• CA
  • JST
  • FSTA
  • SCOPUS
  • 北大核心期刊
  • 中国科技核心期刊CSTPCD
  • 中国精品科技期刊
  • RCCSE中国核心学术期刊
  • 中国农业核心期刊
  • 中国生物医学文献服务系统SinoMed收录期刊

加酶挤压对小麦淀粉结构和理化性质的影响

陈彩雯 李丹丹 陶阳 谢广杰 韩永斌

陈彩雯,李丹丹,陶阳,等. 加酶挤压对小麦淀粉结构和理化性质的影响[J]. 食品工业科技,2022,43(15):50−57. doi:  10.13386/j.issn1002-0306.2021090360
引用本文: 陈彩雯,李丹丹,陶阳,等. 加酶挤压对小麦淀粉结构和理化性质的影响[J]. 食品工业科技,2022,43(15):50−57. doi:  10.13386/j.issn1002-0306.2021090360
CHEN Caiwen, LI Dandan, TAO Yang, et al. Effect of Enzyme Extrusion on Structure and Physicochemical Properties of Wheat Starch[J]. Science and Technology of Food Industry, 2022, 43(15): 50−57. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021090360
Citation: CHEN Caiwen, LI Dandan, TAO Yang, et al. Effect of Enzyme Extrusion on Structure and Physicochemical Properties of Wheat Starch[J]. Science and Technology of Food Industry, 2022, 43(15): 50−57. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021090360

加酶挤压对小麦淀粉结构和理化性质的影响

doi: 10.13386/j.issn1002-0306.2021090360
基金项目: 国家自然科学基金青年项目(32102131);江苏省自然科学基金青年项目(KB20190523);中国博士后面上项目(2020M681631)。
详细信息
    作者简介:

    陈彩雯(1999−),女,硕士研究生,研究方向:农产品加工,E-mail:chencw1999@163.com

    通讯作者:

    李丹丹(1994−),女,博士,讲师,研究方向:淀粉基产品开发,食品电磁场加工,E-mail:lidandan@njau.edu.cn

    韩永斌(1963−),男,博士,教授,研究方向:农产品加工与综合利用,E-mail:hanyongbin@njau.edu.cn

  • 中图分类号: TS234

Effect of Enzyme Extrusion on Structure and Physicochemical Properties of Wheat Starch

  • 摘要: 本文旨在探究加酶挤压对小麦淀粉结构和理化性质的影响。分别设置浓度梯度为0%、0.1%、0.2%、0.5%、1%、2%的α-淀粉酶-小麦淀粉混合物样品,挤压处理后,利用扫描电镜(SEM)、差示扫描量热仪(DSC)、X-射线衍射仪(XRD)、快速粘度仪(RVA)等分析淀粉结构与理化性质的变化。结果表明:各处理组的堆积密度无显著差异(P>0.05);吸水指数与加酶量呈负相关,水合指数与加酶量呈正相关;挤压后淀粉糊化度均大幅度提高,接近完全糊化;挤压后淀粉的颗粒结构被完全破坏且加酶使得淀粉颗粒粒径更小;加酶挤压处理后相对结晶度降低,从原淀粉的17.52%降至10.29%(酶浓度2%);挤压处理后小麦淀粉的糊化焓均显著下降(P<0.05),挤压淀粉样品焓值最低,仅为0.24 J/g,加酶挤压淀粉的焓值高于挤压淀粉,随着加酶量的增加,淀粉的焓值上升至2.5 J/g左右;RVA曲线可明显看出处理组的粘度远低于原淀粉粘度,且加酶挤压样品粘度低于不加酶挤压粘度。本文探明了加酶挤压对淀粉结构和理化性质的作用规律,可为加酶挤压技术在淀粉基食品领域的应用提供理论指导。
  • 图  1  不同处理条件小麦淀粉的吸水性指数和水溶性指数

    Figure  1.  Water absorption index and water solubility index of wheat strach under different treatment conditions

    注:样品1~7分别为CK、ESS、0.1%EESS、0.2%EESS、0.5%EESS、1%EESS、2%EESS;CK为原淀粉样品;ESS为挤压淀粉样品;EESS为加酶挤压淀粉样品。

