Optimization of Enzymatic Hydrolysis Conditions for the Production of Crisp Plum Juice by Response Surface Methodology
-
摘要: 目的:研究酶解提取酥李果汁的最佳工艺条件,为李深加工利用提供理论参考。方法:以酥李出汁率为指标,在单因素实验基础上采用响应面试验优化,对单一果胶酶、单一纤维素酶、复合酶(果胶酶和纤维素酶)提取酥李果汁的工艺条件分别进行优化。结果:不同加酶方式中对酥李出汁率的影响因素顺序均为酶解温度>加酶量>酶解pH>酶解时间;果胶酶酶解提取酥李果汁的最佳工艺条件为:加酶量0.45 g/L、酶解温度38 ℃、酶解pH3.8、酶解时间72 min,出汁率提高27.13%;维素酶酶解提取酥李果汁的最佳工艺条件为:加酶量0.55 g/L、酶解温度41 ℃、酶解pH4.2、酶解时间105 min,出汁率提高20.18%;复合酶酶解提取酥李果汁的最佳工艺条件为:果胶酶添加量0.45 g/L、纤维素酶添加量0.55 g/L、酶解温度41 ℃、酶解pH4.0、酶解时间87 min,出汁率提高31.79%。三种加酶方式中,回归模型均能较好地反应相应酶制备酥李果浆的出汁率,所得工艺合理可靠。结论:在酶法提取酥李果汁过程中,果胶酶和纤维素酶的不同添加方式均能有效提高酥李出汁率,其中采用复合酶提取酥李果汁效果最佳。本研究成果为贵州李产品开发提供了一定的技术参考。Abstract: Objective: To investigate the optimum enzymolysis extraction process conditions of plum fruit, and to provide theoretical bases fordeep processing andutilizationof itsresources. Method: The juice yield was used as an indicator. On the basis of single-factor experiments, response surface methodology (RSM) was employed to optimize the enzymatic hydrolysis pretreatment conditions for extracting fruit juice from crisp plum with methods of adding enzymes, including pectinases, cellulase and complex enzyme consisted of pectinases and cellulase. Result: The results suggested that the extraction parameters in the order of significance were enzymolysis temperature, enzyme concentration, enzymolysis pH, and enzymolysis time by response surface analysis. The optimum conditions of enzymolysis with pectinases were pectinases concentration 0.45 g/L, enzymolysis temperature 38 ℃, enzymolysis pH3.8 and enzymolysis time 72 min, in which the average juice yield of crisp plum was 78.63%. The optimum conditions of enzymolysis with cellulase were cellulase concentration 0.55 g/L, enzymolysis temperature 41 ℃, enzymolysis pH4.2 and enzymolysis time 105 min, in which the average juice yield of crisp plum was 74.33%. The optimum conditions of enzymolysis with complex enzyme were pectinases concentration 0.45 g/L, cellulase concentration 0.55 g/L, enzymolysis temperature 41 ℃, enzymolysis pH4.0 and enzymolysis time 87 min, in which the average juice yield of crisp plum was 81.51%. Conclusion: In the extract process of crisp plum juice, juice yields all increased when extracting juice, by adding pectinases, cellulase or complex enzyme consisted of pectinases and cellulose on the corresponding optimal conditions of enzymatic hydrolysis. The study provides technical references for the product development of Guizhou plum fruit.
