• CA
  • JST
  • FSTA
  • SCOPUS
  • 北大核心期刊
  • 中国科技核心期刊CSTPCD
  • 中国精品科技期刊
  • RCCSE中国核心学术期刊
  • 中国农业核心期刊
  • 中国生物医学文献服务系统SinoMed收录期刊

浅渍豇豆复合功能发酵剂制备关键技术

王英 张会 范琳琳 施亚萍 傅青 王帆 刘小莉

王英,张会,范琳琳,等. 浅渍豇豆复合功能发酵剂制备关键技术[J]. 食品工业科技,2022,43(12):173−180. doi:  10.13386/j.issn1002-0306.2021080365
引用本文: 王英,张会,范琳琳,等. 浅渍豇豆复合功能发酵剂制备关键技术[J]. 食品工业科技,2022,43(12):173−180. doi:  10.13386/j.issn1002-0306.2021080365
WANG Ying, ZHANG Hui, FAN Linlin, et al. Key Technology of Compound Functional Starter of Low-salt Curing Cowpea[J]. Science and Technology of Food Industry, 2022, 43(12): 173−180. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021080365
Citation: WANG Ying, ZHANG Hui, FAN Linlin, et al. Key Technology of Compound Functional Starter of Low-salt Curing Cowpea[J]. Science and Technology of Food Industry, 2022, 43(12): 173−180. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021080365

浅渍豇豆复合功能发酵剂制备关键技术

doi: 10.13386/j.issn1002-0306.2021080365
基金项目: 江苏省科技项目-现代农业(BE2019307);国家自然科学基金(31801531)。
详细信息
    作者简介:

    王英(1978−),女,博士,副研究员,研究方向:食品生物技术,E-mail:wy116009@126.com

    通讯作者:

    刘小莉(1981−),女,博士,研究员,研究方向:食品生物工程,E-mail:liuxljaas@hotmail.com

  • 中图分类号: TS251.1

Key Technology of Compound Functional Starter of Low-salt Curing Cowpea

  • 摘要: 本文通过对亚硝酸盐降解菌Lactobacillus plantarum SD-7、抗氧化功能菌Lactobacillus plantarum FM-LP-9和抑菌功能菌Lactobacillus alimentarius FM-MM4间的生长相容性、共培养对菌株功能的影响及复合接种发酵豇豆品质和感官评定的研究,制备浅渍豇豆的复合功能发酵剂。结果表明:复合功能发酵剂的3菌株之间具有优良的生长相容性,共培养的菌体密度提高范围为0.49~6.32倍;在3株菌的接种比例为1:1:1的共培养体系中,功能特性发挥最优;复合体系中菌株的亚硝酸盐降解率为96.15%,与Lactobacillus plantarum SD-7单独培养相比,提高8.59%,DPPH自由基清除率为51.23%,ABTS+自由基清除率为64.52%,还原力为175.23 μmol·L−1(L-半胱氨酸),与Lactobacillus plantarum FM-LP-9单独培养相比,分别提高了15.82%、 14.58%和20.66%;抑菌能力与Lactobacillus alimentarius FM-MM4单独培养相比也有显著提高(P<0.05)。与自然发酵CK相比,接种发酵有利于提高浅渍发酵豇豆的品质。
  • 图  1  共培养对菌株Lactobacillus plantarum SD-7降解亚硝酸盐功能的影响

    Figure  1.  Effect of co-culture on nitrite degradation capacity of Lactobacillus plantarum SD-7

    注:不同字母表示同一指标间在0.05水平差异显著;图2同。

    图  2  共培养对菌株Lactobacillus plantarum FM-LP-9抗氧化能力的影响

    Figure  2.  Effect of co-culture on antioxidant capacity of Lactobacillus plantarum FM-LP-9

    表  1  菌株16S rDNA系统发育分析

    Table  1.   Phylogenetic analysis of 16S rDNA of strains

    菌株同源性(%)来源
    Lactobacillus plantarum SD-799传统发酵西瓜豆
    Lactobacillus plantarum 9SH99传统发酵西瓜豆
    Lactobacillus plantarum FM-LP-999新疆酸奶
    Lactobacillus plantarum 1-199传统发酵西瓜豆
    Lactobacillus fermentum p1399潮州泡菜
    Lactobacillus plantarum 12-299新疆酸奶
    Lactobacillus paracasei FM-LP-499新疆骆驼酸奶
    Lactobacillus alimentarius FM-MM499发酵玉米
    下载: 导出CSV

