• CA
  • JST
  • FSTA
  • SCOPUS
  • 北大核心期刊
  • 中国科技核心期刊CSTPCD
  • 中国精品科技期刊
  • RCCSE中国核心学术期刊
  • 中国农业核心期刊
  • 中国生物医学文献服务系统SinoMed收录期刊

超声-微波辅助酶法提取糜子麸皮可溶性膳食纤维及其抗氧化活性分析

颜飞翔 朱立斌 朱丹 苗欣月 牛广财 魏文毅

颜飞翔,朱立斌,朱丹,等. 超声-微波辅助酶法提取糜子麸皮可溶性膳食纤维及其抗氧化活性分析[J]. 食品工业科技,2022,43(12):163−172. doi:  10.13386/j.issn1002-0306.2021080297
引用本文: 颜飞翔,朱立斌,朱丹,等. 超声-微波辅助酶法提取糜子麸皮可溶性膳食纤维及其抗氧化活性分析[J]. 食品工业科技,2022,43(12):163−172. doi:  10.13386/j.issn1002-0306.2021080297
YAN Feixiang, ZHU Libin, ZHU Dan, et al. Analysis of Ultrasonic-Microwave Synergistic Enzyme Extraction of Soluble Dietary Fiber from Millet Bran and Its Antioxidant Activity[J]. Science and Technology of Food Industry, 2022, 43(12): 163−172. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021080297
Citation: YAN Feixiang, ZHU Libin, ZHU Dan, et al. Analysis of Ultrasonic-Microwave Synergistic Enzyme Extraction of Soluble Dietary Fiber from Millet Bran and Its Antioxidant Activity[J]. Science and Technology of Food Industry, 2022, 43(12): 163−172. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021080297

超声-微波辅助酶法提取糜子麸皮可溶性膳食纤维及其抗氧化活性分析

doi: 10.13386/j.issn1002-0306.2021080297
基金项目: 黑龙江省优势特色学科资助项目(编号:黑教联〔2018〕4号);黑龙江八一农垦大学研究生创新科研项目(YJSCX2021-Y67);黑龙江八一农垦大学“三横三纵”平台支持计划项目(PTJH202103)。
详细信息
    作者简介:

    颜飞翔(1995−),女,硕士,研究方向:食品科学与工程,E-mail:1532906663@qq.com

    通讯作者:

    朱丹(1972−),女,硕士,副教授,研究方向:植物资源开发利用,Email:623016878@qq.com

    牛广财(1971−),男,博士,教授,研究方向:农产品贮藏与加工,E-mail:gcniu@126.com

  • 中图分类号: TS210.9

Analysis of Ultrasonic-Microwave Synergistic Enzyme Extraction of Soluble Dietary Fiber from Millet Bran and Its Antioxidant Activity

  • 摘要: 以糜子麸皮为原料,采用超声-微波辅助酶法研究液料比、协同时间、提取温度、复合酶添加量对糜子麸皮可溶性膳食纤维(SDF)得率的影响。采用响应面法进行工艺优化,并分析糜子麸皮可溶性膳食纤维的抗氧化活性。结果表明:响应面法优化糜子麸皮SDF的最佳提取工艺为:液料比为31:1 mL/g、协同时间21 min、提取温度56 ℃、复合酶添加量1.4%,该条件下可溶性膳食纤维得率为6.35%,纯度为91.27%。抗氧化活性表明,当样品浓度为14 mg/mL时,糜子麸皮SDF还原力为1.219,其对于DPPH自由基清除率、ABTS+自由基清除率和羟自由基清除率的IC50值分别为2.45、26.15和5.98 mg/mL,说明糜子麸皮SDF具有较好的抗氧化活性。
  • 图  1  复合酶比例对糜子麸皮SDF得率的影响