    图  2  不同处理后小麦淀粉的扫描电镜图

    Figure  2.  SEM images of wheat starch under different treatment conditions

    注:a1、b1、c1、d1、e1、f1、g1分别为1000×放大倍数下CK、ESS、0.1%EESS、0.2%EESS、0.5%EESS、1%EESS、2%EESS扫描电镜图;a2、b2、c2、d2、e2、f2、g2分别为5000×放大倍数下CK、ESS、0.1%EESS、0.2%EESS、0.5%EESS、1%EESS、2%EESS扫描电镜图;CK为原淀粉样品;ESS为挤压淀粉样品;EESS为加酶挤压淀粉样品。

    图  3  不同处理后小麦淀粉的XRD衍射曲线

    Figure  3.  XRD curves of wheat starch under different treatment conditions

    注:CK为原淀粉样品;ESS为挤压淀粉样品;EESS为加酶挤压淀粉样品。

    图  4  不同处理后小麦淀粉的DSC曲线

    Figure  4.  DSC curves of wheat starch under different treatment conditions

    图  5  不同处理后小麦淀粉的RVA粘度曲线

    Figure  5.  RVA curves of wheat starch under different treatment conditions

    表  1  不同处理条件下小麦淀粉糊化度和堆积密度

    Table  1.   Degree of gelatinization and bulk density of wheat starch under different treatment conditions

    样品糊化度(%)堆积密度(g/mL)
    CK24.74±3.21a0.33±0.03a
    ESS96.79±2.42b0.31±0.04a
    0.1%EESS95.31±2.46b0.31±0.03a
    0.2%EESS99.38±2.91b0.34±0.02a
    0.5%EESS97.02±3.01b0.33±0.01a
    1%EESS98.29±1.21b0.31±0.04a
    2%EESS99.14±1.07b0.31±0.03a
    注:同列不同小写字母表示差异显著,P<0.05,表2表3同。
    下载: 导出CSV

    表  2  不同处理后小麦淀粉热性质参数

    Table  2.   Thermal parameters of wheat starch under different treatment conditions

    样品相对结晶度(%)T0(℃)Tp(℃)Tc(℃)ΔH(J/g)
    CK17.52±1.31cd57.35±0a63.04±0.15a76.60±0.13a7.89±0.16d
    ESS4.15±0.48a73.78±0.60d78.76±0.56d86.31±0.55d0.24±0.05a
    0.1%EESS14.42±0.99cd70.89±0.10bc74.57±0.03b82.73±0.68bc1.50±0.355b
    0.2%EESS13.62±0.48bc70.42±0.35b74.43±0.27b82.27±0.22b2.30±0.05c
    0.5%EESS14.18±1.61cd70.04±0.27b74.28±0.16b82.94±0.34bc2.59±0.17c
    1%EESS10.61±0.0132bc70.57±0.20bc74.81±0.17bc83.09±0.86bc2.55±0.03c
    2%EESS10.29±1.01b71.47±0.26c75.62±0.15c84.26±0.81c2.45±0.03c
    注:T0为起始温度,Tp为峰值温度,Tc为终止温度,ΔH为糊化焓;CK为原淀粉样品,ESS为挤压淀粉样品,EESS为加酶挤压淀粉样品。
    下载: 导出CSV

    表  3  不同处理后小麦淀粉糊化特性参数

    Table  3.   Characteristics and parameters of wheat starch gelatinization after different treatments

    峰值粘度(cP)谷值粘度(cP)崩解值(cP)最终粘度(cP)回生值(cP)糊化温度(℃)
    CK2505±4c2218±17b287±3b2628.5±1.5b410.5±15.5c69.05±0.4b
    ESS341±67b77±16a264±51b255±15a178±9b49.9±0.15a
    0.1%EESS35±1a44±1a5.5±0.5a
    0.2%EESS24.5±1.5a39.5±0.5a3±1a
    0.5%EESS11±3a27.5±1.5a3.5±0.5a
    1%EESS0a16.5±0.5a2±0a
    2%EESS16±3a3.5±0.5a
    注:CK为原淀粉样品,ESS为挤压淀粉样品,EESS为加酶挤压淀粉样品。
    下载: 导出CSV
  • [1] 刘少广. 预糊化小麦粉的特性及应用研究[D]. 武汉: 武汉工业学院, 2012.

    LIU S G. Study on characteristics and application of pre-gelatinized wheat flour[D]. Wuhan: Wuhan Institute of Technology, 2012.
    [2] 肖志刚, 邵晨, 杨柳, 等. 淀粉改性方法的研究现状及进展[J]. 农产品加工,2020(3):81−84,88. [XIAO Z G, SHAO C, YANG L, et al. Research status and progress trend of starch modification[J]. Farm Products Processing,2020(3):81−84,88.