-
Key words:
- crisp plum juice /
- juice yield /
- pectinase /
- cellulase /
- response surface methodology
-
表 1 响应面分析法优化果胶酶、纤维素酶酶解工艺
Table 1. Optimization of pectinase and cellulose extraction by response surface methodolog
酶种类 水平 因素 A加酶量(g/L) B酶解温度(℃) C酶解pH D酶解时间(min) 果胶酶 −1 0.25 32 3.6 60 0 0.35 35 3.9 75 1 0.45 38 4.2 90 纤维素酶 −1 0.35 35 3.9 75 0 0.45 38 4.2 90 1 0.55 41 4.5 105 表 2 响应面分析法优化复合酶酶解工艺
Table 2. Optimization of complex enzyme extraction by response surface methodology
水平 因素 A果胶酶添加量(g/L) B纤维素酶添加量(g/L) C酶解温度(℃) D酶解pH E酶解时间(min) −1 0.25 0.35 35 3.6 50 0 0.35 0.45 38 3.8 70 1 0.45 0.55 41 4.0 90 表 3 果胶酶制备酥李果汁工艺优化响应面试验结果
Table 3. Results of response surface method for pectinase extraction of crisp plum juice
实验号 A B C D 出汁率(%) 1 −1 0 0 −1 69.54 2 0 1 0 1 70.73 3 0 0 1 −1 73.54 4 1 −1 0 0 69.81 5 0 0 −1 −1 76.43 6 0 −1 1 0 69.32 7 0 1 −1 0 69.41 8 0 0 −1 1 69.41 9 0 0 0 0 68.49 10 0 −1 0 1 77.32 11 0 1 1 0 69.98 12 0 0 1 1 69.98 13 0 −1 −1 0 68.15 14 1 0 −1 0 73.66 15 0 0 0 0 70.62 16 1 1 0 0 68.15 17 0 1 0 −1 71.21 18 0 0 0 0 71.21 19 −1 1 0 0 78.72 20 0 0 0 0 77.32 21 −1 −1 0 0 72.21 22 −1 0 −1 0 74.67 23 0 −1 0 −1 72.36 24 1 0 0 −1 67.34 25 −1 0 1 0 68.99 26 0 0 0 0 68.99 27 −1 0 0 −1 73.65 28 0 1 0 1 68.66 29 0 0 1 −1 72.98 表 4 出汁率回归模型的方差分析
Table 4. Variance analysis of multiple regression model of juice yield
方差来源 平方和 自由度 均方差 F值 P值 显著性 模型 253.84 14 18.13 19.42 <0.0001 ** A 27.76 1 27.76 29.73 <0.0001 ** B 188.73 1 188.73 202.14 <0.0001 ** C 1.07 1 1.07 1.14 0.3029 D 4.800E-003 1 4.800E-003 5.141E-003 0.9439 AB 0.98 1 0.98 1.05 0.3229 AC 5.625E-003 1 5.625E-003 6.025E-003 0.9392 AD 6.400E-003 1 6.400E-003 6.855E-003 0.9352 BC 4.00 1 4.00 4.28 0.0574 BD 6.250E-004 1 6.250E-004 6.694E-004 0.9797 * CD 0.13 1 0.13 0.14 0.7113 A2 0.44 1 0.44 0.48 0.5019 B2 10.73 1 10.73 11.49 0.0044 ** C2 14.16 1 14.16 15.17 0.0016 ** D2 0.26 1 0.26 0.28 0.6059 残差 13.07 14 0.93 失拟项 7.55 10 0.76 0.55 0.7999 纯误差 5.52 4 1.38 总和 266.92 28 R2 0.9510 R2Adj 0.9021 注:“*”表示对结果影响显著(P<0.05),“**”表示对结果影响极显著(P<0.01);表6、表8同。 表 5 纤维素酶制备酥李果汁工艺优化响应面试验结果
Table 5. Results of response surface method for cellulose extraction of crisp plum juice
