Degradation of Multi-Components Polycyclic Aromatic Hydrocarbons in Oyster by Photodynamic Technology
-
摘要: 目的:寻求一种高效、经济、安全可靠的新型食品中有机污染物降解方法。方法:通过比较三种光敏剂(姜黄素、核黄素、金丝桃素)对牡蛎肉外观品质的影响以及光动力对水溶液中多环芳烃的降解效果,对其进行工艺优化,在最优条件下探究光动力对牡蛎中多环芳烃的降解作用。结果:当光敏剂浓度为10 µmol/L时,富集量高达89.68%~92.22%,且牡蛎肉为正常的奶白色,并未发生变化。而当浓度为20 µmol/L时,富集量仅为71.90%~78.62%,牡蛎肉颜色发生肉眼可见的由白色到黄色的变化。与核黄素和金丝桃素相比,姜黄素介导的光动力降解效果最佳,光照15 min时降解率高达91.08%。因此,确定的最佳条件为:光敏剂为姜黄素,浓度10 µmol/L,光照时间15 min。在最优条件下,相比于空白对照组,光动力对牡蛎中多环芳烃的降解率达到21.92%~88.46%。结论:光动力方法可有效降解牡蛎中的多环芳烃,该技术对于水产品中残留多环芳烃的降解是一种可行的方法,应用前景广阔。Abstract: Objective: Finding an efficient, economic, safe and reliable method for degradation of organic pollutants in food. Methods: By comparing the effects of three photosensitizers (curcumin, riboflavin and hypericin) on the appearance quality of oyster meat and the degradation effect of photodynamic technology (PDT) on polycyclic aromatic hydrocarbons (PAHs) in aqueous solution, the process conditions were optimized, and the degradation effect of photodynamic on PAHs in oysters was explored under the optimal conditions. Results: When the concentration of photosensitizer was 10 μmol/L, the accumulation was up to 89.68%~92.22%, and the color of oyster meat was normal milky white without any change. However, when the concentration was 20 µmol/L, the accumulation was only 71.90%~78.62%, and the color of oyster meat changed significantly from white to yellow. Compared with riboflavin and hypericin, the degradation effect of curcumin-mediated photodynamic on PAHs was the best, and the degradation rate was up to 91.08% under 15 min illumination. Therefore, the optimal conditions were determined as follows: The photosensitizer was curcumin, the concentration was 10 µmol/L, and the illumination time was 15 min. Compared with the blank control group, the degradation rate of PAHs in oysters in the PDT group reached 21.92%~88.46% under the optimal conditions. Conclusion: PDT could effectively degrade polycyclic aromatic hydrocarbons (PAHs) in oysters. This technology would be a feasible method for the degradation of residual PAHs in aquatic products and would have a broad application prospect.
-
Key words:
- oyster /
- polycyclic aromatic hydrocarbons /
- photodynamic technique /
- curcumin /
- degradation
-
表 1 牡蛎中富集姜黄素的量
Table 1. Quantity of curcumin bio-accumulate by oysters
姜黄素浓度
(µmol/L)富集前水体
的吸光值富集前水体中
姜黄素质量(mg)富集后海水
的吸光值富集后水体中
姜黄素质量(mg)姜黄素
富集量(%)牡蛎中姜黄素
添加量(mg/g)5 0.0394±0.0025 10.05±0.60 0.0004±0.0002 0.85±0.04 98.98±0.07 0.092±0.06 10 0.0702±0.0008 17.33±0.20 0.0056±0.0006 2.09±0.15 91.96±0.89 0.152±0.02 20 0.1474±0.0040 35.57±0.94 0.0315±0.0006 8.19±0.15 78.62±0.01 0.274±0.09 注:数据以平均值±标准差的形式表示,每个样品进行三次平行实验。表2~表4同。 表 2 牡蛎中富集核黄素的量
Table 2. Quantity of riboflavin bio-accumulate by oysters
核黄素浓度
(µmol/L)富集前水体
的吸光值富集前水体中
核黄素质量(mg)富集后海水
的吸光值富集后水体中
核黄素质量(mg)核黄素
富集量(%)牡蛎中核黄素
