• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020 食品青年科学家峰会

贵定云雾茶本地种和引进种次生代谢产物差异分析

王春波 吕辉 韦玲冬 郭治友

王春波,吕辉,韦玲冬,等. 贵定云雾茶本地种和引进种次生代谢产物差异分析[J]. 食品工业科技,2021,42(14):1−7. doi:  10.13386/j.issn1002-0306.2020110282a
引用本文: 王春波,吕辉,韦玲冬,等. 贵定云雾茶本地种和引进种次生代谢产物差异分析[J]. 食品工业科技,2021,42(14):1−7. doi:  10.13386/j.issn1002-0306.2020110282a
WANG Chunbo, LYU Hui, WEI Lingdong, et al. Analysis on Secondary Metabolites Difference of Guiding Yunwu Tea between Native and Introduced Varieties[J]. Science and Technology of Food Industry, 2021, 42(14): 1−7. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020110282a
Citation: WANG Chunbo, LYU Hui, WEI Lingdong, et al. Analysis on Secondary Metabolites Difference of Guiding Yunwu Tea between Native and Introduced Varieties[J]. Science and Technology of Food Industry, 2021, 42(14): 1−7. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020110282a

贵定云雾茶本地种和引进种次生代谢产物差异分析

doi: 10.13386/j.issn1002-0306.2020110282a
基金项目: 国家自然科学基金项目(31660056);贵州省教育厅青年科技人才成长项目(黔教合KY字[2020]211);贵州省科技计划项目(黔科合平台人[2020]QNSYXM02)
详细信息
    作者简介:

    王春波(1987−),男,博士,副教授,研究方向:植物代谢组学,Email:wchunb@mail2.sysu.edu.cn

  • 中图分类号: Q941.2

Analysis on Secondary Metabolites Difference of Guiding Yunwu Tea between Native and Introduced Varieties

  • 摘要: 为了研究贵定云雾茶本地种和引进种次生代谢产物差异,基于超高效液相色谱-四级杆串联飞行时间质谱(ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry, UPLC-QTOF-MS)对贵定云雾茶本地种和引进种的次生代谢产物进行了定性、定量分析。结果鉴定出361种代谢物。采用主成分分析(principal component analysis, PCA)和正交偏最小二乘判别分析(orthogonal least squares discriminant analysis, OPLS-DA)筛选出14种显著差异代谢物,包括4种黄酮醇类物质、4种酚酸类物质、3种黄酮糖苷类物质、2种儿茶素和1种原花青素B1。通路富集分析显示这些差异代谢物主要分布于苯丙氨酸、酪氨酸和色氨酸代谢途径(phenylalanine, tyrosine and tryptophan biosynthesis)、黄酮和黄酮醇代谢途径(flavone and flavonol biosynthesis)以及类黄酮代谢途径中(flavonoid biosynthesis)。此外,儿茶素和原花青素B1在云雾茶本地种中含量较高,而黄酮醇和黄酮糖苷类物质在引进种中含量较高,这表明云雾茶本地种更适合绿茶的加工,而引进种更适合白茶的加工。
  • 图  1  样品负离子模式下基峰图

    Figure  1.  Base peak map of samples in negative mode

    注:A:本地种;B:引进种。

    图  2  主成分分析和正交偏最小二乘判别分析

    Figure  2.  Principal component analysis and orthogonal least squares discriminant analysis

