• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020

基于网络药理学分析金钗石斛治疗神经系统疾病的药效物质基础及作用机制

段灿灿 王清纯 赵泽粉 蔡秋雪 刘方 晏仁义 何天目 王雅芝 李桂琳 张建永

段灿灿,王清纯,赵泽粉,等. 基于网络药理学分析金钗石斛治疗神经系统疾病的药效物质基础及作用机制[J]. 食品工业科技,2021,42(13):1−10. doi:  10.13386/j.issn1002-0306.2020110140
引用本文: 段灿灿,王清纯,赵泽粉,等. 基于网络药理学分析金钗石斛治疗神经系统疾病的药效物质基础及作用机制[J]. 食品工业科技,2021,42(13):1−10. doi:  10.13386/j.issn1002-0306.2020110140
DUAN Cancan, WANG Qingchun, ZHAO Zefen, et al. Analysis of the Pharmacodynamic Material Basis and Mechanism of Dendrobium Nobile in the Treatment of Nervous System Diseases Using Integrative Network Pharmacology[J]. Science and Technology of Food Industry, 2021, 42(13): 1−10. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020110140
Citation: DUAN Cancan, WANG Qingchun, ZHAO Zefen, et al. Analysis of the Pharmacodynamic Material Basis and Mechanism of Dendrobium Nobile in the Treatment of Nervous System Diseases Using Integrative Network Pharmacology[J]. Science and Technology of Food Industry, 2021, 42(13): 1−10. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020110140

基于网络药理学分析金钗石斛治疗神经系统疾病的药效物质基础及作用机制

doi: 10.13386/j.issn1002-0306.2020110140
基金项目: 国家自然科学基金项目(81560736,81803838);贵州省教育厅科技拔尖人才支持项目(黔教合KY字[2017]078);贵州省中药管理局课题(QZYY-2015-153);贵州石斛产业发展研究中心科研课题(黔石科合[2019003]);遵义市科技项目(遵市科合社字(2016)33号);遵义医学院硕士启动基金(F-726);贵州省研究生科研基金立项课题(黔教合YJSCXJH〔2020〕169)。
详细信息
    作者简介:

    段灿灿(1983−),女,硕士,讲师,研究方向:中药复方作用机理研究,E-mail:duancancan2008@126.com

    通讯作者:

    张建永(1983−),男,博士,副教授,研究方向:中药系统生物学研究,E-mail:zhangjianyong2006@126.com

  • 中图分类号: R285.5

Analysis of the Pharmacodynamic Material Basis and Mechanism of Dendrobium Nobile in the Treatment of Nervous System Diseases Using Integrative Network Pharmacology

  • 摘要: 目的:基于网络药理学分析金钗石斛治疗神经系统疾病的药效物质基础及作用机制。方法:检索Si-noMed、中国知网、万方等数据库获取金钗石斛中的化学成分,将成分录入TargetNet数据库以获取潜在靶点,再将靶点导入CTD数据库检索相关疾病,导入DAVID数据库获取靶点的基因功能及作用通路。用Cytoscape软件构建“成分-靶点”及“靶点-疾病”网络等进一步可视化整合分析。并采用AutoDock Vina软件对关键成分与靶点进行分子对接验证。结果:本研究共收集到金钗石斛中47个成分,可作用于88个靶点,进一步分析可知Nobilin D、Nobliomethylene、decumbic acid B、(+)-dendrolactone、(−)-denobilone A和Nobilin等成分是金钗石斛治疗神经系统疾病的主要药效物质基础,可作用于MIF、ERS2、CYP19A1、ABCG2、TLR9和DRD5等关键靶点,通过调节Sphingolipid signaling pathway、Cocaine addiction及Serotonergic synapse等信号通路来发挥治疗神经系统疾病的作用。结论:本研究揭示了金钗石斛多成分、多靶点、多途径的作用规律,为深入开展金钗石斛治疗神经系统疾病的作用机制研究提供新的依据。
  • 图  1  金钗石斛成分-靶点网络图

    Figure  1.  Composition target network of Dendrobium nobile

    图  2  金钗石斛靶点-疾病网络图

    Figure  2.  Target disease network of Dendrobium nobile

    图  3  金钗石斛潜在作用靶点的PPI网络图

    Figure  3.  PPI network of potential targets of Dendrobium nobile

    图  4  靶点的GO生物进程层级关系

    Figure  4.  The hierarchy of go biological process of target

    图  5  前20个KEGG通路富集气泡图(P<0.05)