添加量(mg/g)5 0.0109±0.0010 9.79±0.67 0.0002±0.0002 1.79±1.55 98.15±0.17 0.080±0.07 10 0.0245±0.0012 18.93±0.78 0.0019±0.0006 3.45±0.39 92.22±0.38 0.155±0.08 20 0.0508±0.0006 36.27±0.40 0.0139±0.0004 11.60±0.28 72.62±0.33 0.247±0.04 表 3 牡蛎中富集金丝桃素的量
Table 3. Quantity of hypericin bio-accumulate by oysters
金丝桃素浓度
(µmol/L)富集前水体
的吸光值富集前水体中金丝桃
素质量(mg)富集后海水
的吸光值富集后水体中金丝桃
素质量(mg)金丝桃素
富集量(%)牡蛎中金丝桃素
添加量(mg/g)5 0.0056±0.0003 12.95±0.50 0.0005±0.0003 4.37±0.44 91.06±0.48 0.086±0.05 10 0.0107±0.0004 21.47±0.59 0.0011±0.0004 5.44±0.68 89.68±0.34 0.160±0.06 20 0.0253±0.0004 46.02±0.59 0.0071±0.0004 15.41±0.59 71.90±0.39 0.306±0.06 表 4 光动力对牡蛎中多环芳烃的降解率
Table 4. Degradation rate of PAHs in oyster by photodynamic technology
序号 PAHs 出峰时间(min) 降解率(%) 1 萘 4.494 75.09±0.34 2 苊烯 5.859 58.02±0.12 3 苊 6.010 88.46±0.67 4 芴 6.441 47.58±1.49 5 菲 7.261 31.82±0.12 6 蒽 7.301 36.73±0.95 7 荧蒽 8.290 24.89±1.25 8 芘 8.505 21.92±1.28 9 苯并[a]蒽 9.883 25.49±0.63 10 䓛 9.949 25.00±0.97 11 苯并[b]荧蒽 − − 12 苯并[k]荧蒽 − − 13 苯并[a]芘 − − 14 茚并[1,2,3-c,d]芘 − − 15 二苯并[a,h]蒽 − − 16 苯并[g,h,i]苝 − − -
[1] 张辉. 太平洋牡蛎(Crassostrea gigas Thunberg)中氨基酸和寡肽的提取及活性初步研究[D]. 青岛: 中国海洋大学, 2005. [2] Gao Y, Wu J, Li Z, et al. Curcumin-mediated photodynamic inactivation (PDI) against DH5a contaminated in oysters and cellular toxicological evaluation of PDI-treated oysters[J]. Photodiagnosis and Photodynamic Therapy,2019,26(JUN.):244−251. [3] Liu F, Li Z, Cao B, et al. The effect of a novel photodynamic activation method mediated by curcumin on oyster shelf life and quality[J]. Food Research International,2016,87(sep.):204−210. [4] 戴文津, 杨小满, 陈华, 等. 水产品中主要化学污染物质的研究[J]. 湖北农业科学,2011,50(3):560−563. doi: 10.3969/j.issn.0439-8114.2011.03.040 [5] 慕俊泽, 张勇, 彭景吓. 多环芳烃光降解研究进展[J]. 安全与环境学报,2005(3):69−74. doi: 10.3969/j.issn.1009-6094.2005.03.020 [6] 刘芸, 于维森, 吕晓静, 等. 青岛市市售贝类中多环芳烃与多氯联苯的含量水平、组成特征及居民健康影响风险评估[J]. 现代预防医学,2018,45(23):4269−4272. [7] 徐香. 海洋环境中有机污染物降解机理及构效关系的理论研究[D]. 青岛: 中国海洋大学, 2012. [8] Yi W, Xiao H J, Jian Y H, et al. Trophic dilution of polycyclic aromatic hydrocarbons (PAHs) in a marine food web from Bohai Bay, north China[J]. Environmental Science & Technology,2007,41(9):3109−3114. [9] Baumard P, Budzinski H, Garrigues P, et al. Concentrations of PAHs (polycyclic aromatic hydrocarbons) in various marine organisms in relation to those in sediments and to trophic level[J]. Marine Pollution Bulletin,1998,36(12):951−960. doi: 10.1016/S0025-326X(98)00088-5 [10] Piccardo M T, Coradeghini R, Valerio F. Polycyclic aromatic hydrocarbon pollution in native and caged mussels[J]. Marine Pollution Bulletin,2001,42(10):951−956. doi: 10.1016/S0025-326X(01)00057-1 [11] 江锦花, 董官真. 海洋环境中多环芳烃的污染状况及源解析[J]. 水资源保护,2008(5):48−54. doi: 10.3969/j.issn.1004-6933.2008.05.012 [12] 马虹. 油田采出水中多环芳烃的光催化氧化处理方法研究[D]. 