• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020 食品青年科学家峰会

基于网络药理学探讨预知子抗抑郁的作用机制

钱慧琴 彭媛 黄秀秀 于舒雁 刘冰冰 王宁 赵永恒

钱慧琴,彭媛,黄秀秀,等. 基于网络药理学探讨预知子抗抑郁的作用机制[J]. 食品工业科技,2021,42(14):8−15. doi:  10.13386/j.issn1002-0306.2020110295
引用本文: 钱慧琴,彭媛,黄秀秀,等. 基于网络药理学探讨预知子抗抑郁的作用机制[J]. 食品工业科技,2021,42(14):8−15. doi:  10.13386/j.issn1002-0306.2020110295
QIAN Huiqin, PENG Yuan, HUANG Xiuxiu, et al. Mechanism of Anti-depression Mechanism of Akebiae Fructus Based on Network Pharmacology[J]. Science and Technology of Food Industry, 2021, 42(14): 8−15. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020110295
Citation: QIAN Huiqin, PENG Yuan, HUANG Xiuxiu, et al. Mechanism of Anti-depression Mechanism of Akebiae Fructus Based on Network Pharmacology[J]. Science and Technology of Food Industry, 2021, 42(14): 8−15. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020110295

基于网络药理学探讨预知子抗抑郁的作用机制

doi: 10.13386/j.issn1002-0306.2020110295
基金项目: 河南省高等学校重点科研项目(20B350007);新乡医学院三全学院科学研究培育基金项目(XJKT201921,XJKT201919);河南省高等职业学校青年骨干教师培养计划课题(2019GZGG094)
详细信息
    作者简介:

    钱慧琴(1988−),女,硕士,讲师,研究方向:天然药物活性成分研究,E-mail:qianhuiqina@163.com

    通讯作者:

    赵永恒(1987−),男,硕士,讲师,研究方向:药物新剂型与新技术,E-mail:yonghengzhao@126.com

  • 中图分类号: R151

Mechanism of Anti-depression Mechanism of Akebiae Fructus Based on Network Pharmacology

  • 摘要: 目的:运用网络药理学的方法揭示预知子抗抑郁的作用机制。方法:采用TCMSP、PharmMapper、Swiss TargetPrediction和GeneCards数据库挖掘预知子的活性成分及其抗抑郁的作用靶点,采用String数据库获取蛋白-蛋白相互作用关系,运用Cytoscape软件构建预知子的成分-作用靶点和PPI网络,利用DAVID数据库对关键靶点的GO和KEGG信号通路进行富集分析。最后,采用AutoDockTools-1.5.6 软件进行分子对接验证。结果:筛选得到预知子的木通苯乙醇B、豆甾醇葡萄糖苷、齐墩果酸等6个核心活性成分,EGFR、MAPK1/8、SRC、HSP90AA1、AR等8个重要抗抑郁靶点。参与调控的16条抑郁相关的信号通路包括催乳素信号通路(Prolactin signaling pathway)、ErbB信号通路(ErbB signaling pathway)、GnRH信号通路(GnRH signaling pathway)、黏着斑(Focal adhesion)等。分子对接结果显示预知子核心活性成分与靶点具有较好的结合活性。结论:预知子抗抑郁的作用机制可通过多成分-多靶点-多通路的综合作用而实现。
  • 图  1  成分靶点与疾病靶点交集的维恩图

    Figure  1.  Venn diagram after intersection of component targets and disease targets

