• CA
  • JST
  • FSTA
  • SCOPUS
  • 北大核心期刊
  • 中国科技核心期刊CSTPCD
  • 中国精品科技期刊
  • RCCSE中国核心学术期刊
  • 中国农业核心期刊
  • 中国生物医学文献服务系统SinoMed收录期刊

焦糖化与美拉德反应中DDMP、HMF及糠醛的生成研究

王丹 况丹妮 刘若阳 张志军 侯天宇 李河

王丹,况丹妮,刘若阳,等. 焦糖化与美拉德反应中DDMP、HMF及糠醛的生成研究[J]. 食品工业科技,2022,43(12):100−107. doi:  10.13386/j.issn1002-0306.2021090221
引用本文: 王丹,况丹妮,刘若阳,等. 焦糖化与美拉德反应中DDMP、HMF及糠醛的生成研究[J]. 食品工业科技,2022,43(12):100−107. doi:  10.13386/j.issn1002-0306.2021090221
WANG Dan, KUANG Danni, LIU Ruoyang, et al. Formation of DDMP, HMF and Furfural in Caramelization and Maillard Reaction[J]. Science and Technology of Food Industry, 2022, 43(12): 100−107. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021090221
Citation: WANG Dan, KUANG Danni, LIU Ruoyang, et al. Formation of DDMP, HMF and Furfural in Caramelization and Maillard Reaction[J]. Science and Technology of Food Industry, 2022, 43(12): 100−107. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021090221

焦糖化与美拉德反应中DDMP、HMF及糠醛的生成研究

doi: 10.13386/j.issn1002-0306.2021090221
基金项目: 国家自然科学基金(32001817);山西省高校科技创新计划(2020L0298);晋中市重点研发计划(农业)(Y212006)。
详细信息
    作者简介:

    王丹(1997−),女,硕士研究生,研究方向:食品化学与植物资源开发利用,E-mail:2848252473@qq.com

    通讯作者:

    李河(1987−),男,博士,教授,研究方向:食品安全,E-mail:476374112@qq.com;heli_science@nuc.edu.cn

  • 中图分类号: TS241

Formation of DDMP, HMF and Furfural in Caramelization and Maillard Reaction

  • 摘要: 食品热加工中广泛存在的美拉德反应除赋予食品色香味外,还会生成有害或有异味物质,2,3-二氢-3,5-二羟基-6-甲基-4(H)-吡喃-4-酮(DDMP)、5-羟甲基糠醛(5-hydroxymethylfurfural,HMF)及糠醛就是其中重要的产物。本文分别建立了3种焦糖化和3种美拉德反应体系,研究DDMP、HMF和糠醛的生成规律。结果表明,HMF和糠醛分别容易在果糖和木糖焦糖化体系中生成,在美拉德反应体系中,赖氨酸的参与抑制了HMF和糠醛生成,促进了DDMP的生成。结合中间产物和终末产物的表征,单糖的结构差异是影响三种化合物生成的主要因素,赖氨酸会竞争性抑制单糖降解的焦糖化途径,从而抑制HMF和糠醛的生成。本文可对食品热加工业中DDMP、HMF和糠醛的生成、控制及定向合成提供指导。
  • 图  1  3种物质标准品与样品的液相色谱图

    Figure  1.  HPLC chromatograms of standards and samples

    注:A-标准品;B-典型焦糖化样品(均为加热120 min时取样);C-典型美拉德样品(均为加热30 min取样)。

    图  2  焦糖化和美拉德反应中DDMP的生成

    Figure  2.  Formation of DDMP in caramelization and Maillard reaction

    注:A-焦糖化反应;B-美拉德反应;图3~图5同。

    图  3  焦糖化和美拉德反应中HMF的生成

    Figure  3.  Formation of HMF in caramelization and Maillard reaction

    图  4  焦糖化和美拉德反应中糠醛的生成

    Figure  4.  Formation of furfural in caramelization and Maillard reaction

    图  5  焦糖化和美拉德反应中3-DG的生成

    Figure  5.  Formation of 3-DG in caramelization and Maillard reaction

    图  6  己糖焦糖化和美拉德反应中DDMP、HMF和糠醛的生成路径

    Figure  6.  Proposed formation pathway for DDMP, HMF and furfural from caramelization and Maillard reaction models

