• CA
  • JST
  • FSTA
  • SCOPUS
  • 北大核心期刊
  • 中国科技核心期刊CSTPCD
  • 中国精品科技期刊
  • RCCSE中国核心学术期刊
  • 中国农业核心期刊
  • 中国生物医学文献服务系统SinoMed收录期刊

超声和碳酸氢钠处理对绿豆浸泡特性的影响

刘阳 李丹丹 陶阳 张荣广 韩永斌

刘阳,李丹丹,陶阳,等. 超声和碳酸氢钠处理对绿豆浸泡特性的影响[J]. 食品工业科技,2022,43(15):42−49. doi:  10.13386/j.issn1002-0306.2021090260
引用本文: 刘阳,李丹丹,陶阳,等. 超声和碳酸氢钠处理对绿豆浸泡特性的影响[J]. 食品工业科技,2022,43(15):42−49. doi:  10.13386/j.issn1002-0306.2021090260
LIU Yang, LI Dandan, TAO Yang, et al. Effect of Ultrasound and Sodium Bicarbonate Treatment on the Soaking Characteristics of Mung Beans[J]. Science and Technology of Food Industry, 2022, 43(15): 42−49. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021090260
Citation: LIU Yang, LI Dandan, TAO Yang, et al. Effect of Ultrasound and Sodium Bicarbonate Treatment on the Soaking Characteristics of Mung Beans[J]. Science and Technology of Food Industry, 2022, 43(15): 42−49. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021090260

超声和碳酸氢钠处理对绿豆浸泡特性的影响

doi: 10.13386/j.issn1002-0306.2021090260
基金项目: 国家自然科学基金青年项目(32102131);江苏省自然科学基金青年项目(KB20190523);中国博士后面上项目(2020M681631)
详细信息
    作者简介:

    刘阳(1998−),男,硕士研究生,研究方向:农产品加工与贮藏,E-mail:1579148103@qq.com

    通讯作者:

    李丹丹(1994−),女,博士,讲师,研究方向:食品碳水化合物资源开发与利用,E-mail:lidandan@njau.edu.cn

    韩永斌(1963−),男,博士,教授,研究方向:农产品加工与贮藏,E-mail:hanyongbin@njau.edu.cn

  • 中图分类号: TS214.9

Effect of Ultrasound and Sodium Bicarbonate Treatment on the Soaking Characteristics of Mung Beans

  • 摘要: 为了改善绿豆的质地特性,提高其浸泡效率,本文研究了超声和碳酸氢钠作用下绿豆的吸水动力学、水分分布、水分迁移、硬度、种皮结构以及总酚和植酸含量的变化。超声对绿豆吸水特性、硬度和营养成分含量的影响与绿豆表皮结构变化有关。400 W超声使绿豆表皮形成微孔通道,提高绿豆的吸水速率以及自由水和结合水的含量,降低硬度,总酚和植酸含量也显著降低(P<0.05)。1.5%碳酸氢钠对绿豆浸泡特性的影响可能是通过改变浸泡液的酸碱性发挥作用。碳酸氢钠会提高浸泡液pH,从而减缓吸水速率,降低总酚含量,抑制植酸含量降低,但对绿豆硬度的降低作用不明显,并且碳酸氢钠组的自由水和结合水含量与对照组有一定差异。若以最低硬度为评价指标,则对照组和1.5%碳酸氢钠组的最佳浸泡时间为7 h,而400 W超声组最佳浸泡时间为4 h。本文探明了超声和碳酸氢钠处理对绿豆浸泡特性的影响机制,可为超声波技术以及碳酸氢钠预处理技术在杂粮食品开发中的应用提供理论指导。
  • 图  1  不同处理方式对绿豆浸泡过程中水分含量的影响

    Figure  1.  The effect of different treatment methods on the moisture content of mung bean during soaking

    图  2  不同超声功率下绿豆浸泡液温度的变化

    Figure  2.  The change of mung bean soaking liquid temperature under different ultrasonic power

    图  3  不同处理方式的T2水分弛豫时间分布

    Figure  3.  T2 distribution of moisture relaxation time in different treatments

    注:A为对照组;B为1.5%碳酸氢钠组;C为400 W超声组。

    图  4  不同处理方式的绿豆核磁成像分析

    Figure  4.  NMR imaging analysis of mung bean with different treatment methods

    图  5  不同处理方式对绿豆硬度的影响

    Figure  5.  The effect of different treatment methods on the hardness of mung bean