    表  2  浅渍豇豆感官评分表

    Table  2.   Mark of organoleptic evaluation rating of low-salt curing cowpeas

    指标标准扣分(分)分数(分)
    色泽及形态
    (30分)
    色泽一致且正常,有光泽,无杂质及异物,汤汁清亮,无霉花30
    色泽不正常,不鲜艳或无光泽1~10
    有菜屑、杂质及异物1~10
    汤汁浑浊、有霉花浮膜5~10
    香味
    (30分)
    具有豇豆固有的香气,典型发酵型香气和添加辅料复合香气,无不良气味及其他异味30
    香气差1~5
    香气不正1~10
    有不良气味,(如氨、硫化氢、焦糊、酸败等气味)及其他异味7~15
    质地及滋味
    (40分)
    滋味鲜美,质地脆嫩,酸咸味适宜,无苦味、涩味等异味40
    菜质脆嫩度差1~10
    口味淡薄,有苦味及涩味、酸败味1~10
    其他不良气味(馊味、霉味等)10~20
    下载: 导出CSV

    表  3  8株菌在浅渍发酵豇豆中的发酵特性

    Table  3.   Fermentation characteristics of eight strains in low-salt curing cowpea


    发酵豇豆特性
    发酵时间(h)色泽饱和度硬度(N)感官评分(分)
    Lactobacillus plantarum SD-712026.32±0.31c38.19±0.44b83.65±4.35b
    Lactobacillus plantarum 9SH12024.14±1.14b34.61±0.34a85.88±5.31b
    Lactobacillus plantarum FM- -912025.31±1.25bc40.61±1.37b84.52±3.57b
    Lactobacillus plantarum 1-112024.21±0.87b40.27±2.67b76.55±6.54a
    Lactobacillus fermentum p1312024.39±1.26b35.23±1.23a70.38±3.41a
    Lactobacillus plantarum 12-214421.26±1.41a34.18±1.23a73.21±5.67a
    Lactobacillus paracasei FM-LP-412020.35±0.36a38.65±1.20b81.26±3.76b
    Lactobacillus alimentarius FM-MM414424.25±0.51b38.56±0.68b83.85±3.65b
    注:不同小写字母表示同一列数据间在0.05水平差异显著,P<0.05 。
    下载: 导出CSV

    表  4  3株乳酸菌间生长相容性

    Table  4.   Growth compatibility among three strains of lactic acid bacteria

    菌株菌体密度lg(CFU/mL)
    Lactobacillus plantarum SD-79.16±0.01
    Lactobacillus plantarum FM-LP-98.92±0.05
    Lactobacillusalimentarius FM- MM48.51±0.06
    Lactobacillus plantarum SD-7+Lactobacillus plantarum FM-LP-99.35±0.09
    Lactobacillus plantarum SD-7+ Lactobacillus alimentarius FM-MM49.37±0.08
    Lactobacillus plantarum FM-LP-9+Lactobacillus alimentarius FM-MM48.97±0.04
    Lactobacillus plantarum FM-LP-9+Lactobacillusalimentarius FM-MM4+ Lactobacillus plantarum SD-79.33±0.07
    下载: 导出CSV

    表  5  共培养对Lactobacillus alimentarius FM-MM4抑菌功能活性的影响

    Table  5.   Effect of co-culture on bacteriostasis activity of Lactobacillus alimentarius FM-MM4

    菌株间比例金黄色葡萄球菌(ATCC25923)(mm)沙门氏菌(ATCC 51812)(mm)大肠杆菌(ATCC25922)(mm)
    1:0:015.67±0.31a13.56±0.27a12.57±0.35a
    3:1:115.44±0.15a13.54±0.11a12.45±0.30a
    3:1:215.85±0.19a14.52±0.16b12.68±0.41a
    3:2:116.48±0.35b14.24±0.21b13.01±0.35b
    3:2:216.54±0.26b14.68±0.33c12.56±0.24a
    1:1:116.57±0.33b15.01±0.41c13.57±0.26c
    注:同列小写英文字母不同表示不同处理间差异显著,P<0.05;表6同。
    下载: 导出CSV

    表  6  混合发酵对浅渍豇豆品质的影响

    Table  6.   Effect of mixed-fermentation on quality of low-salt curing cowpea

    菌株间比例色泽饱和度硬度(N)咀嚼性(mj)感官评分(分)
    CK20.64±1.20a33.56±0.96a15.57±0.65a75.59±1.26a
    3:1:124.44±1.35b37.54±1.42b18.45±0.38b84.64±3.35b
    3:1:225.85±0.88b36.52±1.16b18.68±0.64b84.45±2.11b
    3:2:127.48±0.74bc38.24±0.98b21.01±0.55c88.56±1.58c
    3:2:229.54±0.24c42.68±0.57c22.56±0.87c88.45±2.18c
    1:1:129.57±1.35c43.01±0.48c23.57±1.26c90.51±1.56c
    下载: 导出CSV
  • [1] 李亚新. 两种复合菌制剂及酶制剂发酵四种中草药药渣的效果研究[D]. 杨凌: 西北农林科技大学, 2018.

