. Front Med (Lausanne),2018,5:192. [29] 夏婷, 张瑾, 姚佳慧, 等. 氧化应激在酒精性肝病中作用机制的研究进展[J]. 中国药理学通报,2017,33(10):1353−1356. doi: 10.3969/j.issn.1001-1978.2017.10.006 [30] Eunüs S A, Nikolai P. Calcium signaling as a therapeutic target for liver steatosis[J]. Trends in Endocrinology & Metabolism,2019,30(4):270−281. [31] 刘素彤, 赵文霞. 非酒精性脂肪性肝病相关肝细胞癌的发病机制[J]. 临床肝胆病杂志,2019,35(7):1621−1625. doi: 10.3969/j.issn.1001-5256.2019.07.043 [32] Wojcikowski J, Daniel W A. The role of the nervous system in the regulation of liver cytochrome p450[J]. Current drug metabolism,2011,12(2):124−138. doi: 10.2174/138920011795016908 -