    Figure  5.  Enrichment bubble diagram of the first 20 KEGG pathways (P<0.05)

    图  6  ESR2、MIF、ABCG2、CYP19A1与化合物结合能最低的最佳对接构象

    Figure  6.  The best docking conformation of ESR2, MIF, ABCG2, CYP19A1 and the compounds with the lowest binding energy

    注:A.ESR2与化合物C25的最佳对接构象;B. MIF与化合物C42最佳对接构象;C. ABCG2与化合物C25的最佳对接构象;D.CYP19A1与化合物C32的最佳对接构象。

    表  1  金钗石斛中的化学成分信息

    Table  1.   Chemical constituents of Dendrobium nobile

    编号化合物名称化合物中文名编号化合物名称化合物中文名
    C1Moscatilin杓唇石斛素22C25Dendrobine石斛碱29
    C2Gigantol石斛酚24C26Noblilonine野百合碱18
    C3Nobilin A果香菊素A8C2710,12-dihydroxypicrotoxane10,12-二羟基吡咯烷21
    C4Nobilin E果香菊素E10C28Mubironines B21
    C5Denbinobin石斛醌23C29Mubironines C12
    C62,2'-dihydroxy-3,3',4,4',7,7'-hexamethoxy-9,9',
    10,10'-tetrahydroxy-1,1'-biphenanthrene
    27C30Dendronobiline A0
    C72,5-dihydroxy-4,9-dimethoxyphenanthrene2,5-二羟基-4,9-二甲氧基菲29C31Nobilin D果香菊素 D42
    C8Confusarin毛兰菲26C32Nobilin果香菊素30
    C91R,2R,4S,5S,6S,8S,9R,-2,
    8-dihydroxycopacamphan-15-one
    1R,2R,4S,5S,6S,8S,9R,-2,
    8-二羟基乙酰氨基甲酸-15-酮
    15C33Nobilone贵石斛碱29
    C102β,3β,4β,5β-2,4,
    11-trihydroxypicrotoxano-3(15)-lactone
    4C344,α-dihydroxy-3,5,
    3'-trimethoxybibenzyl
    4,α-二羟基-3,5,
    3'-三甲氧基联苄
    19
    C112β,3β,5β,9α,11β-2,11-epoxy-9,11,
    13-trihydroxypicrotoxano-3(15)-lactone
    9C354,5-dihydroxy-3',
    3-dimethoxybibenzyl
    4,5-二羟基-3',
    3-二甲氧基联苄
    27
    C122β,3β,5β,12R*-2,11,
    13-trihydroxypicrotoxano-3(15)-lactone
    10C36Decumbic acid A癸二酸A26
    C132β,3β,5β,12S*-2,11,
    13-trihydroxypicrotoxano-3(15)-lactone
    10C37Decumbic acid B癸二酸B33
    C142β,3β,5β,9α-9,1O-cyclo-2,11,
    13-trihydroxypicrotoxano-3(15)-lactone
    17C38(−)-decumbic acid(−)-癸二酸26
    C159β,10α-muurol-4-ene-9,10,11-triol13C39(−)-dendrolactone(−)-树内酯29
    C1610α-alloaromadendrane-10,12,14-triol13C40(+)-dendrolactone(+)-树内酯32
    C175β-cyclocopacaphane-5,12,15-triol7C41(+)-denobilone A(+)-二苯酮A26
    C18δ-cadinen-12,14-diolδ-杜松萜烯-12,14-二醇10C42(−)-denobilone A(−)-二苯酮A30
    C19Nobliomethylene38C43Dendroside石斛苷27
    C20Flakinin A8C44Syringarresinol24
    C21Dendronobiloside A石斛苷A8C45Pionresinol松脂醇28
    C22Dendronobilin A金钗石斛素A13C46Medioresinol皮树脂醇27
    C23Dendrodensiflorol石斛醇20C47Lirioresinol-A鹅掌楸树脂醇A0
    C24Dendronobilin K金钗石斛素K29
    下载: 导出CSV

    表  2  金钗石斛前20个潜在作用靶点疾病名称及疾病分类

    Table  2.   Disease names and disease classification of the first 20 potential targets of Dendrobium nobile