    图  7  美拉德反应中中间产物(A294)和终末产物(A420)的变化

    Figure  7.  Evolution of the absorbance at 294 nm (A) and 420 nm (B) as indicators of intermediate and advanced stages of MR, respectively

    表  1  DDMP、HMF和糠醛的HPLC梯度洗脱条件

    Table  1.   Gradient elution procedure for the analysis of DDMP, HMF and furfural by HPLC

    洗脱时间(min)00~1515~2020~2121~30
    A(%)1010~4040~100100~1010
    B(%)9090~6060~00~9090
    下载: 导出CSV

    表  2  3-DG测定的HPLC梯度洗脱条件

    Table  2.   Gradient elution conditions for 3-DG determination by HPLC

    洗脱时间(min)00~1010~2828~3636~4545~5050~60
    A(%)55~2020~3030~100100100~55
    B(%)9595~8080~7070~000~9595
    下载: 导出CSV

    表  3  三种物质的保留时间、线性方程及决定系数

    Table  3.   Retention time, linear equation and correlation coefficient of three compounds

    化合物保留时间(min)线性方程决定系数R2
    DDMP6.267y=5.7047x+0.09280.9927
    HMF7.014y=2.5192x−0.93350.9999
    糠醛8.352y=2.9666x−0.69670.9993
    下载: 导出CSV
  • [1] 张玉玉, 宋弋, 李全宏. 食品中糠醛和5-羟甲基糠醛的产生机理、含量检测及安全性评价研究进展[J]. 食品科学,2012(5):275−280. [ZHANG Yuyu, SONG Yi, LI Quanhong. A review on formation mechanism, determination and safety assessment of furfural and 5-hydroxymethylfurfural (HMF) in foods[J]. Food Science,2012(5):275−280.

    ZHANG Yuyu, SONG Yi, LI Quanhong. A review on formation mechanism, determination and safety assessment of furfural and 5-hydroxymethylfurfural (HMF) in foods[J]. Food Science, 2012(5): 275-280.
    [2] 李河. 美拉德反应中主要苦味物质的形成途径与调控机制研究[D]. 广州: 华南理工大学, 2019.

    LI He. Study on the formation pathway and regulation mechanism of main bitter compounds in Maillard reaction [D]. Guangzhou: South China University of Technology, 2019.
    [3] 张燕, 郭天鑫, 于姣, 等. 离子交换固相萃取高效液相色谱联用法检测食品中的5-羟甲基糠醛[J]. 食品科学,2010,31(18):212−215. [ZHANG Yan, GUO Tianxin, YU Jiao, et al. Development of ion-exchange solid phase extraction and high performance liquid chromatography for the determination of 5-hydroxymethyl-furfural in food[J]. Food Science,2010,31(18):212−215.

    ZHANG Yan, GUO Tianxin, YU Jiao, et al. Development of ion-exchange solid phase extraction and high performance liquid chromatography for the determination of 5-hydroxymethyl-furfural in food[J]. Food Science, 2010, 31(18): 212-215.
    [4] TOMASINI D, SAMPAIO M R F, CALDAS S S, et al. Simultaneous determination of pesticides and 5-hydroxymethylfurfural in honey by the modified QuEChERS method and liquid chromatography coupled to tandem mass spectrometry[J]. Talanta,2012,99:380−386. doi:  10.1016/j.talanta.2012.05.068
    [5] YILTIRAK S, KOCADAĞLI T, ÇELIK E E, et al. Effects of sprouting and fermentation on free asparagine and reducing sugars in wheat, einkorn, oat, rye, barley, and buckwheat and on acrylamide and 5-hydroxymethylfurfural formation during heating[J]. Journal of Agricultural and Food Chemistry,2021,69(32):9419−9433. doi:  10.1021/acs.jafc.1c03316
    [6] GÜRSUL A I, VURAL G. Investigations on the formation of α-dicarbonyl compounds and 5-hydroxymethylfurfural in fruit products during storage: New insights into the role of Maillard reaction[J]. Food Chemistry,2021:363.
    [7] GONG M, ZHOU Z, YU Y, et al. Investigation of the 5-hydroxymethylfurfural and furfural content of Chinese traditional fermented vinegars from different regions and its correlation with the saccharide and amino acid content[J]. LWT,2020,124:109175. doi:  10.1016/j.lwt.2020.109175
    [8] JIANG D S, PETERSON D G. Identification of bitter compounds in whole wheat bread[J]. Food Chemistry,2013,141(2):1345−1353. doi:  10.1016/j.foodchem.2013.03.021
    [9] WANG, Zihan, ZHANG, Jingxian, GAO Ming, et al. Stable isotope labelling-flow injection analysis-mass spectrometry for rapid and high throughput quantitative analysis of 5-hydroxymethylfurfural in drinks[J]. Food Control,2021:130.
    [10] 邓丽卿. 酱油焦糖色素及油溶性焦糖色素的制备与性质研究[D]. 广州: 华南理工大学, 2014.

