Analysis on Secondary Metabolites Difference of Guiding Yunwu Tea between Native and Introduced Varieties
-
摘要: 为了研究贵定云雾茶本地种和引进种次生代谢产物差异,基于超高效液相色谱-四级杆串联飞行时间质谱(ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry, UPLC-QTOF-MS)对贵定云雾茶本地种和引进种的次生代谢产物进行了定性、定量分析。结果鉴定出361种代谢物。采用主成分分析(principal component analysis, PCA)和正交偏最小二乘判别分析(orthogonal least squares discriminant analysis, OPLS-DA)筛选出14种显著差异代谢物,包括4种黄酮醇类物质、4种酚酸类物质、3种黄酮糖苷类物质、2种儿茶素和1种原花青素B1。通路富集分析显示这些差异代谢物主要分布于苯丙氨酸、酪氨酸和色氨酸代谢途径(phenylalanine, tyrosine and tryptophan biosynthesis)、黄酮和黄酮醇代谢途径(flavone and flavonol biosynthesis)以及类黄酮代谢途径中(flavonoid biosynthesis)。此外,儿茶素和原花青素B1在云雾茶本地种中含量较高,而黄酮醇和黄酮糖苷类物质在引进种中含量较高,这表明云雾茶本地种更适合绿茶的加工,而引进种更适合白茶的加工。
-
关键词:
- 贵定云雾茶 /
- 超高效液相色谱-四级杆串联飞行时间质谱(UPLC-QTOF-MS) /
- 代谢差异 /
- 茶叶加工
Abstract: In order to study the secondary metabolites difference of Guiding Yunwu tea between introduced and native varieties, ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) was used to qualitative and quantitative analyze the secondary metabolites between native and introduced varieties of Guiding Yunwu tea. A total of 361 metabolites were identified. Furthermore, 14 significantly different metabolites were obtained by principal component analysis (PCA) and orthogonal least squares discrimination analysis (OPLS-DA) methods, including four flavonols, four phenolic acids, three flavonoid glycosides, two catechins and one procyanidin. Pathway enrichment analysis showed that these differential metabolites were mainly distributed in phenylalanine, tyrosine and tryptophan biosynthesis, flavone and flavonol biosynthesis, and flavonoid biosynthesis pathways. In addition, the content of catechins and procyanidin B1 was higher in the native samples, while the content of flavonols and flavone glycosides were higher in the introduced samples. The results indicated that the native variety would be more suitable for green tea processing, and the introduced variety would be more suitable for white tea processing. -
图 3 正交偏最小二乘判别分析载荷图
Figure 3. Loading plot of orthogonal least squares discriminant analysis
注:代谢物编号对应表1。
图 5 苯丙氨酸、酪氨酸和色氨酸代谢途径
Figure 5. Phenylalanine, tyrosine and tryptophan biosynthesis
注:加粗的为差异代谢物,柱状图代表物质相对丰度;图6同。
表 1 不同云雾茶树品种的差异代谢物
Table 1. Differencial metabolites between two varieties
编号 代谢物 名称 分子式 保留时间(min) 质荷比(m/z) VIP值 倍数值log2(FC) 1 Myriletin 杨梅素 C15H10O8 3.47 319.04439 6.25 3.61 2 Dihydroquercetin 二氢槲皮素 C15H12O7 3.59 303.05066 1.85 1.29 3 Quercetin 槲皮素 C15H10O7 4.15 301.04953 9.47 4.27 4 Kaempferol 山奈酚 C15H10O6 4.27 287.05467 3.81 8.36 5 Quinic acid 奎尼酸 C7H12O6 0.46 191.05578 21.92 −1.91 6 Phenylpyruvic acid 苯丙酮酸 C9H8O3 0.95 163.03995 2.26 −4.24 7 Caffeoyl quinic acid 咖啡酰奎宁酸 C16H18O9 2.67 353.08747 2.01 2.07 8 Hydroxybenzoic acid 羟基苯甲酸 C7H6O3 3.33 137.02380 1.36 1.98 9 Quercetin-3-O-hexosyl(1-2)
deoxyhexosyl-7-O-hexoside槲皮素-己糖苷 C41H70O13 3.41 771.19808 12.44 5.63 10 Kaempferol-3-Rhamnoside-7-Rhamnoside 山奈酚-鼠李糖苷 C27H30O14 3.50 755.20307 10.39 2.06 11 Kaempferol-3-Galactoside-6-
Rhamnoside-3-Rhamnoside山奈酚-半乳糖苷-鼠李糖苷 C33H40O19 3.61 739.20836 5.53 −8.03 12 Epigallocatechin 表没食子儿茶素 C15H14O7 10.72 305.06639 1.87 1.91 13 Epicatechin 表儿茶素 C15H14O6 3.32 289.07144 25.45 2.41 14 Procyanidin B1 原花青素B1 C30H26O12 3.18 577.13455 3.14 −1.68 注:表中log2(FC)表示对代谢物在本地种和引进种中含量的倍数值求log2的对数。 -
[1] Guo X, Long P, Meng Q, et al. An emerging strategy for evaluating the grades of Keemun black tea by combinatory liquid chromatography-Orbitrap mass spectrometry-based untargeted metabolomics and inhibition effects on alpha-glucosidase and alpha-amylase[J]. Food Chemistry,2018,246:74−81. doi: 10.1016/j.foodchem.2017.10.148 [2] 王叶. 不同生境茶叶产量与品质形成的光合生理生态机制[D]. 长沙: 湖南农业大学, 2018. [3] 赖全康. 气候变化对茶叶生长及品质的影响分析[J]. 南方农业,2019,13(9):155−156. [4] Ji H G, Lee Y R, Lee M S, et al. Metabolic phenotyping of various tea (Camellia sinensis L.) cultivars and understanding of their intrinsic metabolism[J]. Food Chemistry,2017,233(3):321−330. [5] Dai W D, Xie D C, Lu M L, et al. Characterization of white tea metabolome: Comparison against green and black tea by a nontargeted metabolomics approach[J]. Food Research International,2017,96:40−45. doi: 10.1016/j.foodres.2017.03.028 [6] 许国旺. 