实验号 A B C D 出汁率(%) 1 −1 0 0 1 65.32 2 −1 0 0 −1 65.59 3 −1 1 0 0 70.45 4 −1 −1 0 0 65.42 5 −1 0 −1 0 67.77 6 −1 0 1 0 64.44 7 0 1 0 1 73.21 8 0 0 1 −1 65.1 9 0 0 −1 −1 67.19 10 0 −1 1 0 64.27 11 0 1 −1 0 73.1 12 0 0 −1 1 65.76 13 0 0 0 0 65.76 14 0 −1 0 1 64.93 15 0 1 1 0 69.44 16 0 0 1 1 66.4 17 0 −1 −1 0 65.15 18 0 0 0 0 66.99 19 0 1 0 −1 73.1 20 0 0 0 0 67.99 21 0 0 0 0 68.14 22 0 −1 0 −1 66.77 23 0 0 0 0 68.76 24 1 0 1 0 66.51 25 1 0 0 1 69.32 26 1 −1 0 0 66.19 27 1 0 −1 0 66.99 28 1 1 0 0 74.5 29 1 0 0 −1 69.43 表 6 出汁率回归模型的方差分析
Table 6. Variance analysis of multiple regression model of juice yield
方差来源 平方和 自由度 均方差 F值 P值 显著性 模型 212.81 14 15.20 15.88 <0.0001 ** A 16.22 1 16.22 16.95 0.0010 ** B 140.56 1 140.56 146.88 <0.0001 ** C 8.00 1 8.00 8.36 0.0118 * D 0.42 1 0.42 0.44 0.5193 AB 2.69 1 2.69 2.81 0.1158 AC 2.03 1 2.03 2.12 0.1673 AD 6.400E-003 1 6.400E-003 6.688E-003 0.9360 BC 1.93 1 1.93 2.02 0.1772 BD 0.95 1 0.95 0.99 0.3358 CD 1.86 1 1.86 1.95 0.1847 A2 9.041E-003 1 9.041E-003 9.447E-003 0.9239 B2 20.73 1 20.73 21.66 0.0004 ** C2 10.36 1 10.36 10.82 0.0054 ** D2 1.197E-003 1 1.197E-003 1.251E-003 0.9723 残差 13.40 14 0.96 失拟项 7.88 10 0.79 0.57 0.7850 纯误差 5.52 4 1.38 总和 226.21 28 R2 0.9408 R2Adj 0.8815 表 7 复合酶制备酥李果汁工艺优化响应面试验结果
Table 7. Results of response surface method for complex enzyme extraction of crisp plum juice
实验号 A B C D E 出汁率(%) 1 0 0 1 −1 0 76.49 2 0 0 0 −1 −1 68.8 3 0 0 0 −1 1 68.98 4 0 −1 1 0 0 72.65 5 −1 0 0 0 1 68.31 6 0 0 0 0 0 68.98 7 0 0 −1 0 1 65.92 8 0 1 1 0 0 77.71 9 1 −1 0 0 0 67.65 10 0 0 1 1 0 76.42 11 −1 0 0 1 0 67.75 12 0 0 0 0 0 69.4 13 1 0 1 0 0 76.31 14 0 1 0 0 1 71.43 15 −1 1 0 0 0 71.42 16 −1 −1 0 0 0 67.18 17 −1 0 1 0 0 74.2 18 0 0 −1 −1 0 66.76 19 0 0 1 0 −1 75.09 20 0 −1 0 0 −1 67.18 21 1 0 0 0 1 70.98 22 1 1 0 0 0 72.53 23 1 0 −1 0 0 66.43 24 0 0 0 0 0 69.72 25 0 1 0 0 −1 72.44 26 1 0 0 0 −1 71.35 27 0 0 0 1 −1 70.2 28 −1 0 0 0 −1 68.39 29 0 1 0 1 0 75.09 30 1 0 0 −1 0 70.13 31 0 −1 0 0 1 67.31 32 0 −1 0 −1 0 67.75 33 0 1 0 −1 0 73.66 34 1 0 0 1 0 71.97 35 0 0 −1 1 0 67.09 36 0 0 1 0 1 76.31 37 0 −1 −1 0 0 65.11 38 0 1 −1 0 0 66.76 39 −1 0 −1 0 0 65.92 40 0 −1 0 1 0 67.58 41 0 0 −1 0 −1 66.26 42 0 0 0 0 0 69.98 43 0 0 0 0 0 69.98 44 −1 0 0 −1 0 68.5 45 0 0 0 1 1 71.31 46 0 0 0 0 0 70.75 表 8 出汁率回归模型的方差分析