    LI Yaxin. Study on the effect of fermentation of four kinds of Chinese herbal medicine residues by two compound bacteria preparations and enzyme preparations[D]. Yangling: Northwest A&F University, 2018.
    [2] SUN Q, SUN F, ZHENG D, et al. Complex starter culture combined with vacuum packaging reduces biogenic amine formation and delays the quality deterioration of dry sausage during storage[J]. Food Control,2019,100, 5:8−66.
    [3] 李思宁, 唐善虎, 任然, 等. 动物双歧杆菌、植物乳杆菌与传统发酵剂共培养对发酵乳抗氧化特性的影响[J]. 食品科学,2021,42(18):127−134. [LI Sining, TANG Shanghu, REN Ran, et al. Effect of co-fermentation with Bifidobacterium animalis, Lactobacillus plantarum and traditional starter cultures on antioxidant properties of fermented milk[J]. Food Science,2021,42(18):127−134. doi:  10.7506/spkx1002-6630-20200616-213

    LI Sining, TANG Shanghu, REN Ran, et al. Effect of co-fermentation with Bifidobacterium animalis, Lactobacillus plantarum and traditional starter cultures on antioxidant properties of fermented milk[J]. Food Science, 2021, 42(18): 127-134. doi:  10.7506/spkx1002-6630-20200616-213
    [4] 曹余, 邓泽元, 魏长浩, 等. 萍乡搓菜复合发酵菌剂的研究[J]. 食品与发酵工业,2021,47(10):96−102. [CAO Yu, DENG Zeyuan, WEI Changhao, et al. The compound starter of Pingxiang Cuocai[J]. Food and Fermentation Industries,2021,47(10):96−102.

    CAO Yu, DENG Zeyuan, WEI Changhao, et al. The compound starter of Pingxiang Cuocai[J]. Food and Fermentation Industries, 2021, 47(10) : 96-102.
    [5] 武旭. 利用纳豆芽孢杆菌与乳酸菌发酵全豆豆乳的研究[D]. 无锡: 江南大学, 2016.

    WU Xu. Study on fermentation of whole soybean milk by Bacillus subtilis natto and Lactobacillus[D]. Wuxi: Jiangnan University, 2016.
    [6] 郑静芳. 复合菌制剂的研制及其在普营养化水中的初步应用[D]. 广州: 华南农业大学, 2017.

    ZHENG Jingfang. The development of a compound bacteria and its preliminary application in eutrophic water[D]. Guangzhou: South China Agriculture University, 2017.
    [7] 黎庭耀, 李桂花, 陈汉才, 等. 不同豇豆品种资源的营养品质分析[J]. 广东农业科学,2017,44(4):32−37. [LI Tingyao, LI Guihua, CHEN Hancai, et al. Nutritional quality analysis of different varieties of cowpea[J]. Guangdong Agricultural Sciences,2017,44(4):32−37.

    LI Tingyao, LI Guihua, CHEN Hancai, et al. Nutritional quality analysis of different varieties of cowpea[J]. Guangdong Agricultural Sciences, 2017, 44(4): 32-37.
    [8] GUTIERREZ-URIBE J A, ROMO-LOPEZ I, SERNA-SALDIVAR S O. Phenolic composition and mammary cancer cell inhibition of extracts of whole cowpeas (Vignaung uiculata) and its anatomical parts[J]. Journal of Functional Foods,2011,3(4):290−297. doi:  10.1016/j.jff.2011.05.004
    [9] 张兵. 小扁豆植物化学物组成及其抗氧化、抗炎活性研究[D]. 南昌: 南昌大学, 2015.