    图  3  正交偏最小二乘判别分析载荷图

    Figure  3.  Loading plot of orthogonal least squares discriminant analysis

    注:代谢物编号对应表1

    图  4  差异代谢物热图

    Figure  4.  Heat map of differential metabolites between two varieties

    图  5  苯丙氨酸、酪氨酸和色氨酸代谢途径

    Figure  5.  Phenylalanine, tyrosine and tryptophan biosynthesis

    注:加粗的为差异代谢物,柱状图代表物质相对丰度;图6同。

    图  6  黄酮和黄酮醇代谢途径以及类黄酮代谢途径

    Figure  6.  Flavone and flavonol biosynthesis, and flavnoid biosynthesis

    表  1  不同云雾茶树品种的差异代谢物

    Table  1.   Differencial metabolites between two varieties

    编号代谢物名称分子式保留时间(min)质荷比(m/z)VIP值倍数值log2(FC)
    1Myriletin杨梅素C15H10O83.47319.044396.253.61
    2Dihydroquercetin二氢槲皮素C15H12O73.59303.050661.851.29
    3Quercetin槲皮素C15H10O74.15301.049539.474.27
    4Kaempferol山奈酚C15H10O64.27287.054673.818.36
    5Quinic acid奎尼酸C7H12O60.46191.0557821.92−1.91
    6Phenylpyruvic acid苯丙酮酸C9H8O30.95163.039952.26−4.24
    7Caffeoyl quinic acid咖啡酰奎宁酸C16H18O92.67353.087472.012.07
    8Hydroxybenzoic acid羟基苯甲酸C7H6O33.33137.023801.361.98
    9Quercetin-3-O-hexosyl(1-2)
    deoxyhexosyl-7-O-hexoside
    槲皮素-己糖苷C41H70O133.41771.1980812.445.63
    10Kaempferol-3-Rhamnoside-7-Rhamnoside山奈酚-鼠李糖苷C27H30O143.50755.2030710.392.06
    11Kaempferol-3-Galactoside-6-
    Rhamnoside-3-Rhamnoside
    山奈酚-半乳糖苷-鼠李糖苷C33H40O193.61739.208365.53−8.03
    12Epigallocatechin表没食子儿茶素C15H14O710.72305.066391.871.91
    13Epicatechin表儿茶素C15H14O63.32289.0714425.452.41
    14Procyanidin B1原花青素B1C30H26O123.18577.134553.14−1.68
    注:表中log2(FC)表示对代谢物在本地种和引进种中含量的倍数值求log2的对数。
    下载: 导出CSV
  • [1] Guo X, Long P, Meng Q, et al. An emerging strategy for evaluating the grades of Keemun black tea by combinatory liquid chromatography-Orbitrap mass spectrometry-based untargeted metabolomics and inhibition effects on alpha-glucosidase and alpha-amylase[J]. Food Chemistry,2018,246:74−81. doi:  10.1016/j.foodchem.2017.10.148
    [2] 王叶. 不同生境茶叶产量与品质形成的光合生理生态机制[D]. 长沙: 湖南农业大学, 2018.
    [3] 赖全康. 气候变化对茶叶生长及品质的影响分析[J]. 南方农业,2019,13(9):155−156.
    [4] Ji H G, Lee Y R, Lee M S, et al. Metabolic phenotyping of various tea (Camellia sinensis L.) cultivars and understanding of their intrinsic metabolism[J]. Food Chemistry,2017,233(3):321−330.
    [5] Dai W D, Xie D C, Lu M L, et al. Characterization of white tea metabolome: Comparison against green and black tea by a nontargeted metabolomics approach[J]. Food Research International,2017,96:40−45. doi:  10.1016/j.foodres.2017.03.028
    [6] 许国旺. 代谢组学-方法和应用[M]. 北京: 科学出版社, 2008: 6.
    [7] Wei D, Qi D D, Yang T, et al. Non-targeted analysis using ultra performance liquid chromatography-quadruple time-of-flight mass spectrometry uncovers the effects of harvest season on the metabolites and taste quality of tea (Camellia sinensis L.)[J]. Journal of Agricultural and Food Chemistry,2015,63:9869−9878. doi:  10.1021/acs.jafc.5b03967
    [8] Hyung W R, Heung J Y, Ju H A, et al. Comparison of secondary metabolite changes in Camellia sinensis leaves depending on the growth stage[J]. Food Control,2017,73(8):916−921.
    [9] Guillarme D, Casetta C, Bicchi C, et al. High throughput qualitative analysis of polyphenols in tea samples by ultra-high pressure liquid chromatography coupled to UV and mass spectrometry detectors[J]. Journal of Chromatography A,2010,1217(44):6882−6890. doi:  10.1016/j.chroma.2010.08.060