    XIAO Z G, SHAO C, YANG L, et al. Research status and progress trend of starch modification[J]. Farm Products Processing, 2020(3): 81-84, 88.
    [3] SINGH J, KAUR L, MCCATHRY O J. Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications-a review[J]. Food Hydrocolloids, 2007, 21: 1−22.
    [4] 张隋鑫, 曹勇, 许秀颖, 等. 预糊化淀粉的制备、性质及应用[J]. 食品科技,2019,44(3):252−255. [ZHANG S X, CAO Y, XU X Y, et al. Production, properties and applications of pre-gelatinazed starch[J]. Food Science and Technology,2019,44(3):252−255.

    ZHANG S X, CAO Y, XU X Y, et al. Production, properties and applications of pre-gelatinazed starch[J]. Food Science and Technology, 2019, 44(3): 252-255.
    [5] 金征宇, 李佳欣, 周星. 冷水可溶淀粉的物理法制备及应用研究进展[J]. 食品科学技术学报,2021,39(1):1−12. [JIN Z Y, LI J X, ZHOU X. Research progress on physical preparation and application of cold-water-soluble starch[J]. Journal of Food Science and Technology,2021,39(1):1−12. doi:  10.12301/j.issn.2095-6002.2021.01.001

    JIN Z Y, LI J X, ZHOU X. Research progress on physical preparation and application of cold-water-soluble starch[J]. Journal of Food Science and Technology, 2021, 39(1): 1-12. doi:  10.12301/j.issn.2095-6002.2021.01.001
    [6] CAO Z Q, CAO Y M, CAO Z G, et al. The research progress of pre-gelatinized starch[J]. Popular Science and Technology,2016,18(1):31−34.
    [7] CHUANG G C C, YEH A I. Effect of screw profile on residence time distribution and starch gelatinization of rice flour duringsingle screw extrusion cooking[J]. Journal of Food Engineering,2004,63(1):21−31. doi:  10.1016/S0260-8774(03)00278-4
    [8] MOSCICKI L. Extrusion cooking: Principles and practice[J]. Encyclopedia of Food and Health,2016:576−580.
    [9] FRANKLYN Z, JOHANNES B, LESLIE V, et al. Physical, chemical and nutritional characteristics of puffed quinoa[J]. International Journal of Food Science & Technology,2020,55(1):313−322.
    [10] TOBIAS A, MOHAMMAD R K, JONATHAN C, et al. Modification of poly (lactic) acid by reactive extrusion and its melt blending with acrylonitrile-butadiene-styrene[J]. Polymer International,2020,69(9):794−803. doi:  10.1002/pi.6014
    [11] GOVINDASAMY S, CAMPANELLA O H, OATES C G. Enzymatic hydrolysis and saccharification optimisation of sago starch in a twin-screw extruder[J]. Journal of Food Engineering,1997,32:427−446.
    [12] LI J P, RASHED M M A, DENG L, et al. Thermostable and mesophilic alpha-amylase: Effects on wheat starch physicochemical properties and their applications in extruded noodles[J]. Journal of Cereal Science,2019,87:248−257. doi:  10.1016/j.jcs.2019.04.013
    [13] MESA-STONESSTREET N J, ALAVIL S, GWIRTZ J. Extrusion-enzyme liquefaction as a method for producing sorghum protein concentrates[J]. Journal of Food Engineering,2012,108(2):365−375.
    [14] BANVILET G, GATT E, BELGACEM N, et al. Cellulose fibers deconstruction by twin-screw extrusion with in situ enzymatic hydrolysis via bioextrusion[J]. Bioresource Technology,2021:327. doi:  10.1016/j.biortech.2021.124819
    [15] REINIKAINEN T, SUORTTI J, OLKKU, et al. Extrusion cooking in enzymatic liquefaction of wheat starch[J]. Starch-Stä rke,1986,38:20−26.
    [16] GOVINDASAMY S, CAMPANELLA O H, OATES C G. Enzymatic hydrolysis of sago starch in a twin-screw extruder[J]. Food Eng,1997,32:403−426. doi:  10.1016/S0260-8774(97)00017-4
    [17] LI H, JIAO A, XU X, et al. Simultaneous saccharification and fermentation of broken rice: an enzymatic extrusion liquefaction pretreatment for Chinese rice wine production[J]. Bioprocess Biosyst Eng,2013,36:1141−1148. doi:  10.1007/s00449-012-0868-0
    [18] 马永轩, 张名位, 张瑞芬, 等. 高温α-淀粉酶-挤压膨化耦合处理对全谷物糙米粉品质的影响[J]. 食品科学技术学报,2020,38(1):111−116. [MA Y X, ZHANG M W, ZHANG R F, et al. Effect of thermostable α-amylase assisted extrusion treatment on quality properties of whole brown rice flour[J]. Journal of Food Science and Technology,2020,38(1):111−116. doi:  10.3969/j.issn.2095-6002.2020.01.015