    DENG Liqing. Study of caramel pigment for soy sauce and oil stability caramel pigment processing and property[D]. Guangzhou: South China University of Technology, 2014.
    [11] GAO H, WEN X, XIAN C J. Hydroxymethyl furfural in Chinese herbal medicines: Its formation, presence, metabolism, bioactivities and implications[J]. African Journal of Traditional Complementary and Alternative Medicines,2015,12(2):43−54. doi:  10.4314/ajtcam.v12i2.9
    [12] 徐斌, 张强, 刘亮镜. 丹参酒炙过程中炮制时间、颜色与化学成分含量的相关性[J]. 中国药房,2021,32(14):1715−1720. [XU Bin, ZHANG Qiang, LIU Liangjing. Correlation between processing time, color and chemical composition content in the wine-fried process of Salvia miltiorrhi[J]. China Pharmacy,2021,32(14):1715−1720. doi:  10.6039/j.issn.1001-0408.2021.14.09

    XU Bin, ZHANG Qiang, LIU Liangjing. Correlation between processing time, color and chemical composition content in the wine-fried process of Salvia miltiorrhi[J]. China Pharmacy, 2021, 32(14): 1715-1720. doi:  10.6039/j.issn.1001-0408.2021.14.09
    [13] SHARMA V K, CHOI J, SHARMA N, et al. In vitro anti-tyrosinase activity of 5-(hydroxymethyl)-2-furfural isolated from Dictyophora indusiata[J]. Phytotherapy Research: PTR,2004,18(10):841−844. doi:  10.1002/ptr.1428
    [14] YU X, ZHAO M, LIU F, et al. Identification of 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one as a strong antioxidant in glucose-histidine Maillard reaction products[J]. Food Research International,2013,51(1):397−403. doi:  10.1016/j.foodres.2012.12.044
    [15] CECHOVSKA L, CEJPEK K, KONECNY M, et al. On the role of 2,3-dihydro-3,5-dihydroxy-6-methyl-(4H)-pyran-4-one in antioxidant capacity of prunes[J]. European Food Research and Technology,2011,233(3):367−376. doi:  10.1007/s00217-011-1527-4
    [16] BAN J O, HWANG I G, KIM T M, et al. Anti-proliferate and pro-apoptotic effects of 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyranone through inactivation of NF-kappa B in human colon cancer cells[J]. Archives of Pharmacal Research,2007,30(11):1455−1463. doi:  10.1007/BF02977371
    [17] 张泽宇, 曹雁平, 朱雨辰. 缓解食品中丙烯酰胺和5-羟甲基糠醛形成的研究进展[J]. 食品工业科技,2020,41(12):324−333. [ZHANG Zeyu, CAO Yanping, ZHU Yuchen. Mitigation strategies on acrylamide and 5-hydroxymethylfurfural in foods[J]. Science and Technology of Food Industry,2020,41(12):324−333.