    图  2  化合物-靶点网络

    Figure  2.  Compound-target network

    图  3  PPI网络

    Figure  3.  PPI Network

    图  4  GO富集分析结果

    Figure  4.  Results of GO enrichment analysis

    图  5  预知子抗抑郁通路的气泡图

    Figure  5.  Bubble diagram of anti-depression pathway of Akebiae Fructus

    图  6  结合能最低的分子对接模式

    Figure  6.  Docking mode with lowest binding energies

    表  1  预知子活性化合物基本信息

    Table  1.   Detailed information of active compounds of Akebiae Fructus

    序号英文名中文名口服生物利用度(OB,%)类药性(DL)
    C1Calceolarioside B木通苯乙醇B1.580.7
    C2oleanolic acid齐墩果酸29.020.76
    C3Daucosterol西托糖苷20.630.63
    C4/胡萝卜苷元36.910.75
    C5beta-sitosterolβ 谷甾醇36.910.75
    C6sitosterol谷甾醇36.910.75
    C7Ferulic acid阿魏酸39.560.06
    C8Stigmasterol豆甾醇43.830.76
    C9Friedelin无羁萜29.160.76
    C10Hederagenol常春藤皂苷元22.420.74
    C11Stigmasterol glucoside豆甾醇葡萄糖苷21.320.63
    C12Aristolochic acid D马兜铃酸D40.320.6
    C13Clionasterolγ-谷甾醇36.910.75
    C14Dauricine蝙蝠葛碱23.650.37
    C15[(2R)-2,3-dihydroxypropyl] (Z)-octadec-9-enoate2R-甘油单油酸酯34.130.3
    C16Arjunolic acid阿江榄仁酸23.220.72
    C172-Monoolein2-十八烯酸单甘油酯34.230.29
    C181-Monoolein1-油酸甘油单酯34.130.3
    C19Sapindoside B_qt/25.440.74
    C20Ariskanin A/109.510.4
    C21aristolochic acid A马兜铃酸62.710.55
    C22aristolochic acid Ⅱ马兜铃酸 Ⅱ37.560.45
    C23quinatic acid/29.980.77
    C24akebonoic acid木通萜酸15.310.78
    C25[(2R)-2,3-dihydroxypropyl] octadecanoate、3-Stearoyl-sn-glycerol硬脂酸甘油酯25.20.29
    C26glyceryl linolenate甘油亚麻酸酯38.140.31
    下载: 导出CSV