    疾病名称疾病分类疾病ID
    癫痫 神经系统疾病 MESH:D004827
    低血压心血管疾病|神经系统疾病MESH:D007024
    滥用大麻精神障碍|物质相关障碍MESH:D002189
    精神障碍精神障碍MESH:D001523
    神经系统疾病神经系统疾病MESH:D009422
    神经中毒综合征神经系统疾病MESH:D020258
    帕金森病神经系统疾病MESH:D010300
    继发性帕金森病神经系统疾病MESH:D010302
    周围神经系统疾病神经系统疾病MESH:D010523
    神经系统疾病神经系统疾病MESH:D009422
    阿尔茨海默病精神障碍|物质相关障碍MESH:D000544
    苯丙胺相关疾病精神障碍|神经系统疾病MESH:D019969
    学习障碍精神障碍|神经系统疾病|体征和症状MESH:D007859
    记忆障碍神经系统疾病|体征和症状MESH:D008569
    运动障碍疾病神经系统疾病MESH:D009069
    神经系统疾病神经系统疾病MESH:D009422
    癫痫发作神经系统疾病|体征和症状MESH:D012640
    震颤神经系统疾病|体征和症状MESH:D014202
    神经中毒综合征神经系统疾病MESH:D020258
    癫痫发作神经系统疾病|体征和症状MESH:D012640
    下载: 导出CSV

    表  3  金钗石斛治疗神经系统疾病靶点的生物进程分析结果

    Table  3.   Biological process analysis results of Dendrobium nobile in the treatment of nervous system diseases

    GO生物过程基因数相关基因百分比(%)P
    细胞对药物的反应224.550
    痛觉96.670
    对雌二醇的反应84.680
    肽基苏氨酸磷酸化74.170
    阿片受体信号通路3250
    慢性炎症反应312.50
    食欲调节310.340
    类固醇分解代谢过程39.380
    细胞对镉离子的反应38.110
    负离子转运的正调控34.410
    下载: 导出CSV

    表  4  金钗石斛作用的4个靶点与11个成分的分子对接得分

    Table  4.   Molecular docking scores of 4 targets and 11 components of Dendrobium nobile