    Figure  1.  Effect of compound enzyme ratio on SDF yield in millet bran

    图  2  酶解pH对糜子麸皮SDF得率的影响

    Figure  2.  Effect of enzymatic hydrolysis pH on SDF yield in millet bran

    图  3  酶解时间对糜子麸皮SDF得率的影响

    Figure  3.  Effect of enzymatic hydrolysis time on SDF yield in millet bran

    图  4  酶解温度对糜子麸皮SDF得率的影响

    Figure  4.  Effect of enzymatic hydrolysis temperature on SDF yield in millet bran

    图  5  液料比对糜子麸皮SDF得率的影响

    Figure  5.  Effect of liquid-solid ratio on SDF yield in millet bran

    图  6  协同时间对糜子麸皮中SDF得率的影响

    Figure  6.  Effect of synergistic time on SDF yield in millet bran

    图  7  提取温度对糜子麸皮中SDF得率的影响

    Figure  7.  Effect of extraction temperature on SDF yield in millet bran

    图  8  超声功率对糜子麸皮中SDF得率的影响

    Figure  8.  Effect of ultrasonic power on SDF yield in millet bran

    图  9  微波功率对糜子麸皮中SDF得率的影响

    Figure  9.  Effect of microwave power on SDF yield in millet bran

    图  10  复合酶添加量对糜子麸皮中SDF得率的影响

    Figure  10.  Effect of compound enzyme addition on SDF yield in millet bran

    图  11  各因素对糜子麸皮SDF得率的交互作用

    Figure  11.  Interaction of various factors on SDF yield of millet bran

    图  12  糜子麸皮SDF的体外抗氧化能力

    Figure  12.  Anti-oxidant capacity of millet bran SDF from millet in vitro

    表  1  响应面试验因素与水平表

    Table  1.   Response surface experimental factors and levels

    水平因素
    A液料比
    (mL/g)
    B协同时间
    (min)
    C提取温度
    (℃)
    D复合酶添加量(%)
    125:110501.2
    030:120551.4
    −135:130601.6
    下载: 导出CSV

    表  2  响应面试验设计及结果

    Table  2.   Program and results of response surface experiment

    实验号ABCD得率(%)
    1−10104.91
    201−105.01
    30−1104.90
    401014.88
    500006.32
    600−114.50
    70−1−104.32
    80−10−14.20
    900114.80
    1001105.20
    110−1014.39
    12−10014.52
    13−1−1004.29
    141−1005.08
    1500006.32
    1600006.36
    17010−14.68
    1811005.37
    19−100−14.13
    2010−105.10
    21100−14.93
    2200−1−14.21
    23−11004.98
    2410105.38
    25−10−104.39
    26001−14.70
    2700006.34
    2810014.91
    2900006.33
    下载: 导出CSV

    表  3  回归模型的方差分析

    Table  3.   Analysis of variance of regression model

    差异来源平方和自由度均方FP显著性
    模型4.67140.333389.49< 0.0001**
    A1.0511.0510667.17< 0.0001**
    B0.7210.727316.23< 0.0001**
    C0.4610.464714.29< 0.0001**
    D0.1110.111119.41< 0.0001**
    AB0.0410.04406.29< 0.0001**
    AC0.01410.014146.26< 0.0001**
    AD0.04210.042426.86< 0.0001**
    BC0.03810.038386.23< 0.0001**
    BD2.50E-0512.50E-050.250.6222
    CD9.03E-0319.03E-0391.67< 0.0001**
    A20.1610.161667.37< 0.0001**
    B20.3910.393965.49< 0.0001**
    C20.3410.343495.40< 0.0001**
    D21.9711.9720044.98< 0.0001**
    残差1.38E-03149.85E-05
    失拟2.58E-04102.58E-050.0920.9988
    纯误差1.12E-0342.80E-04
    总变异4.6728
    注:**表示相关性极显著(P<0.01);*表示显著(P<0.05)。
    下载: 导出CSV
  • [1] 柴岩, 万富世. 中国小杂粮产业发展报告[M]. 北京: 中国农业科学技术出版社, 2007: 3

    CHAI Y, WAN F S. Report on the development of small grain industry in China[M]. Beijing: China Agricultural Science and Technology Press, 2007: 3.
    [2] 王振, 褚敏哲, 薛海波, 等. 超声辅助提取糜子皮多酚工艺条件优化[J]. 保鲜与加工,2016,16(5):41−44,48. [WANG Z, CHU M Z, XUE H B, et al. Optimization of ultrasonic assisted-extraction of polyphenols from prosomillet pericarp[J]. Storage and Process,2016,16(5):41−44,48.