    ZHANG Bing. Phytochemical composition antioxidant activity and anti-inflammation activity of lentils (Lens culinaris)[D]. Nanchang: Nanchang University, 2016
    [10] 汪立平, 汪欣, 艾连中, 等. 纯种植物乳杆菌发酵低盐萝卜泡菜的研究[J]. 食品科学,2013,34(17):182−186. [WANG Liping, WANG Xin, AI Lianzhong, et al. Fermentation of low-salt pickled radish by pure strains of Lactobacillus plantarum[J]. Food Sceince,2013,34(17):182−186. doi:  10.7506/spkx1002-6630-201317039

    WANG Liping, WANG Xin, AI Lianzhong, et al. Fermentation of low-salt pickled radish by pure strains of Lactobacillus plantarum[J]. Food Sceince, 2013, 34(17): 182-186. doi:  10.7506/spkx1002-6630-201317039
    [11] 杨莉, 陈玲, 赵素娟, 等. 泡渍豇豆脆性的质构仪检测方法[J]. 食品与发酵工业,2017,43(12):209−213. [YANG Li, CHEN Ling, ZHAO Sujuan, et al. Determination of brittleness of pickled cowpea by texture analyzer[J]. Food and Fermentation Industries,2017,43(12):209−213.

    YANG Li, CHEN Ling, ZHAO Sujuan, et al. Determination of brittleness of pickled cowpea by texture analyzer[J]. Food and fermentation industries, 2017, 43(12): 209-213.
    [12] 梁莉, 杜阿如娜, 马涛, 等. 低盐豇豆泡菜预处理工艺优化及贮藏特性分析[J]. 食品科学,2018,39(6):246−251. [LIANG Li, DU Aruna, MA Tao, et al. Optimized pre-treatment and storage properties of low-salt pickled cowpea[J]. Food Science,2018,39(6):246−251. doi:  10.7506/spkx1002-6630-201806038

    LIANG Li, DU Aruna, MA Tao, et al. Optimized pre-treatment and storage properties of low-salt pickled cowpea[J]. Food Science, 2018, 39(6): 246-251. doi:  10.7506/spkx1002-6630-201806038
    [13] LEE B, KIM J, KANG Y M, et al. Antioxidant activity and g-aminobutyric acid (GABA) content in sea tangle fermented by Lactobacillus brevis BJ20 isolated from traditional fermented foods[J]. Food Chemistry,2010,122:271−276. doi:  10.1016/j.foodchem.2010.02.071
    [14] LIN M, YEN C. Antioxidative ability of lactic acid bacteria[J]. Journal of Agricultural and Food Chemistry,1999,47:1460−1466. doi:  10.1021/jf981149l
    [15] LIU X L, JIA Y Y, HU Y X, et al. Effect of Citrus wilsonii Tanaka extract combined with alginate-calcium coating on quality maintenance of white shrimps (Litopenaeus vannamei Boone)[J]. Food Control,2016,68:83−91. doi:  10.1016/j.foodcont.2016.03.028
    [16] 刘宗敏, 谭兴和, 周红丽, 等. 不同乳酸菌发酵萝卜干的品质动态变化研究[J]. 食品工业科技,2017,38(9):145−149. [LIU Zongmin, TAN Xinghe, ZHOU Hongli, et al. Study on dynamic changes of quality of dried turnip fermented by different lactic acid bacteria strains[J]. Science and Technology of Food Industry,2017,38(9):145−149.

    LIU Zongmin, TAN Xinghe, ZHOU Hongli, et al. Study on dynamic changes of quality of dried turnip fermented by different lactic acid bacteria strains[J]. Science and Technology of Food Industry, 2017, 38(9): 145-149.
    [17] 杨丽娜, 迟雪梅, 迟乃玉. 常用食品乳酸菌发酵蔬菜的研究[J]. 食品与发酵工业,2017,43(3):130−133,139. [YANG Lina, CHI Xuemei, CHI Naiyu. Study on lactic acid bacteria fermented vegetable[J]. Food and Fermentation Industries,2017,43(3):130−133,139.

    YANG Lina, CHI Xuemei, CHI Naiyu. Study on lactic acid bacteria fermented vegetable[J]. Food and Fermentation Industries, 2017, 43(3): 130-133, 139.
    [18] ZHANG C C, ZHANG J M, LIU D Q, et al. Biochemical changes and microbial community dynamics during spontaneous fermentation of Zhacai, a traditional pickled mustard tuber from China[J]. International Journal of Food Microbiology,2021,347:109−199.
    [19] 徐德阳, 王莉莉, 杜春梅. 微生物共培养技术的研究进展[J]. 微生物学报,2015,55(9):1089−1096. [XU Deyang, WANG Lili, DU Chunmei. Progress in microbial co-culture[J]. Acta Microbiologica Sinica,2015,55(9):1089−1096.