    靶点蛋白靶点蛋白ID化合物结合能(kCal/mol)均方根偏差
    ESR22qtuC7−10.11.061
    C19−10.20.678
    C24−9.90.817
    C25−11.10.649
    C31−8.21.104
    C32−10.31.327
    C33−8.91.419
    C37−6.71.269
    C39−8.60.027
    C40−10.50.735
    C42−10.51.547
    MIF5xejC7−8.91.082
    C19−9.31.590
    C24−9.41.422
    C25−9.21.427
    C31−8.31.784
    C32−9.71.083
    C33−8.30.799
    C37−6.21.842
    C39−7.50.051
    C40−10.01.017
    C42−10.01.010
    ABCG26ffcC7−10.61.836
    C19−11.31.108
    C24−9.81.096
    C25−11.50.861
    C31−8.31.078
    C32−11.21.217
    C33−9.61.031
    C37−6.61.135
    C39−8.00.035
    C40−10.51.272
    C42−10.51.416
    CYP19A15jl6C7−8.41.182
    C19−8.51.351
    C24
    C25−8.91.766
    C31−8.00.063
    C32−9.01.189
    C33−7.90.660
    C37−6.61.036
    C39−7.40.019
    C40−8.71.048
    C42−8.71.043
    下载: 导出CSV
  • [1] 刘宏帅, 石海莲, 高雅婵, 等. 神经炎症与神经退行性疾病的关系及中药调控作用研究进展[J]. 上海中医药大学学报,2016,30(5):82−89.
    [2] 王昊. 基于网络药理学的开心散防治阿尔茨海默病的分子机制研究[D]. 咸阳: 陕西中医药大学, 2018.
    [3] 孙树森, 韩容, 赵志刚. 2016年上半年美国FDA批准的新分子实体与评价: 神经系统疾病、呼吸系统疾病、皮肤病治疗用药和造影剂[J]. 药品评价,2017,14(4):12−17. doi:  10.3969/j.issn.1672-2809.2017.04.002
    [4] 许莉, 王江瑞, 郭力, 等. 金钗石斛化学成分的研究[J]. 中成药,2018,40(5):108−110.
    [5] 周威, 夏杰, 孙文博, 等. 金钗石斛的化学成分和药理作用研究现状[J]. 中国新药杂志,2017,26(22):2693−2700.
    [6] 姜宁, 范琳犀, 杨玉洁, 等. 金钗石斛提取物对慢性不可预见应激模型小鼠的抗抑郁作用[J]. 生理学报,2017,69(2):159−166.
    [7] Yan Y, Wang C. Abeta42 is more rigid than Abeta40 at the C terminus: implications for Abeta aggregation and toxicity[J]. Journal of Molecular Biology,2006,364(5):853−862. doi:  10.1016/j.jmb.2006.09.046
    [8] 石京山, 王茜, 李利生, 等. 金钗石斛生物碱抗老年痴呆基础研究[J]. 神经药理学报,2017,7(2):6. doi:  10.3969/j.issn.2095-1396.2017.02.006
    [9] Sharma A A, Jen R, Kan B, et al. Impaired NLRP3 inflammasome activity during fetal development regulates IL-1β production in human monocytes[J]. European Journal of Immunology,2015,45(1):238−249. doi:  10.1002/eji.201444707
    [10] Yang S, Gong Q, Wu Q, et al. Alkaloids enriched extract from Dendrobium nobile Lindl. attenuates tau protein hyperphosphorylation and apoptosis induced by lipopolysaccharide in rat brain[J]. Phytomedicine,2014,21(5):712−716. doi:  10.1016/j.phymed.2013.10.026
    [11] 林牧, 龚其海, 吴芹, 等. 金钗石斛多糖对脂多糖作用大鼠皮层胶质细胞-神经元体系的保护作用[J]. 中国药理学通报,2016,32(8):1144−1148. doi:  10.3969/j.issn.1001-1978.2016.08.022
    [12] 席乐迎, 任献青, 许爽, 等. 基于网络药理学的中药作用机制研究进展[J]. 现代中西医结合杂志,2020,29(29):3287−3290, 3296. doi:  10.3969/j.issn.1008-8849.2020.29.023
    [13] Huang L P, Yan B, Hou M, et al. Study on material basis and mechanism of erzhi wan prevent Alzheimer's disease by network pharmacology[J]. China Journal of Chinese Materiamedica,2017,42(21):4211−4217.
    [14] 杜梨, 袁斌, 张百霞, 等. 基于“中药作用机理辅助解析系统”的大黄抗高血脂作用机制研究[J]. 中国中药杂志,2015,40(19):3703−3708.
    [15] 童黄锦, 石芸, 吉敬, 等. 白鲜皮挥发油中潜在活性成分的网络药理学研究[J]. 中国中药杂志,2020,45(5):1135−1141.
    [16] 吴青华, 李冰涛, 朱水兰, 等. 蒙古族药芯芭治疗2型糖尿病的网络药理学研究[J]. 中国中药杂志,2020,45(8):1764−1771.
    [17] 顾观光. 神农本草经[M]. 北京: 学苑出版社, 2007.
    [18] 包雪声, 顺庆生, 张申洪, 等. 中国药用石斛图志[M]. 上海: 上海科学技术文献出版社, 2005: 34.
    [19] 李艳萍, 李海燕, 纪晓婉, 等. 金钗石斛叶中总黄酮的提取分离及体外抗阿尔茨海默病活性研究[J]. 中国药房,2018,29(3):330−333. doi:  10.6039/j.issn.1001-0408.2018.03.10
    [20] 姜琳珊, 李菲, 聂晶, 等. 金钗石斛总生物碱对APP/PS1转基因小鼠学习记忆能力的影响[J]. 遵义医学院学报,2016,39(3):246−249.
    [21] Huitron-Resendiz S, Henriksen S J, Barr M C, et al. Methamphetamine and lentivirus interactions: Reciprocal enhancement of central nervous system disease[J]. Journal of Neurovirology,2010,16(4):268−278. doi:  10.3109/13550284.2010.497807
    [22] Cox G M. Macrophage migration inhibitory factor: A study of the effects on the central nervous system microenvironment in experimental autoimmune encephalomyelitis[J]. Dissertations & Theses-Gradworks,2011:3496009.