    WANG Z, CHU M Z, XUE H B, et al. Optimization of ultrasonic assisted-extraction of polyphenols from prosomillet pericarp[J]. Storage and Process, 2016, 16(5): 41-44+48.
    [3] 王振, 褚敏哲, 薛雅荣, 等. 糜子皮中多酚抗氧化活性研究[J]. 食品研究与开发,2016,37(19):5−8. [WANG Z, CHU M H, XUE R Y, et al. Study on antioxidant activities of polyphenol from prosomillet pericarp[J]. Food Research and Development,2016,37(19):5−8. doi:  10.3969/j.issn.1005-6521.2016.19.002

    WANG Z, CHU M H, XUE R Y, et al. Study on antioxidant activities of polyphenol from prosomillet pericarp[J]. Food Research and Development, 2016, 37(19): 5-8. doi:  10.3969/j.issn.1005-6521.2016.19.002
    [4] 申瑞玲, 马玉玲, 杜文娟, 等. 糜子的营养生理功能特性及产品开发现状[J]. 粮食与油脂,2017,30(1):9−12. [SHEN R L, MA Y L, DU W J, et al. Nutrition and physiological functional properties and food processing of proso millet[J]. Cereals & Oils,2017,30(1):9−12. doi:  10.3969/j.issn.1008-9578.2017.01.003

    SHEN R L, MA Y L, DU W J, et al. Nutrition and physiological functional properties and food processing of proso millet[J]. Cereals & Oils, 2017, 30(1): 9-12. doi:  10.3969/j.issn.1008-9578.2017.01.003
    [5] CHAU C F, CHEN C H, LEE M H. Comparison of the characteristics, functional properties, and in vitro hypoglycemic effects of various carrot insoluble fiber-rich fractions[J]. LWT-Food Science and Technology,2004,37(2):155−160. doi:  10.1016/j.lwt.2003.08.001
    [6] 白晓州, 张镒飞. 蒸汽爆破对沙棘果渣可溶性膳食纤维性质影响[J]. 食品研究与开发,2019,40(7):34−39. [BAI X Z, ZHANG Y F. Effects of steam explosion on properties of soluble dietary fiber from seabuckthorn pomace[J]. Food Research and Development,2019,40(7):34−39.

    BAI X Z, ZHANG Y F. Effects of steam explosion on properties of soluble dietary fiber from seabuckthorn pomace[J]. Food research and development, 2019, 40(7): 34-39.
    [7] YAN J K, WU L X, CAI W D, et al. Subcritical water extraction-based methods affect the physicochemical and functional properties of soluble dietary fibers from wheat bran[J]. Food Chemistry,2019(298):124987−124996.
    [8] 宁建红, 张杰, 李霞. 膳食纤维的生理功能、制备方法和改性技术的研究进展[J]. 中国食物与营养,2019,25(1):43−45. [NING J H, ZHANG J, LI X. Research progress on functional activity, preparation process, and modification technology of dietary fiber[J]. Food and Nutrition in China,2019,25(1):43−45. doi:  10.3969/j.issn.1006-9577.2019.01.009

    NING J H, ZHANG J, LI X. Research progress on functional activity, preparation process, and modification technology of dietary fiber[J]. Food and Nutrition in China, 2019, 25(1): 43-45. doi:  10.3969/j.issn.1006-9577.2019.01.009
    [9] 张博华, 张明, 杨立风, 等. 膳食纤维的提取及其在食品中的应用研究[J]. 中国果菜,2019,39(4):1−5. [ZHANG B H, ZHANG M, YANG L F, et al. Research progress of dietary fiber extraction and its application in food industry[J]. China Fruit & Vegetable,2019,39(4):1−5.