    ZHANG Zeyu, CAO Yanping, ZHU Yuchen. Mitigation Strategies on Acrylamide and 5-Hydroxymethylfurfural in Foods[J]. Science and Technology of Food Industry, 2020, 41(12): 324-333.
    [18] BAKHIYA N, MONIEN B, FRANK H, et al. Renal organic anion transporters OAT1 and OAT3 mediate the cellular accumulation of 5-sulfooxymethylfurfural, a reactive nephrotoxic metabolite of the Maillard product 5-hydroxymethylfurfural[J]. Biochemical Pharmacology,2009,78:414−419. doi:  10.1016/j.bcp.2009.04.017
    [19] 章银良, 周文权. 美拉德反应产物5-羟甲基糠醛含量与抗氧化活性关系研究[J]. 中国调味品,2013(1):36−40. [ZHANG Yinliang, ZHOU Wenquan. Investigation of the correlation between 5-HMF content and antioxidant activities of MRPs[J]. China Condiment,2013(1):36−40. doi:  10.3969/j.issn.1000-9973.2013.01.011

    ZHANG Yinliang, ZHOU Wenquan. Investigation of the correlation between 5-HMF content and antioxidant activities of MRPs[J]. China Condiment, 2013(1): 36-40. doi:  10.3969/j.issn.1000-9973.2013.01.011
    [20] 曾稳稳, 刘玉环, 阮榕生, 等. 美拉德反应所引起的食品安全问题的研究进展[J]. 食品工业科技,2011,32(7):447−450. [ZENG Wenwen, LIU Yuhuan, YUAN Rongsheng et al. Research progress in food safety issue caused by Maillard reaction[J]. Science and Technology of Food Industry,2011,32(7):447−450.

    ZENG Wenwen, LIU Yuhuan, YUAN Rongsheng et al. Research proqress in food safety issue caused by Maillard reaction[J]. Science and Technology of Food Industry, 2011, 32(7): 447-450.
    [21] HIRAMOTO K, NASUHARA A, MICHIKOSHI K, et al. DNA strand-breaking activity and mutagenicity of 2, 3-dihydro-3, 5-dihydroxy-6-methyl-4H-pyran-4-one (DDMP), a Maillard reaction product of glucose and glycine[J]. Mutation Research-Genetic Toxicology and Environmental Mutagenesis,1997,395(1):47−56. doi:  10.1016/S1383-5718(97)00141-1
    [22] BEPPU Y, KOMURA H, IZUMO T, et al. Identificaton of 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one isolated from Lactobacillus pentosus strain S-PT84 culture supernatants as a compound that stimulates autonomic nerve activities in rats[J]. Journal of Agricultural and Food Chemistry,2012,60(44):11044−11049. doi:  10.1021/jf302355e
    [23] LI H, ZHANG W, TANG X, et al. Identification of bitter-taste compounds in class-III caramel colours[J]. Flavour and Fragrance Journal,2021,36(3):404−411. doi:  10.1002/ffj.3652
    [24] 欧隽滢, 江楷煜, 高瑜悦, 等. 3种添加物抑制模拟体系中羟甲基糠醛(HMF)的形成[J]. 现代食品科技, 2021, 37(7): 286-293.

    OU Juanying, JIANG Kaiyu, GAO Yuyue, et al. Reduction of hydroxymethylfurfural (HMF) via three additives in model reaction system[J]. Modern Food Science and Technology, 2021, 37(7): 286-293.
    [25] JANZOWSKI C, GLAAB V, SAMIMI E, et al. 5-Hydroxymethylfurfural: Assessment of mutagenicity, DNA-damaging potential and reactivity towards cellular glutathione[J]. Food Chem Toxicol,2000,38(9):801−809. doi:  10.1016/S0278-6915(00)00070-3
    [26] 卢键媚, 林晓蓉, 陈忠正, 等. 反应条件对糖-酸反应体系中3-脱氧葡萄糖醛酮及5-羟甲基糠醛形成的影响[J]. 食品工业科技,2021:1−14. [LU Jianmei, LIN Xiaorong, CHEN Zhongzheng, et al. Effect of reaction conditions on the formation of 3-deoxyglucosone and 5-hydroxymethylfurfural in sugar-acid reaction system[J]. Science and Technology of Food Industry,2021:1−14.