    表  2  预知子核心活性成分和核心靶点的结合能

    Table  2.   Binding energies of kenerl compounds and targets of Akebiae Fructus

    化合物靶点结合能(kcal/mol)化合物靶点结合能(kcal/mol)
    蝙蝠葛碱AR−6.8西托糖苷AR−7.8
    CASP3−6.8CASP3−7.2
    EGFR−6.6EGFR−6.4
    ESR1−7.5ESR1−7.9
    HSP90AA1−8.5HSP90AA1−8.1
    MAPK1−9.7MAPK1−9.1
    MAPK8−9.1MAPK8−8.5
    SRC−6.2SRC−6.5
    豆甾醇葡萄糖苷AR−7硬脂酸甘油酯AR−6.1
    CASP3−7.1CASP3−5.7
    EGFR−6.5EGFR−4.8
    ESR1−8.3ESR1−6.2
    HSP90AA1−8.6HSP90AA1−6.2
    MAPK1−9.7MAPK1−6.6
    MAPK8−8.1MAPK8−7.2
    SRC−7.2SRC−5.5
    木通苯乙醇BAR−8.6齐墩果酸AR−8
    CASP3−7CASP3−7.1
    EGFR−5.1EGFR−7
    ESR1−8.7ESR1−7.8
    HSP90AA1−9.2HSP90AA1−9.0
    MAPK1−9.4MAPK1−8.0
    MAPK8−9.7MAPK8−8.3
    SRC−7.5SRC−7.6
    下载: 导出CSV
  • [1] Amato L, Vecchi S, Barbui C, et al. Systematic review to evaluate the efficacy, acceptability and safety of second-generation antipsychotics for the treatment of unipolar and bipolar depression[J]. Recenti Progressi in Medicina,2018,109(10):474−486.
    [2] Cui R. Editorial: A systematic review of depression[J]. Current Neuropharmacology,2015,13(4):480. doi:  10.2174/1570159X1304150831123535
    [3] Sankhi S, Marasine N R, Sankhi S, et al. Adverse drug reaction due to antidepressants among patients with depression in a private psychiatric hospital of nepal[J]. BioMed Research International,2020,2020:1−5.
    [4] 王旭东, 乔明琦, 张樟进, 等. 中医药治疗抑郁症的研究进展[J]. 南京中医药大学学报,2016,32(1):93−96.
    [5] Yongli Jiang, Xuefu Zhou, Yuanrong Zheng, et al. Impact of ultrasonication/shear emulsifying/microwave-assisted enzymatic extraction on rheological, structural, and functional properties of Akebia trifoliata (Thunb.) Koidz. seed protein isolates[J]. Food Hydrocolloids,2021,112:1−10.
    [6] Iketani H. Native fruit tree genetic resources in Japan[J]. Breed Sci,2016,66(1):82−89. doi:  10.1270/jsbbs.66.82
    [7] 唐成林, 杨斌, 陶光灿, 等. 八月瓜果实营养成分分析和评价[J]. 食品工业科技: 1−11[2021-02-05]. http://kns.cnki.net/kcms/detail/11.1759.TS.20200721.1511.006.html.
    [8] 国家药典委员会. 中国药典 一部[S]. 北京: 中国医药科技出版社, 2015: 297.
    [9] 张磊阳, 蒋健, 贺敏, 等. 抗抑郁中药的药理研究进展[J]. 中国实验方剂学杂志,2017,23(24):224−234.
    [10] 周丹. 预知子提取物对抑郁症大鼠海马神经可塑性相关蛋白BDNF/CREB/ Bcl-2的影响研究[J]. 药物生物技术,2019,26(02):110−113.
    [11] 陈启洪, 李晓飞, 段灿灿, 等. 网络药理学探讨杜仲主要活性成分及药理作用机制[J]. 中药材,2018(2):432−439.
    [12] 张锐, 张季林, 李冰涛, 等. 基于网络药理学研究栀子入血成分抗阿尔茨海默病的作用机制[J]. 中国中药杂志,2020,45(11):2601−2610.
    [13] Liu F, Zhao Q, Liu S, et al. Revealing the pharmacological mechanism of acorus tatarinowii in the treatment of ischemic stroke based on network pharmacology[J]. Evidence-Based Complementary and Alternative Medicine,2020,2020:1−16.
    [14] 杨柳, 张王宁, 刘月涛, 等. 基于网络药理学的黄芪治疗肾病综合征的机制研究[J]. 中草药,2019,50(8):1828−1837. doi:  10.7501/j.issn.0253-2670.2019.08.010
    [15] 戴璐彬, 关婉辰, 张栋, 等. 参麦饮改善糖尿病肾病的网络药理学研究及实验验证[J]. 中药药理与临床,2020,36(4):81−87.
    [16] Jin H G, Kim A R, Ko H J, et al. Three new lignan glycosides with IL-6 inhibitory activity from Akebia quinata[J]. Chemical & Pharmaceutical Bulletin,2014,62(3):288−293.
    [17] Wang J, Xu Q L, Zheng M F, et al. Bioactive 30-noroleanane triterpenes from the pericarps of Akebia trifoliata[J]. Molecules,2014,19(4):4301−4312. doi:  10.3390/molecules19044301
    [18] 刘永玲, 谢国芳, 王威, 等. 八月瓜叶、果皮和果肉中酚类、VC含量及其抗氧化能力分析[J]. 食品研究与开发,2019,40(15):66−72. doi:  10.12161/j.issn.1005-6521.2019.15.011
    [19] 宗 阳, 丁美林, 贾可可, 等. 基于网络药理学和分子对接法探寻达原饮治疗新型冠状病毒肺炎(COVID-19)活性化合物的研究[J]. 中草药,2020,51(4):836−844. doi:  10.7501/j.issn.0253-2670.2020.04.002
    [20] Phillips C. Brain-derived neurotrophic factor, depression, and physical activity: Making the neuroplastic connection[J]. Neural Plasticity,2017,2017:1−17.
    [21] Fajemiroye J O, Galdino P M, Florentino I F, et al. Plurality of anxiety and depression alteration mechanism by oleanolic acid[J]. Journal of Psychopharmacology, 28(10): 923-934.