    ZHANG B H, ZHANG M, YANG L F, et al. Research progress of dietary fiber extraction and its application in food industry[J]. China Fruit & Vegetable, 2019, 39(4): 1-5.
    [10] D I L, J A L, M E S, et al. Production of dietary fibers from sugarcane bagasse and sugarcane tops using microwave-assisted alkaline treatments[J]. Industrial Crops and Products,2019(135):159−169.
    [11] 朱广成, 杨慧, 路风银, 等. 超声辅助酶法提取绿芦笋可溶性膳食纤维工艺条件优化[J]. 食品研究与开发,2020,41(20):130−136. [ZHU G C, YANG H, LU F Y, et al. Optimization of ultrasonic assisted enzymatic extraction of soluble dietary fiber from green asparagus[J]. Food Research and Development,2020,41(20):130−136. doi:  10.12161/j.issn.1005-6521.2020.20.022

    ZHU G C, YANG H, LU F Y, et al. Optimization of ultrasonic assisted enzymatic extraction of soluble dietary fiber from green asparagus[J]. Food research and development, 2020, 41(20): 130-136. doi:  10.12161/j.issn.1005-6521.2020.20.022
    [12] 周伟, 于笛, 迟治平, 等. 超声微波协同萃取紫丁香叶总黄酮工艺及其稳定性研究[J]. 中国食品添加剂,2018(8):111−119. [ZHOU W, YU D, CHI Z P, et al. Study on ultrasonic-microwave synergistic extraction process and stability of total flavonoids from syringa oblata leaves[J]. China Food Additives,2018(8):111−119. doi:  10.3969/j.issn.1006-2513.2018.08.011

    ZHOU W, YU D, CHI Z P, et al. Study on ultrasonic-microwave synergistic extraction process and stability of total flavonoids from syringa oblata leaves[J]. China Food Additives, 2018, (8): 111-119. doi:  10.3969/j.issn.1006-2513.2018.08.011
    [13] 董玉玮, 苗敬芝, 陈尚龙. 超声结合酶法提取红薯渣中可溶性膳食纤维及功能性研究[J]. 食品工业,2014,35(12):82−85. [DONG Y W, MIAO J Z, CHEN S L. Research on ultrasonic-enzymatic extraction and functionality of water-soluble dietary fiber of sweet potato waste[J]. The Food Industry,2014,35(12):82−85.

    DONG Y W, MIAO J Z, CHEN S L. Research on ultrasonic-enzymatic extraction and functionality of water-soluble dietary fiber of sweet potato waste[J]. The Food Industry, 2014, 35(12): 82-85.
    [14] 唐小闲, 邱培生, 段振华, 等. 响应面法优化超声-微波辅助提取莲藕膳食纤维工艺研究[J]. 食品研究与开发,2019,40(6):132−139. [TANG X X, QIU P S, DUAN Z H, et al. Optimization of ultrasonic-microwave assisted extraction of dietary fiber from lotus root by response surface methodology[J]. Food Research and Development,2019,40(6):132−139. doi:  10.3969/j.issn.1005-6521.2019.06.024

    TANG X X, QIU P S, DUAN Z H, et al. Optimization of ultrasonic-microwave assisted extraction of dietary fiber from lotus root by response surface methodology[J]. Food Research and Development, 2019, 40(6): 132-139. doi:  10.3969/j.issn.1005-6521.2019.06.024
    [15] 吴俊男, 马森, 张弛, 等. 小麦麸皮膳食纤维的微波-酶法改性研究[J]. 食品科技,2017,42(2):175−180. [WU J N, MA S, ZHANG C, et al. Microwave-enzyme modification of dietary fiber from wheat bran[J]. Food Science and Technology,2017,42(2):175−180.