    [10] 王莹, 李岩, 王姝, 等. 低温胁迫下贵州云雾贡茶生长调节剂的变化[J]. 湖北农业科学,2020,59(8):99−102.
    [11] 肖正广. 贵定云雾贡茶的发展历史和文化渊源[J]. 茶叶,2018,44(4):206−208. doi:  10.3969/j.issn.0577-8921.2018.04.009
    [12] Dai W, Yin P, Chen P, et al. Study of urinary steroid hormone disorders: Difference between hepatocellular carcinoma in early stage and cirrhosis[J]. Analytical and Bioanalytical Chemistry,2014,406:4325−4335. doi:  10.1007/s00216-014-7843-3
    [13] Dai W D, Wei C, Kong H W, et al. Effect of the traditional Chinese medicine tongxinluo on endothelial dysfunction rats studied by using urinary metabonomics based on liquid chromatography-mass spectrometry[J]. Journal of Pharmaceutical and Biomedical Analysis,2011,56:86−92. doi:  10.1016/j.jpba.2011.04.020
    [14] Xia J, Sinelnikov I V, Han B, et al. MetaboAnalyst 3.0-making metabolomics more meaningful[J]. Nucleic Acids Research,2015,43:W251−W257. doi:  10.1093/nar/gkv380
    [15] 李鑫磊, 俞晓敏, 林军, 等. 基于非靶向代谢组学的白茶与绿茶、乌龙茶和红茶代谢产物特征比较[J]. 食品科学,2020,41(12):197−203. doi:  10.7506/spkx1002-6630-20190128-358
    [16] Gai Z G, Wang Y, Jang J, et al. The quality evaluation of tea (Camellia sinensis) varieties based on the metabolomics[J]. Hortscience,2019,54:409−415. doi:  10.21273/HORTSCI13713-18
    [17] Li J, Wang J Q, Yao Y F, et al. Phytochemical comparison of different tea (Camellia sinensis) cultivars and its association with sensory quality of finished tea[J]. LWT-Food Science and Technology,2020,117:108595. doi:  10.1016/j.lwt.2019.108595
    [18] Zeng C Z, Lin H Y, Liu Z X, et al. Analysis of young shoots of ‘Anji Baicha’ (Camellia sinensis) at three developmental stages using nontargeted LC-MS-based metabolomics[J]. Journal of Food Science,2019,84(7):1746−1757. doi:  10.1111/1750-3841.14657
    [19] Lee J F, Lee B J, Chung J O, et al. Metabolomic unveiling of a diverse range of green tea (Camellia sinensis) metabolites dependent on geography[J]. Food Chemistry,2015,174:452−459. doi:  10.1016/j.foodchem.2014.11.086
    [20] Carloni P, Tiano L, Padella L, et al. Antioxidant activity of white, green and black tea obtained from the same tea cultivar[J]. Food Research International,2013,53:900−908. doi:  10.1016/j.foodres.2012.07.057
    [21] 陶湘辉, 陈常颂, 林郑和, 等. 茶叶EGCG在不同茶类加工过程的变化初探[J]. 茶叶科学技术,2010,26(3):27−30.
    [22] 王丽, 叶乃兴, 郑德勇, 等. 加工工艺对白茶、乌龙茶、红茶生化成分及抗氧化活性的影响[J]. 福建茶叶,2016,38(4):4−7. doi:  10.3969/j.issn.1005-2291.2016.04.003
    [23] 李朋亮. 基于修饰代谢组学的绿茶中糖苷类品质成分研究[D]. 武汉: 华中农业大学, 2018.
    [24] Fraser K, Lane G A, Otter D E, et al. Non-targeted analysis by LC-MS of major metabolite changes during the oolong tea manufacturing in New Zealand[J]. Food Chemistry,2014,151:394−403. doi:  10.1016/j.foodchem.2013.11.054
    [25] Li X, Liu G J, Zhang W, et al. Novel flavoalkaloids from white tea with inhibitory activity against the formation of advanced glycation end products[J]. Journal of Agricultural and Food Chemistry,2018,66:4621−4629. doi:  10.1021/acs.jafc.8b00650
    [26] 尹军峰, 闵航, 许勇泉, 等. 摊放环境对名优绿茶鲜叶茶多酚及儿茶素组成的影响[J]. 茶叶科学,2008,28(1):22−27.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  306
  • HTML全文浏览量:  79
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-30
  • 网络出版日期:  2021-05-27
  • 刊出日期:  2021-07-07

目录

    /

    返回文章
    返回