代谢组学-方法和应用[M]. 北京: 科学出版社, 2008: 6. [7] Wei D, Qi D D, Yang T, et al. Non-targeted analysis using ultra performance liquid chromatography-quadruple time-of-flight mass spectrometry uncovers the effects of harvest season on the metabolites and taste quality of tea (Camellia sinensis L.)[J]. Journal of Agricultural and Food Chemistry,2015,63:9869−9878. doi: 10.1021/acs.jafc.5b03967 [8] Hyung W R, Heung J Y, Ju H A, et al. Comparison of secondary metabolite changes in Camellia sinensis leaves depending on the growth stage[J]. Food Control,2017,73(8):916−921. [9] Guillarme D, Casetta C, Bicchi C, et al. High throughput qualitative analysis of polyphenols in tea samples by ultra-high pressure liquid chromatography coupled to UV and mass spectrometry detectors[J]. Journal of Chromatography A,2010,1217(44):6882−6890. doi: 10.1016/j.chroma.2010.08.060 [10] 王莹, 李岩, 王姝, 等. 低温胁迫下贵州云雾贡茶生长调节剂的变化[J]. 湖北农业科学,2020,59(8):99−102. [11] 肖正广. 贵定云雾贡茶的发展历史和文化渊源[J]. 茶叶,2018,44(4):206−208. doi: 10.3969/j.issn.0577-8921.2018.04.009 [12] Dai W, Yin P, Chen P, et al. Study of urinary steroid hormone disorders: Difference between hepatocellular carcinoma in early stage and cirrhosis[J]. Analytical and Bioanalytical Chemistry,2014,406:4325−4335. doi: 10.1007/s00216-014-7843-3 [13] Dai W D, Wei C, Kong H W, et al. Effect of the traditional Chinese medicine tongxinluo on endothelial dysfunction rats studied by using urinary metabonomics based on liquid chromatography-mass spectrometry[J]. Journal of Pharmaceutical and Biomedical Analysis,2011,56:86−92. doi: 10.1016/j.jpba.2011.04.020 [14] Xia J, Sinelnikov I V, Han B, et al. MetaboAnalyst 3.0-making metabolomics more meaningful[J]. Nucleic Acids Research,2015,43:W251−W257. doi: 10.1093/nar/gkv380 [15] 李鑫磊, 俞晓敏, 林军, 等. 基于非靶向代谢组学的白茶与绿茶、乌龙茶和红茶代谢产物特征比较[J]. 食品科学,2020,41(12):197−203. doi: 10.7506/spkx1002-6630-20190128-358 [16] Gai Z G, Wang Y, Jang J, et al. The quality evaluation of tea (Camellia sinensis) varieties based on the metabolomics[J]. Hortscience,2019,54:409−415. doi: 10.21273/HORTSCI13713-18 [17] Li J, Wang J Q, Yao Y F, et al. Phytochemical comparison of different tea (Camellia sinensis) cultivars and its association with sensory quality of finished tea[J]. LWT-Food Science and Technology,2020,117:108595. doi: 10.1016/j.lwt.2019.108595 [18] Zeng C Z, Lin H Y, Liu Z X, et al. Analysis of young shoots of ‘Anji Baicha’ (Camellia sinensis) at three developmental stages using nontargeted LC-MS-based metabolomics[J]. Journal of Food Science,2019,84(7):1746−1757. doi: 10.1111/1750-3841.14657 [19] Lee J F, Lee B J, Chung J O, et al. Metabolomic unveiling of a diverse range of green tea (Camellia sinensis) metabolites dependent on geography[J]. Food Chemistry,2015,174:452−459. doi: 10.1016/j.foodchem.2014.11.086 [20] Carloni P, Tiano L, Padella L, et al. Antioxidant activity of white, green and black tea obtained from the same tea cultivar[J]. Food Research International,2013,53:900−908. doi: 10.1016/j.foodres.2012.07.057 [21] 陶湘辉, 陈常颂, 林郑和, 等. 茶叶EGCG在不同茶类加工过程的变化初探[J]. 茶叶科学技术,2010,26(3):27−30. [22] 王丽, 叶乃兴, 郑德勇, 等. 加工工艺对白茶、乌龙茶、红茶生化成分及抗氧化活性的影响[J]. 福建茶叶,2016,38(4):4−7. doi: 10.3969/j.issn.1005-2291.2016.04.003 [23] 李朋亮. 基于修饰代谢组学的绿茶中糖苷类品质成分研究[D]. 武汉: 华中农业大学, 2018. [24] Fraser K, Lane G A, Otter D E, et al. Non-targeted analysis by LC-MS of major metabolite changes during the oolong tea manufacturing in New Zealand[J]. Food Chemistry,2014,151:394−403. doi: 10.1016/j.foodchem.2013.11.054 [25] Li X, Liu G J, Zhang W, et al. Novel flavoalkaloids from white tea with inhibitory activity against the formation of advanced glycation end products[J]. Journal of Agricultural and Food Chemistry,2018,66:4621−4629. doi: 10.1021/acs.jafc.8b00650 [26] 尹军峰, 闵航, 许勇泉, 等. 摊放环境对名优绿茶鲜叶茶多酚及儿茶素组成的影响[J]. 茶叶科学,2008,28(1):22−27. -