    WU J N, MA S, ZHANG C, et al. Microwave-enzyme modification of dietary fiber from wheat bran[J]. Food Science and Technology, 2017, 42(2): 175-180.
    [16] 杨静, 白冰, 王宁, 等. 考马斯亮蓝法对烟草薄片涂布液中蛋白质含量的测定[J]. 湖北农业科学,2017,56(5):946−947,950. [YANG J, BAI B, WANG N, et al. Determination of protein content in reconstituted tobacco coating liquid by coomassie brilliant blue method[J]. Hubei Agricultural Sciences,2017,56(5):946−947,950.

    YANG J, BAI B, WANG N, et al. Determination of protein content in reconstituted tobacco coating liquid by coomassie brilliant blue method[J]. Hubei Agricultural Sciences, 2017, 56(5): 946-947+950.
    [17] 李治龙, 刘新华, 刘文杰, 等. 几种新疆特色干果清除自由基活性[J]. 光谱实验室,2012,29(5):2680−2684. [LI Z L, LIU X H, LIU W J, et al. Radical scavenging sctivity of several characteristic dried fruit from Xinjiang[J]. Chinese Journal of Spectroscopy Laboratory,2012,29(5):2680−2684. doi:  10.3969/j.issn.1004-8138.2012.05.016

    LI Z L, LIU X H, LIU W J, et al. Radical scavenging sctivity of several characteristic dried fruit from Xinjiang[J]. Chinese Journal of Spectroscopy Laboratory, 2012, 29(5): 2680-2684. doi:  10.3969/j.issn.1004-8138.2012.05.016
    [18] 宋艺君, 郭涛, 刘世军, 等. 响应面法优化黄精-大枣果酒发酵工艺及其抗氧化活性[J]. 食品工业科技,2021,42(1):156−161. [SONG Y J, GUO T, LIU S J, et al. Optimization of fermentation process and antioxidant activity of polygonati rhizoma-jujubae fructus fruit wine by response surface methodology[J]. Science and Technology of Food Industry,2021,42(1):156−161.

    SONG Y J, GUO T, LIU S J, et al. Optimization of fermentation process and antioxidant activity of polygonati rhizoma-jujubae fructus fruit wine by response surface methodology[J]. Science and Technology of Food Industry, 2021, 42(1): 156-161.
    [19] 董佳萍, 颜飞翔, 牛广财, 等. 北五味子麦芽酵素发酵工艺优化及其生物活性初探[J]. 食品工业,2020,41(5):31−34. [DONG J P, YAN F X, NIU G C, et al. Optimization of fermentation process of schisandra chinensis barley malt jiaosu and primary study of its bioactivity[J]. The Food Industry,2020,41(5):31−34.

    DONG J P, YAN F X, NIU G C, et al. Optimization of fermentation process of schisandra chinensis barley malt jiaosu and primary study of its bioactivity[J]. The Food Industry, 2020, 41(5): 31-34.
    [20] 程宏桢, 蔡志鹏, 王静, 等. 百香果全果酒发酵工艺优化及体外抗氧化性比较分析[J]. 中国酿造,2020,39(4):91−97. [CHENG H Z, CAI Z P, WANG J, et al. Optimization of fermentation process for whole passion fruit wine and comparative analysis of antioxidant activity in vitro[J]. China Brewing,2020,39(4):91−97. doi:  10.11882/j.issn.0254-5071.2020.04.019

    CHENG H Z, CAI Z P, WANG J, et al. Optimization of fermentation process for whole passion fruit wine and comparative analysis of antioxidant activity in vitro[J]. China Brewing, 2020, 39(4): 91-97. doi:  10.11882/j.issn.0254-5071.2020.04.019
    [21] 张荣, 任清, 罗宇. 小米可溶性膳食纤维提取及其理化性质分析[J]. 食品科学,2014,35(2):69−74. [ZHANG R, RENG Q, LUO Y. Extraction of soluble dietary fiber from foxtail millet and analysis of its physical and chemical properties[J]. Food Science,2014,35(2):69−74. doi:  10.7506/spkx1002-6630-201402013