    [22] Gürağaç Dereli F T, Ilhan M, Küpeli Akkol E. Identification of the main active antidepressant constituents in a traditional Turkish medicinal plant, Centaurea kurdica Reichardt[J]. Journal of Ethnopharmacology,2020,249:1−11.
    [23] Zhao D, Zheng L, Qi L, et al. Structural features and potent antidepressant effects of total sterols and β-sitosterol extracted from Sargassum horneri[J]. Marine Drugs,2016,14(7):123−130. doi:  10.3390/md14070123
    [24] Bortolato B, Hyphantis T N, Valpione S, et al. Depression in cancer: The many biobehavioral pathways driving tumor progression[J]. Cancer Treatment Reviews,2017,52:58−70. doi:  10.1016/j.ctrv.2016.11.004
    [25] Szelei A, Döme P. Cancer and depression: A concise review[J]. Orvosi Hetilap,2020,161(22):908−916. doi:  10.1556/650.2020.31759
    [26] McFarland D C, Jutagir D R, Rosenfeld B, et al. Depression and inflammation among epidermal growth factor receptor (EGFR) mutant nonsmall cell lung cancer patients[J]. Psychooncology,2019,28(7):1461−1469. doi:  10.1002/pon.5097
    [27] Xiang X, You X M, Li LQ. Expression of HSP90AA1/HSPA8 in hepatocellular carcinoma patients with depression[J]. OncoTargets and Therapy,2018,11:3013−3023. doi:  10.2147/OTT.S159432
    [28] Iñiguez S D, Parise L F, Lobo M K, et al. Upregulation of hippocampal extracellular signal-regulated kinase (ERK)-2 induces antidepressant-like behavior in the rat forced swim test[J]. Behavioral Neuroscience,2019,133(2):225−231. doi:  10.1037/bne0000303
    [29] Mohammad H, Marchisella F, Ortega-Martinez S, et al. JNK1 controls adult hippocampal neurogenesis and imposes cell-autonomous control of anxiety behaviour from the neurogenic niche[J]. Molecular Psychiatry,2018,23(2):362−374. doi:  10.1038/mp.2016.203
    [30] Hung Y Y, Huang Y L, Chang C, et al. Deficiency in androgen receptor aggravates the depressive-like behaviors in chronic mild stress model of depression[J]. Cells,2019,8(9):1021−1037. doi:  10.3390/cells8091021
    [31] Tan E C, Lim H W, Chua T E, et al. Investigation of variants in estrogen receptor genes and perinatal depression[J]. Neuropsychiatr Dis Treat,2018,14:919−925. doi:  10.2147/NDT.S160424
    [32] Różycka A, Słopień R, Słopień A, et al. The MAOA, COMT, MTHFR and ESR1 gene polymorphisms are associated with the risk of depression in menopausal women[J]. Maturitas,2016,84:42−54. doi:  10.1016/j.maturitas.2015.10.011
    [33] Duman R S, Aghajanian G K, Sanacora G, et al. Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants[J]. Nature Medicine,2016,22(3):238−249.
    [34] Li Z, Jo J, Jia J M, et al. Caspase-3 activation via mitochondria is required for long-term depression and AMPA receptor internalization[J]. Cell,2010,141(5):859−871. doi:  10.1016/j.cell.2010.03.053
    [35] Tian R H, Bai Y, Li J Y, et al. Reducing PRLR expression and JAK2 activity results in an increase in BDNF expression and inhibits the apoptosis of CA3 hippocampal neurons in a chronic mild stress model of depression[J]. Brain Research,2019,1725:1−12.
    [36] Köhler S, Cierpinsky K, Kronenberg G, et al. The serotonergic system in the neurobiology of depression: Relevance for novel antidepressants[J]. Journal of Psychopharmacology,2016,30(1):13−22. doi:  10.1177/0269881115609072
    [37] Ledonne A, Mercuri N B. mGluR1-dependent long term depression in rodent midbrain dopamine neurons is regulated by neuregulin 1/ErbB signaling[J]. Frontiers in Molecular Neuroscience,2018,11:346−361. doi:  10.3389/fnmol.2018.00346
    [38] Gormanns P, Mueller N S, Ditzen C, et al. Phenome-transcriptome correlation unravels anxiety and depression related pathways[J]. Journal of Psychiatric Research,2011,45(7):973−979. doi:  10.1016/j.jpsychires.2010.12.010
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  268
  • HTML全文浏览量:  97
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-02
  • 网络出版日期:  2021-05-19
  • 刊出日期:  2021-07-07

目录

    /

    返回文章
    返回