    MA Y X, ZHANG M X, ZHANG R F, et al. Effect of thermostable α-amylase assisted extrusion treatment on quality properties of whole brown rice flour[J]. Journal of Food Science and Technology, 2020, 38(1): 111-116. doi:  10.3969/j.issn.2095-6002.2020.01.015
    [19] 刘磊, 邱婷婷, 赵志浩, 等. 预酶解-挤压膨化工艺改善玉米全粉冲调分散性[J]. 现代食品科技,2018,34(10):141−146, 170. [LIU L, QIU T T, ZHAO Z H, et al. Extrusion with enzyme pretreatment improves dispersibility of whole corn flour[J]. Modern Food Science and Technology,2018,34(10):141−146, 170.

    LIU L, QIU T T, ZHAO Z H, et al. Extrusion with enzyme pretreatment improves dispersibility of whole corn flour[J]. Modern Food Science and Technology, 2018, 34(10): 141-146, 170.
    [20] LI J P, JIAO A Q, RASHED M M A, et al. Effect of thermostable-amylase addition on producing the porous-structured noodles using extrusion treatment[J]. Journal of Food Science,2018,83(2):332−339. doi:  10.1111/1750-3841.14010
    [21] 赵淑娜, 焦爱权, 杨月月, 等. 加酶挤压对大麦粉理化性质及全大麦啤酒酿造特性的影响[J]. 食品与发酵工业,2021,47(15):63−69. [ZHAO S N, JIAO A Q, YANG Y Y, et al. Effect of enzyme extrusion on characteristics of barley flour and whole-barley beer brewing[J]. Food and Fermentation Industries,2021,47(15):63−69.

    ZHAO S N, JIAO A Q, YANG Y Y, et al. Effect of enzyme extrusion on characteristics of barley flour and whole-barley beer brewing[J]. Food and Fermentation Industries, 201, 47(15): 63-69.
    [22] LI D, YANG N, ZHOU X, et al. Characterization of acid hydrolysis of granular potato starch under induced electric field[J]. Food Hydrocolloids,2017,71:198−206.
    [23] LI D, YANG N, JIN Y, et al. Changes in crystal structure and physicochemical properties of potato starch treated by induced electric field[J]. Carbohydrate Polymers,2016,153:535−541.
    [24] 中华人民共和国国家质量监督检验检疫局, 中国国家标准化管理委员会. GB/T 24853—2010 小麦、黑麦及其粉类和淀性测定快速粘度仪法[S]. 北京: 中国标准出版社, 2010.

    State Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, China National Standardization Administration Committee. GB/T 24853—2010 General pasting method for wheat or rye flour or starch-using the rapid visco analyzer[S]. Beijing: China Standards Press, 2010.
    [25] KUO C H, SHIEH C J, HUANG S M, et al. The effect of extrusion puffing on the physicochemical properties of brown rice used for saccharification and Chinese rice wine fermentation[J]. Food Hydrocolloids,2019,94:363−370. doi:  10.1016/j.foodhyd.2019.03.040
    [26] BRYANT R J, KADAN R S, CHAMPAGNE E T, et al. Functional and digestive characteristics of extruded rice flour[J]. Cereal Chemistry,2001,78(2):131−137. doi:  10.1094/CCHEM.2001.78.2.131
    [27] 徐恩波. 加酶挤压大米品质调控机理及其黄酒应用研究[D]. 无锡: 江南大学, 2019.