    ZHANG R, RENG Q, LUO Y. Extraction of soluble dietary fiber from foxtail millet and analysis of its physical and chemical properties[J]. Food Science, 2014, 35(2): 69-74. doi:  10.7506/spkx1002-6630-201402013
    [22] 姜龙波, 吕静, 张喜文, 等. 小米糠膳食纤维复合酶法改性工艺优化[J]. 轻工学报,2017,32(5):16−23. [JIANG L B, LV J, ZHANG X W, et al. Process optimization of complex enzyme modification of millet bran dietary fiber[J]. Journal of Light Industry,2017,32(5):16−23. doi:  10.3969/j.issn.2096-1553.2017.5.003

    JIANG L B, LV J, ZHANG X W, et al. Process optimization of complex enzyme modification of millet bran dietary fiber[J]. Journal of Light Industry, 2017, 32(5): 16-23. doi:  10.3969/j.issn.2096-1553.2017.5.003
    [23] 宋真真. 豆渣膳食纤维的制备及其降血糖功能与面条工艺优化研究[D]. 杨凌: 西北农林科技大学, 2014

    SONG Z Z. Research on bean dregs dietary fiber noodles and its hypoglycemic function[D]. Yangling: Northwest A&F University, 2014.
    [24] 李艳. 不同酶法改性的马铃薯渣膳食纤维工艺条件及性能研究[D]. 呼和浩特: 内蒙古农业大学, 2019.

    LI Y. Study on process conditions and properties of dietary fibers from potato residue modified by different enzymatic method[D]. Hohhot: Inner Mongolia Agricultural University, 2019.
    [25] 李晶, 张连富. 玉米皮水溶性膳食纤维的酶法制备[J]. 中国粮油学报,2014,29(10):112−117. [LI J, ZHANG L F. The preparation of water-soluble dietary fiber from corn bran by enzymatic hydrolysis[J]. Journal of the Chinese Cereals and Oils Association,2014,29(10):112−117.

    LI J, ZHANG L F. The preparation of water-soluble dietary fiber from corn bran by enzymatic hydrolysis[J]. Journal of the Chinese Cereals and Oils Association, 2014, 29(10): 112-117.
    [26] 王娟, 康子悦, 肖金玲, 等. 超声-微波辅助酶法对小米SDF提取和物理性质的影响[J]. 包装工程,2020,41(7):25−32. [WANG J, KANG Z Y, XIAO J L, et al. Influence of ultrasonic-microwave assisted enzymatic method on extraction and physical properties of water-soluble dietary fiber from millet[J]. Packaging Engineering,2020,41(7):25−32.

    WANG J, KANG Z Y, XIAO J L, et al. Influence of ultrasonic-microwave assisted enzymatic method on extraction and physical properties of water-soluble dietary fiber from millet[J]. Packaging Engineering, 2020, 41(7): 25-32.
    [27] 胡春晓, 宣丽, 齐森. 微波辅助提取香菇柄水溶性膳食纤维的工艺研究[J]. 粮食与油脂,2015,28(2):49−51. [HU C X, XUAN L, QI S. Study on microwave-assisted extraction technology of soluble dietary fiber from lentinus edodes stem[J]. Cereals & Oils,2015,28(2):49−51. doi:  10.3969/j.issn.1008-9578.2015.02.013

    HU C X, XUAN L, QI S. Study on microwave-assisted extraction technology of soluble dietary fiber from lentinus edodes stem[J]. Cereals & Oils, 2015, 28(2): 49-51. doi:  10.3969/j.issn.1008-9578.2015.02.013
    [28] YING Z, HAN X, LI J. Ultrasound-assisted extraction of polysaccharides from mulberry leaves[J]. Food Chemistry,2011,127(3):1273−1279. doi:  10.1016/j.foodchem.2011.01.083
    [29] MARAN J P, SWATHI K, JEEVITHA P, et al. Microwave-assisted extraction of pectic polysaccharide from waste pango peel[J]. Carbohydrate Polymers,2015,123:67−71. doi:  10.1016/j.carbpol.2014.11.072
    [30] 李怡杰, 陆海南, 覃江克, 等. 微波辅助提取油茶枯中膳食纤维的工艺优化[J]. 食品科技,2013,38(5):188−192. [LI Y J, LU H N, QIN J K, et al. Optimization for microwave-assisted extraction of dietary fiber from camellia cakes[J]. Food Science and Technology,2013,38(5):188−192.