    XU Deyang, WANG Lili, DU Chunmei. Progress in microbial co-culture[J]. Acta Microbiologica Sinica, 2015, 55(9): 1089-1096.
    [20] LADE H S, WAGHMODE T R, KADAM A A, et al. Enhanced biodegradation and detoxification of disperse azo dye rubinegfl and textile industry effluent by defined fungal-bacterial consortium[J]. International Biodeterioration and Biodegradation,2012,72:94−107. doi:  10.1016/j.ibiod.2012.06.001
    [21] KUMARI S, NARAIAN R. Decolorization of synthetic brilliant green carpet industry dye through fungal co-culture technology[J]. Journal of Environmental Management,2016,180:172−179.
    [22] LI S N, TANG S H, HE Q, et al. Physicochemical, textural and volatile characteristics of fermented milk co-cultured with Streptococcus thermophilus, Bifidobacterium animalis or Lactobacillus plantarum[J]. International Journal of Food Science and Technology,2020,55(2):461−474. doi:  10.1111/ijfs.14279
    [23] BEN J, FINKELSHTEIN A, ARIEL G, et al. Muhi species swarms of social microorganisms as moving ecosystems[J]. Trends in Microbiology,2016,24(4):257−269. doi:  10.1016/j.tim.2015.12.008
    [24] 李晓旭. 藻菌共培养对莱茵衣藻产氢的影响[D]. 上海: 上海师范大学, 2012.

    LI Xiaoxu. Effcets of co-culture of bacteria and Chlamydomonas reinhardtii on hydrogen production[D]. Shanghai: Shanghai Normal University, 2012.
    [25] 崔志松, 郑立, 杨佰娟, 等. 两种海洋专性解烃菌降解石油的协同效应[J]. 微生物学报,2010,50(3):350−359. [CUI Zhisong, ZHENG Li, YANG Baijuan, et al. Synergic effect of marine obligate hydrocarbonoc lastic bacteria in oil biodegradation[J]. Acta Microbiologica Sinica,2010,50(3):350−359.

    CUI Zhisong, ZHENG Li, YANG Baijuan, et al. Synergic effect of marine obligate hydrocarbonoc lastic bacteria in oil biodegradation[J]. Acta Microbiologica Sinica, 2010, 50(3): 350-359.
    [26] PETTIT R K. Mixed fermentation for natural product drug discovery[J]. Applied Microbiology & Biotechnology,2009,83(1):19−25.
    [27] VINALE F, NICOLETTI R, BORRELLI F, et al. Co-culture of plant beneficial microbes as source of bioactive metabolites[J]. Scientific Reports,2017,7:14330. doi:  10.1038/s41598-017-14569-5
    [28] CHEN H Q, DALETOS G, ABDEL-AZIZ M S, et al. Inducing secondary metabolite production by the soil-dwelling fungus Aspergillus terreus through bacterial co-culture[J]. Phytochemistry Letters,2015,12:35−41. doi:  10.1016/j.phytol.2015.02.009
    [29] BRAKHAGE AA, SCHROECKH V. Fungal secondary metabolites-strategies to activate silent gene clusters[J]. Fungal Genetics and Biology,2011,48(1):15−22. doi:  10.1016/j.fgb.2010.04.004
    [30] OH D C, KAUFFMAN C A, JENSEN P R, et al. Induced production of emery cellamides a and b from the marine-derived fungus Emericella sp. in competing co-culture[J]. Journal of Natural Products,2007,70:515−520. doi:  10.1021/np060381f
    [31] MELLEFONT L A, MCMEEKIN T A, ROSS T. Effect of relative inoculum concentration on Listeria monocytogenes growth in co-culture[J]. International Journal of Food Microbiology,2008,121(2):157−168. doi:  10.1016/j.ijfoodmicro.2007.10.010
    [32] YAN P M, XUE W T, TAN S S, et a1. Effect of inoculating lactic acid bacteria starter cultures on the nitrite concentration of fermenting Chinese paocai[J]. Food Control,2008,19(1):50−55. doi:  10.1016/j.foodcont.2007.02.008
  • 加载中
图(2) / 表(6)
计量
  • 文章访问数:  35
  • HTML全文浏览量:  14
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-02
  • 网络出版日期:  2022-04-28
  • 刊出日期:  2022-06-08

目录

    /

    返回文章
    返回

    重要通知

    《食品工业科技》青年编委专栏征稿 | 杂粮与主粮复配的营养学基础