    图  6  不同处理方式对绿豆种皮的影响

    Figure  6.  The effect of different treatment methods on the seed coat of mung bean

    注:A为未浸泡绿豆;B为对照组;C为1.5%碳酸氢钠组;D为400 W超声组。

    图  7  不同处理方式对绿豆总酚含量的影响

    Figure  7.  The effect of different treatment methods on the total phenol content of mung bean

    注:不同小写字母表示同一浸泡时间不同处理组间差异显著(P<0.05),不同大写字母表示同一处理组在不同浸泡时间差异显著性(P<0.05);图8同。

    图  8  不同处理方式对绿豆植酸含量的影响

    Figure  8.  The effect of different treatment methods on the phytic acid content of mung bean

    表  1  不同处理方式Sigmoid模型评价

    Table  1.   Sigmoid model evaluation of different treatment methods

    处理条件M∞(%)k(min−1τ(min)R2RMSE(%)
    对照组112.30.0131214.00.99742.213
    400 W超声组124.20.0145186.50.99742.504
    600 W超声组132.30.0169153.70.99344.011
    1.5%碳酸氢钠组101.30.0125221.20.98953.931
    3.0%碳酸氢钠组91.90.0116228.60.97585.245
    注:M$ \mathit{\infty } $代表绿豆饱和含水量;k代表吸水速率;τ代表延滞时间;R2为拟合度;RMSE为均方根误差。
    下载: 导出CSV

    表  2  不同组弛豫时间以及单位质量峰面积对比统计表

    Table  2.   Comparison statistics table of relaxation time and unit mass peak area of different groups

    组别时间(h)T21弛豫时间(ms)T22弛豫时间(ms)A21A22A
    对照组00.85±0.09Ad11.72±0.56Ad8.47±1.16Ac0.33±0.03Ac8.81±1.14Ac
    21.32±0.07Ac13.56±0.66Cc8.77±0.33Bc0.56±0.08Bc9.34±0.34Bc
    42.50±0.20Ab16.69±0.96Cb12.13±0.99Ab14.11±1.25Bb26.24±0.43Bb
    82.87±0.23Aa23.19±1.00Ca14.13±0.85Ba38.50±1.05Ba52.63±0.60Ba
    1.5%碳酸氢钠组00.65±0.05Bc12.94±0.60Ad8.62±1.17Ab0.33±0.05Ac8.95±1.18Ac
    21.12±0.06Bb20.69±0.95Ac9.48±0.35Bb0.56±0.01Bc10.04±0.36Bc
    41.25±0.09Bb29.29±1.20Ab11.81±0.17Aa11.76±1.36Bb23.58±1.50Cb
    81.60±0.07Ca34.97±1.34Aa12.93±1.36Ba34.53±1.54Ca47.45±1.83Ca
    400 W超声组00.56±0.09Bd10.06±0.81Bd8.82±0.80Ac0.32±0.03Ad9.13±0.77Ad
    21.07±0.11Bc16.56±0.97Bc10.68±0.52Ac28.78±1.11Ac39.45±1.35Ac
    41.48±0.11Bb21.35±1.25Bb13.42±1.59Ab44.55±1.36Ab57.98±1.35Ab
    82.01±0.09Ba26.69±1.85Ba16.92±0.96Aa57.83±2.52Aa74.75±2.11Aa
    注:同列不同小写字母表示同一组内不同时间点差异显著(P<0.05),同列不同大写字母表示组间同一时间点差异显著(P<0.05)。
    下载: 导出CSV
  • [1] HOU D, YOUSAF L, XUE Y, et al. Mung bean (Vigna radiata L.): Bioactive polyphenols, polysaccharides, peptides, and health benefits[J]. Nutrients,2019,11(6):1238. doi:  10.3390/nu11061238
    [2] SINGLA M, SIT N. Application of ultrasound in combination with other technologies in food processing: A review[J]. 2021, 73(6): 105506.
    [3] YILDIRIM A, ONER M D, BAYRAM M. Effect of soaking and ultrasound treatments on texture of chickpea[J]. Journal of Food Science and Technologies-Mysore,2013,50(3):455−465. doi:  10.1007/s13197-011-0362-8
    [4] ULLOA J A, LOPEZ K V, MORALES Y B C, et al. Effect of ultrasound treatment on the hydration kinetics and cooking times of dry beans (Phaseolus vulgaris)[J]. Cyta-Journal of Food,2015,13(4):588−596.
    [5] GHAFOOR M, MISRA N N, MAHADEVAN K, et al. Ultrasound assisted hydration of navy beans (Phaseolus vulgaris)[J]. Ultrasonics Sonochemistry,2014,21(1):409−414. doi:  10.1016/j.ultsonch.2013.05.016
    [6] SIKORA M, SWIECA M, GAWLIK DZIKI U, et al. Nutritional quality, phenolics, and antioxidant capacity of mung bean paste obtained from seeds soaked in sodium bicarbonate[J]. LWT-Food Science and Technology,2018,97:456−461. doi:  10.1016/j.lwt.2018.07.034
    [7] KAPTSO K G, NJINTANG Y N, KOMNEK A E, et al. Physical properties and rehydration kinetics of two varieties of cowpea (Vigna unguiculata) and bambara groundnuts (Voandzeia subterranea) seeds[J]. Journal of Food Engineering,2008,86(1):91−99. doi:  10.1016/j.jfoodeng.2007.09.014
    [8] 魏美霞, 梁雪梅, 林欣梅, 等. 绿豆发芽过程中多酚组成及抗氧化活性的变化[J]. 中国粮油学报,2021,36(2):27−33. [WEI M X, LIANG X M, LIN X M, et al. Changes of polyphenol composition and antioxidant activity during mung bean germination[J]. Journal of the Chinese Cereals and Oils Association,2021,36(2):27−33. doi:  10.3969/j.issn.1003-0174.2021.02.006