    LI Y J, LU H N, QIN J K, et al. Optimization for microwave-assisted extraction of dietary fiber from camellia cakes[J]. Food Science and Technology, 2013, 38(5): 188-192.
    [31] 和法涛, 刘光鹏, 朱风涛, 等. 微波超声波组合提取猴头菇多糖工艺优化及其抗氧化活性[J]. 食品与生物技术学报,2019,38(1):74−82. [HE F T, LIU G P, ZHU F T, et al. Optimization of microwave-ultrasonic assisted extraction of polysaccharides from Hericium erinaceus antioxidant activity in vitro[J]. Journal of Food Science and Biotechnology,2019,38(1):74−82. doi:  10.3969/j.issn.1673-1689.2019.01.012

    HE F T, LIU G P, ZHU F T, et al. Optimization of microwave-ultrasonic assisted extraction of polysaccharides from hericium erinaceus antioxidant activity in vitro[J]. Journal of Food Science and Biotechnology, 2019, 38(1): 74-82. doi:  10.3969/j.issn.1673-1689.2019.01.012
    [32] 程海涛, 申献双. 响应面优化超声波-微波协同提取葡萄籽原花青素工艺研究[J]. 中国油脂,2018,43(3):156−160. [CHENG H T, SHEN X S. Optimization of ultrasound-microwave-assisted extraction of proanthocyanidin from grape seeds by response surface methodology[J]. China Oils and Fats,2018,43(3):156−160. doi:  10.3969/j.issn.1003-7969.2018.03.036

    CHENG H T, SHEN X S. Optimization of ultrasound-microwave-assisted extraction of proanthocyanidin from grape seeds by response surface methodology[J]. China Oils and Fats, 2018, 43(3): 156-160. doi:  10.3969/j.issn.1003-7969.2018.03.036
    [33] 康丽君, 寇芳, 夏甜天, 等. 超声-微波协同酶法改性小米糠膳食纤维及工艺优化[J]. 食品工业科技,2016,37(23):221−226. [KANG L J, KOU F, XIA T T, et al. Study of the modification of millet bran dietary fiber with the method of ultrasonic-microwave cooperated with enzyme and the optimization of process[J]. Science and Technology of Food Industry,2016,37(23):221−226.

    KANG L J, KOU F, XIA T T, et al. Study of the modification of millet bran dietary fiber with the method of ultrasonic-microwave cooperated with enzyme and the optimization of process[J]. Science and Technology of Food Industry, 2016, 37(23): 221-226.
    [34] 阮之阳. 酶-超声联合处理植物废渣制备膳食纤维及其生物活性研究[D]. 广州: 华南理工大学, 2018

    RUAN Z Y. Preparation of dietary fiber from plant wastes by combined enzyme-ultrasound treatment and their bioactivities[D]. Guangzhou: South China University of Technology, 2018.
    [35] GARCIA M, RAJAURIA G, TIWARI B, et al. Extraction and yield optimisation of fucose, glucans and associated antioxidant activities from laminaria digitata by applying response surface methodology to high intensity ultrasound-assisted extraction[J]. Marine Drugs,2018,16(8):257−272. doi:  10.3390/md16080257
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  41
  • HTML全文浏览量:  18
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-26
  • 网络出版日期:  2022-04-28
  • 刊出日期:  2022-06-08

目录

    /

    返回文章
    返回

    重要通知

    《食品工业科技》青年编委专栏征稿 | 杂粮与主粮复配的营养学基础