Table 8. Variance analysis of multiple regression model of juice yield
方差来源 平方和 自由度 均方差 F值 P值 显著性 模型 485.83 20 24.29 33.04 <0.0001 ** A 15.37 1 15.37 20.90 0.0001 ** B 93.27 1 93.27 126.87 <0.0001 ** C 350.91 1 350.91 477.34 <0.0001 ** D 2.51 1 2.51 3.42 0.0764 E 0.044 1 0.044 0.060 0.8085 AB 0.10 1 0.10 0.14 0.7121 AC 0.64 1 0.64 0.87 0.3597 AD 1.68 1 1.68 2.28 0.1435 AE 0.021 1 0.021 0.029 0.8671 BC 2.91 1 2.91 3.95 0.0578 BD 0.64 1 0.64 0.87 0.3597 BE 0.32 1 0.32 0.44 0.5123 CD 0.040 1 0.040 0.054 0.8175 CE 0.61 1 0.61 0.83 0.3717 DE 0.22 1 0.22 0.29 0.5924 A2 0.59 1 0.59 0.80 0.3789 B2 0.10 1 0.10 0.14 0.7100 C2 10.70 1 10.70 14.56 0.0008 ** D2 2.44 1 2.44 3.31 0.0807 E2 0.21 1 0.21 0.29 0.5941 残差 18.38 25 0.74 失拟项 16.57 20 0.83 2.29 0.1818 纯误差 1.81 5 0.36 总和 504.21 45 R2 0.9635 R2Adj 0.9344 -
[1] 罗福贤. 黔南山区李种质资源果实形态分类及开发利用[J]. 贵州农业科学,1996,24(3):39−42. [2] 王莹, 向准, 贺红早, 等. 贵州酥李果酒的酿造方法研究[J]. 酿酒科技,2014(9):75−76, 80. [3] 李德燕, 贺红早. 不同澄清剂对酥李果酒澄清效果的影响[J]. 食品研究与开发,2020,41(15):62−67. doi: 10.12161/j.issn.1005-6521.2020.15.012 [4] Sharma H P, Patel H, Sugandha. Enzymatic added extraction and clarification of fruit juices-a review[J]. Critical Reviews in Food Science and Nutrition,2017,57(6):1215−1227. doi: 10.1080/10408398.2014.977434 [5] Ribeiro D S, Henrique S M B, OliveiraLS, et al. Enzymes in juice processing: A review[J]. International Journal of Food Science and Technology,2010,45(4):635−641. doi: 10.1111/j.1365-2621.2010.02177.x [6] Kaur S, Sarkar B C, Sharma H K, et al. Optimization of enzymatic hydrolysis pretreatment conditions for enhanced juice recovery from guava fruit using response surface methodology[J]. Food and Bioprocess Technology,2009,2(1):96−100. doi: 10.1007/s11947-008-0119-1 [7] Khan M, Nakkeeran E, Umesh-Kumar S. Potential application of pectinase in developing functional foods[J]. Annual Review of Food Science and Technology,2013,4:21−34. doi: 10.1146/annurev-food-030212-182525 [8] 郝心, 卢晓明, 乔旭光. 响应面优化酶法提取沾化冬枣汁的工艺研究[J]. 食品研究与开发,2020,41(3):138−144. [9] 王静. 枣浓缩清汁加工工艺研究[D]. 郑州: 河南工业大学, 2016. [10] 贾东升, 李荣乔, 谢晓亮, 等. 响应面法优化果胶酶澄清酸枣汁工艺的研究[J]. 食品研究与开发,2016,37(10):91−95. doi: 10.3969/j.issn.1005-6521.2016.10.023 [11] 马艳弘, 田丽敏, 孙小华, 等. 无花果酶解制汁工艺优化及抗氧化活性[J]. 