北京: 华北电力大学, 2012. [13] Wainwright M. Photodynamic antimicrobial chemotherapy (PACT)[J]. The Journal of antimicrobial chemotherapy,1998(1):13−28. [14] Miri K, Haw J, Hyun P. Topical PDT in the treatment of benign skin diseases: Principles and new applications[J]. International Journal of Molecular Sciences,2015,16(10):23259−23278. doi: 10.3390/ijms161023259 [15] RobleroBartolón G V, RamónGallegos E. Use of nanoparticles (NP) in photodynamic therapy (PDT) against cancer[J]. Gaceta Médica De México,2015,151(1):85. [16] 曹斌斌. 光动力非热力杀菌技术在生鲜牡蛎加工中的应用[D]. 青岛: 中国海洋大学, 2015. [17] 于金珅, 张芳. 姜黄素介导的光动力技术对鲜切马铃薯的杀菌效果[J]. 食品工业科技,2020,42(4):259−263, 270. [18] 王德选, 王万铁, 郑绿珍, 等. 金丝桃素介导的光动力学疗法对K562细胞活性与自噬的影响[J]. 温州医科大学学报,2020,50(4):285−289. doi: 10.3969/j.issn.2095-9400.2020.04.006 [19] 蒋丽金, 何玉英. 竹红菌素类光敏剂的光物理、光化学及光生物[J]. 科学通报,2000,45(19):2019−2032. doi: 10.3321/j.issn:0023-074X.2000.19.002 [20] 陆长元, 韩镇辉, 蔡喜臣, 等. 核黄素(维生素B2)的光物理和光化学性质[J]. 中国科学: 化学,2000,30(5):428−435. [21] Jiang Y, Leung A W, Hua H, et al. Photodynamic action of LED-activated curcumin against Staphylococcus aureus involving intracellular ROS increase and membrane damage[J]. International Journal of Photoenergy,2014(6):11054−11066. [22] 邵文丽, 姚佳, 张雪青, 等. 金丝桃素介导的光动力学疗法在肿瘤治疗中的应用研究[J]. 安徽农业科学,2016(31):122−124. doi: 10.3969/j.issn.0517-6611.2016.31.044 [23] Keshishyan E S, Zaporozhtseva Z V, Zenina O M, et al. Photodynamic inactivation of bacteria in vitro under the effect of blue light[J]. Bulletin of Experimental Biology & Medicine,2015,158(4):475−477. [24] Wu J, Hou W, Cao B, et al. Virucidal efficacy of treatment with photodynamically activated curcumin on murine norovirus bio-accumulated in oysters[J]. Photodiagnosis & Photodynamic Therapy,2015,12(3):385−392. [25] Zhang X, Wu J, Xu C, et al. Inactivation of microbes on fruit surfaces using photodynamic therapy and its influence on the postharvest shelf-life of fruits[J]. Food Science and Technology International,2020:108201322092133. doi: 10.1177/1082013220921330 [26] Gong C, Li Y, Gao R, et al. Inactivation of specific spoilage organism (Pseudomonas) of sturgeon by curcumin-mediated photodynamic inactivation[J]. Photodiagnosis and Photodynamic Therapy,2020:101827. doi: 10.1016/j.pdpdt.2020.101827 [27] Wu J, Mou H, Xue C, et al. Photodynamic effect of curcumin on Vibrio parahaemolyticus[J]. Photodiagnosis & Photodynamics Therapy,2016(15):36−39. [28] Aponiene K, Paskeviciute E, Reklaitis I, et al. Reduction of microbial contamination of fruits and vegetables by hypericin-based photosensitization: Comparison with other emerging antimicrobial treatments[J]. Journal of Food Engineering,2015,144(Jan.):29−35. [29] 曹斌斌, 武娟, 许川山, 等. 姜黄素介导的光动力冷杀菌方法对牡蛎杀菌的效果研究[J]. 食品科学,2016,37(5):46−49. [30] 武娟. 生鲜牡蛎中大肠杆菌和诺如病毒的检测及光动力非热力杀菌相关研究[D]. 青岛: 中国海洋大学, 2015. [31] 廖文崇, 朱长波, 张汉华. 体规格对香港巨牡蛎摄食和代谢的影响[J]. 中国渔业质量与标准,2011,1(3):41−46. [32] 刘哲, 田华. 多环芳烃在风积沙土壤中的光降解研究[J]. 干旱区资源与环境,2015,29(9):193−197. [33] 李万龙. 水体中菲的光降解途径与影响因素研究[D]. 沈阳: 辽宁大学, 2016. [34] 章豪, 杨挺, 江潇潇, 等. 污泥中多环芳烃的光催化降解[J]. 浙江农业科学,2015,56(12):2039−2041. [35] 武娟, 刘一鸣, 李夏, 等. 光敏化姜黄素的细胞毒理学检验[J]. 食品科学,2016,37(3):205−210. doi: 10.7506/spkx1002-6630-201603037 -