    WEI M X, LIANG X M, LIN X M, et al. Changes of polyphenol composition and antioxidant activity during mung bean germination[J]. Journal of the Chinese Cereals and Oils Association, 2021, 36(2): 27-33. doi:  10.3969/j.issn.1003-0174.2021.02.006
    [9] XU B J, CHANG S K. A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents[J]. Journal of Food Science,2007,72(2):159−166. doi:  10.1111/j.1750-3841.2006.00260.x
    [10] 郭嘉. 降低麦麸中植酸盐含量的途径及机理研究[D]. 无锡: 江南大学, 2015

    GUO J. Study on the method and mechanism of reducing phytate content in wheat bran[D]. Wuxi: Jiangnan University, 2015.
    [11] MIANO A C, GARCIA J A, AUGUSTO P E D. Correlation between morphology, hydration kinetics and mathematical models on Andean lupin (Lupinus mutabilis Sweet) grains[J]. LWT-Food Science and Technology,2015,61:290−298. doi:  10.1016/j.lwt.2014.12.032
    [12] MIANO A C, IBARZ A, AUGUSTO P E D. Mechanisms for improving mass transfer in food with ultrasound technology: Describing the phenomena in two model cases[J]. Ultrasonics Sonochemistry,2016,29:413−419. doi:  10.1016/j.ultsonch.2015.10.020
    [13] PATERO T, AUGUSTO P E D. Ultrasound (US) enhances the hydration of sorghum (Sorghum bicolor) grains[J]. Ultrasonics Sonochemistry,2015,23:11−15. doi:  10.1016/j.ultsonch.2014.10.021
    [14] ULLOA J A, LOPEZ K V V, MORALES Y B C, et al. Effect of ultrasound treatment on the hydration kinetics and cooking times of dry beans (Phaseolus vulgaris)[J]. CYTA-Journal of Food,2015,13(4):588−596.
    [15] OLADELE S O, OSUNDAHUNSI O F, AGBETO Y E, et al. Hydration kinetics of Carioca beans at different pHs[J]. Journal of Food Process Engineering, 2018, 41(8).
    [16] FAN D M, MA S Y, WANG L Y, et al. 1H NMR studies of starch-water interactions during microwave heating[J]. Carbohydrate Polymers,2013,2(12):406−412.
    [17] 李然, 李振川, 陈珊珊, 等. 应用低场核磁共振研究绿豆浸泡过程[J]. 食品科学,2009,30(15):137−141. [LI R, LI Z C, CHEN S S, et al. Study of water absorption of mung beans based on low-field nuclear magnetic resonance technology[J]. Food Science,2009,30(15):137−141. doi:  10.3321/j.issn:1002-6630.2009.15.031

    LI R, LI Z C, CHEN S S, et al. Study of water absorption of mung beans based on low-field nuclear magnetic resonance technology[J]. Food Science, 2009, 30(15): 137-141. doi:  10.3321/j.issn:1002-6630.2009.15.031
    [18] 纪素兰. 水稻低温萌发性状的基因定位研究[D]. 南京: 南京农业大学, 2007