食品研究与开发,2019,40(1):111−117. doi: 10.3969/j.issn.1005-6521.2019.01.019 [12] 孙小华, 马艳弘, 崔晋, 等. 响应面法优化无花果果汁酶解提取工艺研究[J]. 西北农林科技大学学报(自然科学版),2018,46(12):58−64, 73. [13] Handique J, Bora S J, Sit N. Optimization of banana juice extraction using combination of enzymes[J]. Journal Food Science and Technology-Mtsore,2019,56(8):3732−3743. doi: 10.1007/s13197-019-03845-z [14] Bora S J, Handique J, Sit N. Effect of ultrasound and enzymatic pre-treatment on yield and properties of banana[J]. Ultrasonics Sonochemistry,2017,37(2):445−451. [15] 任曼妮, 姜辰昊, 彭中兰, 等. 果胶酶处理对花红清汁出汁率和澄清度的影响[J]. 食品工业,2019,40(6):47−50. [16] 王瑾, 冯作山, 洪梅玲, 等. 响应面法优化复合酶解提取赤霞珠葡萄汁工艺[J]. 食品工业科技,2019,40(3):141−146, 152. [17] Dal Magro L, Silveira V C C, de Menezes E W, et al. Magnetic biocatalysts of pectinase and cellulase: Synthesis and characterization of two preparations for application in grape juice clarification[J]. International Journal of Biological Macromolecules,2018,115(8):35−44. [18] Dal Magro L, Dalagnol L M G, Manfroi V, et al. Synergistic effects of pectinex ultra clear and lallzyme beta on yield and bioactive compounds extraction of Concord grape juice[J]. LWT-Food Scienceand Technology,2016,72(10):157−165. [19] 姜守军, 周广麒. 果胶酶提高葡萄出汁率及色泽的影响[J]. 食品与机械,2007(3):155−156, 159. doi: 10.3969/j.issn.1003-5788.2007.03.046 [20] 吴定, 孙嘉文, 黄卉卉, 等. 固定化果胶酶提高苹果出汁率的研究[J]. 食品科学,2012,33(16):40−44. [21] 黄峰华, 于泽源, 李兴国. 寒地特色中小苹果果汁加工酶处理技术研究[J]. 食品工业科技,2011,32(3):277−279, 284. [22] 方亚叶, 付五兵, 唐鹏, 等. 酶制剂在苹果液化过程中的应用研究[J]. 食品科技,2007(2):190−192. doi: 10.3969/j.issn.1005-9989.2007.02.052 [23] 李小惠. 金刺梨发酵酒工艺研究[D]. 重庆: 西南大学, 2017. [24] 张丹. 无籽刺梨酶法制汁工艺及果粉制备研究[D]. 重庆: 西南大学, 2017. [25] 岳珍珍. 野刺梨果汁加工技术研究[D]. 杨凌: 西北农林科技大学, 2016. [26] 马建勇, 李梦丽, 李春美. 两种不同成熟度树莓营养成分分析及果胶酶对树莓出汁率的影响[J]. 食品工业科技,2017,38(6):213−216, 228. [27] 贺可, 谷瑞瑞, 吴小平, 等. 响应面分析法优化新鲜树莓浆酶解工艺[J]. 保鲜与加工,2017,17(5):52−56. doi: 10.3969/j.issn.1009-6221.2017.05.010 [28] 孙旸, 孙春玉, 马骥, 等. 果胶酶提高软枣猕猴桃出汁率研究[J]. 中国酿造,2011(9):115−117. doi: 10.3969/j.issn.0254-5071.2011.09.031 [29] 姜文文, 姜爱丽, 田密霞, 等. 果胶酶处理对软枣猕猴桃出汁率的影响[J]. 保鲜与加工,2008(4):48−50. doi: 10.3969/j.issn.1009-6221.2008.04.015 [30] 雷昌贵, 孟宇竹, 蔡花真, 等. 果胶酶对布朗李汁澄清效果的影响[J]. 中国食品添加剂,2009,20(3):175−179. doi: 10.3969/j.issn.1006-2513.2009.03.037 -