    [23] Zhijie H, Jiaojiao Q, Jiehong Z, et al. Genetic variant rs755622 regulates expression of the multiple sclerosis severity modifier d-dopachrometautomerase in a sex-specific way[J]. BioMed Research International,2018,20(18):1−7.
    [24] Chen L H, Fan Y H, Kao P Y P, et al. Genetic polymorphisms in estrogen metabolic pathway associated with risks of Alzheimer's disease: Evidence from a southern chinese population[J]. Journal of the American Geriatrics Society,2017,65(2):332−339. doi:  10.1111/jgs.14537
    [25] Mao Q, Rosenberg M F, Bikadi Z, et al. Structure and function of the human breast cancer resistance protein (BCRP/ABCG2)[J]. Current Drug Metabolism,2010,11(7):603−617. doi:  10.2174/138920010792927325
    [26] Evangelista M G, Castro S B R D, Caio César De Souza Alves, et al. Early IFN-γ production together with decreased expression of TLR3 and TLR9 characterizes EAE development conditional on the presence of myelin[J]. Autoimmunity,2016,49(4):258−267. doi:  10.3109/08916934.2016.1141898
    [27] Carolina P, Michela G, González Hugo, et al. Dopaminergic stimulation of myeloid antigen-presenting cells attenuates signal transducer and activator of transcription 3-activation favouring the development of experimental autoimmune encephalomyelitis[J]. Frontiers in Immunology,2018,21(9):571−587.
    [28] Levran O, Randesi M, da Rosa JC, et al. Overlapping dopaminergic pathway genetic susceptibility to heroin and cocaine addictions in African Americanss[J]. Annals of Human Genetic,2015,79(3):188−198. doi:  10.1111/ahg.12104
    [29] Kimishima A, Wenthur C J, Eubanks L M, et al. Cocaine vaccine development: Evaluation of carrier and adjuvant combinations that activate multiple toll-like receptors[J]. Molecular Pharmaceutics,2016,13(11):3884−3890. doi:  10.1021/acs.molpharmaceut.6b00682
    [30] Miller D S, Cannon R E. Signaling pathways that regulate basal ABC transporter activity at the blood- brain barrier[J]. Current Pharmaceutical Design,2014,20(10):1463−1471. doi:  10.2174/13816128113199990457
    [31] 崔莹. 老年期情感障碍患者血清细胞因子、皮质醇、认知功能及药物干预的影响[D]. 济南: 山东大学, 2011.
    [32] 黄强, 汪亚楠, 韩飞, 等. 基于网络药理学的桂枝甘草汤抗失眠作用的潜在机制研究[J]. 湖南中医药大学学报,2020,40(4):452−459. doi:  10.3969/j.issn.1674-070X.2020.04.013
    [33] Mohammed S, Vineetha N S, James S, et al. Regulatory role of SphK1 in TLR7/9-dependent type I interferon response and autoimmunity[J]. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology,2020,34(3):4329−4347. doi:  10.1096/fj.201902847R
    [34] He X, Huang Y, Li B, et al. Deregulation of sphingolipid metabolism in Alzheimer’s disease[J]. Neurobiology of Aging,2008,31(3):398−408.
    [35] Angelucci F, Ricci V, Pomponi M, et al. Chronic heroin and cocaine abuse is associated with decreased serum concentrations of the nerve growth factor and brain-derived neurotrophic factor[J]. Journal of Psychopharmacology,2007,21(8):820−825. doi:  10.1177/0269881107078491
    [36] Wescott S A, Rauthan M, Xu X Z S. When a TRP goes bad: Transient receptor potential channels in addiction[J]. Life Sciences,2013,92(8-9):410−414. doi:  10.1016/j.lfs.2012.07.008
    [37] Jankowska A, Wesołowska A, Pawłowski M, et al. Multi-target-directed ligands affecting serotonergic neurotransmission for Alzheimer’s disease therapy: Advances in chemical and biological research[J]. Current Medicinal Chemistry,2018,24(17):2045−2067.
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  281
  • HTML全文浏览量:  59
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-17
  • 网络出版日期:  2021-05-19
  • 刊出日期:  2021-07-02

目录

    /

    返回文章
    返回

    重要通知

    《食品工业科技》特邀主编专栏征稿:枸杞、红枣、沙棘等食药同源健康食品研究与开发