    JI S L. Study on gene mapping of low temperature germination traits in rice[D]. NanJing: Nanjing Agricultural University, 2007.
    [19] 李鹏. 黑豆吸水模型及预熟化过程结构变化的研究[D]. 无锡: 江南大学, 2020

    LI P. Study on water absorption model and structural changes during precooking of black beans[D]. Wuxi: Jiangnan University, 2020.
    [20] CHIGWEDERE C M, OLAOYE T F, KYOMUGASHO C, et al. Mechanistic insight into softening of Canadian wonder common beans (Phaseolus vulgaris) during cooking[J]. Food Research International,2018,106:522−531. doi:  10.1016/j.foodres.2018.01.016
    [21] KHANDELWAL S, UDIPI S A, GHUGRE P. Polyphenols and tannins in Indian pulses: Effect of soaking, germination and pressure cooking[J]. Food Research International,2010,43(2):526−530. doi:  10.1016/j.foodres.2009.09.036
    [22] 刘婷婷, 包佳微, 李嘉欣, 等. 浸泡和发芽对杂豆酚类物质及其抗氧化性的影响[J]. 中国粮油学报,2019,34(8):26−33. [LIU T T, BAO J W, LI J X, et al. Effects of soaking and germination on phenolic compounds and their antioxidant properties[J]. Journal of the Chinese Cereals and Oils Association,2019,34(8):26−33. doi:  10.3969/j.issn.1003-0174.2019.08.006

    LIU T T, BAO J W, LI J X, et al. Effects of soaking and germination on phenolic compounds and their antioxidant properties[J]. Journal of the Chinese Cereals and Oils Association, 2019, 34(8): 26-33. doi:  10.3969/j.issn.1003-0174.2019.08.006
    [23] FERNANDES F A N, FONTELES T V, RODRIGUES S, et al. Ultrasound-assisted extraction of anthocyanins and phenolics from jabuticaba (Myrciaria cauliflora) peel: Kinetics and mathematical modeling[J]. Journal of Food Science and Technology-Mysore,2020,57(6):2321−2328. doi:  10.1007/s13197-020-04270-3
    [24] HOSSAIN S, PANOZZO J F, PITTOCK C, et al. Quantitative trait loci analysis of seed coat color components for selective breeding in chickpea (Cicer arietinum L.)[J]. Canadian Journal of Plant Science,2011,91(1):49−55. doi:  10.4141/cjps10112
    [25] MUBARAK A E. Nutritional composition and antinutritional factors of mung bean seeds (Phaseolus aureus) as affected by some home traditional processes[J]. Food Chemistry,2005,89(4):489−495. doi:  10.1016/j.foodchem.2004.01.007
    [26] GUPTA R K, GANGOLIYA S S, SINGH N K. Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains[J]. Journal of Food Science and Technology-Mysore,2015,52(2):676−684. doi:  10.1007/s13197-013-0978-y
    [27] 仲磊, 王新坤, 杨润强, 等. NaHCO3浸泡对发芽大豆植酸含量影响及其发芽条件优化[J]. 南京农业大学学报,2014,37(3):167−172. [ZHONG L, WANG X K, YANG R Q, et al. Influence of NaHCO3 soaking on phytic acid content of soybean sprouts and the optimization of its germination conditions[J]. Journal of Nanjing Agricultural University,2014,37(3):167−172. doi:  10.7685/j.issn.1000-2030.2014.03.025

    ZHONG L, WANG X K, YANG R Q, et al. Influence of NaHCO3 soaking on phytic acid content of soybean sprouts and the optimization of its germination conditions[J]. Journal of Nanjing Agricultural University, 2014, 37(3): 167-172. doi:  10.7685/j.issn.1000-2030.2014.03.025
    [28] FEIZOLLAHI E, MIRMAHDI R S, ZOGHI A. Review of the beneficial and anti-nutritional qualities of phytic acid, and procedures for removing it from food products[J]. Food Research International,2021,143:110284. doi:  10.1016/j.foodres.2021.110284
    [29] LESTIENNE I, ICARD-VERNIERE, MOUQUET C, et al. Effects of soaking whole cereal and legume seeds on iron, zinc and phytate contents[J]. Food Chemistry,2005,89(3):421−425. doi:  10.1016/j.foodchem.2004.03.040
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  9
  • HTML全文浏览量:  6
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-23
  • 网络出版日期:  2022-06-17
  • 刊出日期:  2022-08-03

目录

    /

    返回文章
    返回

    重要通知

    《食品工业科技》青年编委专栏征稿 | 杂粮与主粮复配的营养学基础