    LU Jianmei, LIN Xiaorong, CHEN Zhongzheng, et al. Effect of reaction conditions on the formation of 3-deoxyglucosone and 5-hydroxymethylfurfural in sugar-acid reaction system[J]. Science and Technology of Food Industry, 2021: 1-14.
    [27] LI H, TANG X, WU C, et al. Formation of 2, 3-dihydro-3, 5-dihydroxy-6-methyl-4(H)-pyran-4-one (DDMP) in glucose-amino acids Maillard reaction by dry-heating in comparison to wet-heating[J]. LWT-Food Science and Technology,2019,105:156−163. doi:  10.1016/j.lwt.2019.02.015
    [28] LI H, WU C, TANG X, et al. Determination of four bitter compounds in caramel colors and beverages using modified QuEChERS coupled with liquid chromatography-diode array detector-mass spectrometry[J]. Food Analytical Methods,2019,12(7):1674−1683. doi:  10.1007/s12161-019-01500-z
    [29] LI H, WU C, YU S. Impact of microwave-assisted heating on the pH value, color, and flavor compounds in glucose-ammonium model system[J]. Food and Bioprocess Technology,2018,11(6):1248−1258. doi:  10.1007/s11947-018-2093-6
    [30] HUYGHUES-DESPOINTES A, YAYLAYAN V A, KEYHANI A. Pyrolysis/GC/MS analysis of 1-[(2'-carboxy)pyrrolidinyl]-1-deoxy-D-fructose (proline amadori compound)[J]. Journal of Agricultural and Food Chemistry,1994(42):2519−2524.
    [31] LUND M N, RAY C A. Control of Maillard reactions in foods: Strategies and chemical mechanisms[J]. Journal of Agricultural and Food Chemistry,2017,65(23):4537−4552. doi:  10.1021/acs.jafc.7b00882
    [32] LI H, WU C, TANG X, et al. Insights into the regulation effects of certain phenolic acids on 2,3-dihydro-3,5-dihydroxy-6-methyl-4(H)-pyran-4-one formation in a microaqueous glucose–proline system[J]. Journal of Agricultural and Food Chemistry,2019,67(32):9050−9059. doi:  10.1021/acs.jafc.9b01182
    [33] HONG X, MENG J, LU R. Improvement of ACE inhibitory activity of casein hydrolysate by Maillard reaction with xylose[J]. Journal of the Science of Food and Agriculture,2015,95(1):66−71. doi:  10.1002/jsfa.6682
    [34] O'CHAROEN S, HAYAKAWA S, OGAWA M. Food properties of egg white protein modified by rare ketohexoses through Maillard reaction[J]. International Journal of Food Science and Technology,2015,50(1):194−202. doi:  10.1111/ijfs.12607
    [35] HELLWIG M, NOBIS A, WITTE S, et al. Occurrence of (Z)-3,4-dideoxyglucoson-3-ene in different types of beer and malt beer as a result of 3-deoxyhexosone interconversion[J]. Journal of Agricultural and Food Chemistry,2016,64(13):2746−2753. doi:  10.1021/acs.jafc.6b00468
    [36] KANZLER C, SCHESTKOWA H, HAASE P T, et al. Formation of reactive intermediates, color, and antioxidant activity in the Maillard reaction of maltose in comparison to D-glucose[J]. Journal of Agricultural and Food Chemistry,2017,65(40):8957−8965. doi:  10.1021/acs.jafc.7b04105
    [37] ZHU H, POOJARY M M, ANDERSEN M L, et al. The effect of molecular structure of polyphenols on the kinetics of the trapping reactions with methylglyoxal[J]. Food Chemistry, 2020, 319(126500).
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  47
  • HTML全文浏览量:  21
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-18
  • 网络出版日期:  2022-04-28
  • 刊出日期:  2022-06-08

目录

    /

    返回文章
    返回

    重要通知

    《食品工业科技》青年编委专栏征稿 | 杂粮与主粮复配的营养学基础