    XU E B. Regulation mechanism of enzymatically extruded rice quality and its application in Chinese rice wine[D]. Wuxi: Jiangnan University, 2019.
    [28] 谢天, 孙洪蕊, 康立宁, 等. 双螺杆挤压对玉米重组米理化特性及品质特性的影响[J]. 食品科学,2019,40(17):183−189. [XIE T, SUN H R, KANG L N, et al. Effect of twin-screw extrusion on physicochemical properties and qual characteristics of corn flour[J]. Food Science,2019,40(17):183−189. doi:  10.7506/spkx1002-6630-20180714-180

    XIE T, SUN H R, KANG L N, et al. Effect of twin-screw extrusion on physicochemical properties and qual characteristics of corn flour[J]. Food Science, 2019, 40(17): 183-189. doi:  10.7506/spkx1002-6630-20180714-180
    [29] PUNIA S. Barley starch: Structure, properties and in vitro digestibility-a review[J]. International Journal of Biological Macromolecules,2020,155:868−875. doi:  10.1016/j.ijbiomac.2019.11.219
    [30] 马成业, 范玉艳, 于双双, 等. 挤压剪切活化对添加耐高温α-淀粉酶脱胚玉米淀粉结构和理化特性的影响[J]. 食品科学,2018,39(15):31−37. [MA C Y, FAN Y Y, YU S S, et al. Physicochemical and structural properties of native, extruded and enzymatic extruded degerminated corn starch[J]. Food Science,2018,39(15):31−37. doi:  10.7506/spkx1002-6630-201815005

    MA C Y, FAN Y Y, YU S S, et al. Physicochemical and structural properties of native, extruded and enzymatic extruded degerminated corn starch[J]. Food Science, 2018, 39(15): 31-37. doi:  10.7506/spkx1002-6630-201815005
    [31] CONTRERAS-GALLEGOS E, DOMÍNGUEZ-PACHECO F A, HERNÁNDEZ-AGUILAR C, et al. Study of thermal aural properties of starch granules from different maize genotypes[J]. Food Biophysics,2015,10(1):1−6. doi:  10.1007/s11483-014-9382-z
    [32] FROST K, KAMINSKI D, KIRWAN G, et al. Crystallinity and structure of starch using wide angle X-ray scattering[J]. Carbohydrate Polymers,2009,78(3):543−548. doi:  10.1016/j.carbpol.2009.05.018
    [33] ZOBEL H F. Starch crystal transformations and their industrial importance[J]. Starch-Stä rke,1988,40(1):1−7.
    [34] WU Y, DU X, GE H, et al. Preparation of microporous starch by glucoamylase and ultrasound[J]. Starch-Stä rke,2011,63(4):217−225.
    [35] CHEN Y S, HUANG S R, TANG Z F, et al. Structural changes of cassava starch granules hydrolyzed by a mixture of α-amylase and glucoamylase[J]. Carbohydrate Polymers,2011,85(1):272−275. doi:  10.1016/j.carbpol.2011.01.047
    [36] 于双双, 张东亮, 陈善峰, 等. 脱胚玉米与加酶和不加酶挤压脱胚玉米淀粉颗粒结构和热特性研究[J]. 食品工业科技,2017,38(11):71−75. [YU S S, ZHANG D L, CHEN S F, et al. Research on granule structures and thermal properties of degerminated corn and extruded degerminated corn with enzyme and without enzyme[J]. Science and Technology of Food Industry,2017,38(11):71−75.

    YU S S, ZHANG D L, CHEN S F, et al. Research on granule structures and thermal properties of degerminated corn and extruded degerminated corn with enzyme and without enzyme[J]. Science and Technology of Food Industry, 2017, 38(11): 71-75.
    [37] ZHAO A Q, YU L, YANG M, et al. Effects of the combination of freeze-thawing and enzymatic hydrolysis on the microstructure and physicochemical properties of porous corn starch[J]. Food Hydrocolloids,2018,83:465−472. doi:  10.1016/j.foodhyd.2018.04.041
    [38] 吴文琪. 加酶挤压联合酶解法制备多孔淀粉及其在甜橙油粉末化中的应用[D]. 无锡: 江南大学, 2020.

    WU W Q. Preparation of porous starch by bioextrusion combined with enzymolysis and its application in microencapsulation of sweet orange oil[D]. Wuxi: Jiangnan University, 2020.
    [39] WANG S J, COPELAND L. Effect of acid hydrolysis on starch structure and functionality: A review[J]. Critical Reviews in Food Science and Nutrition,2015,55(8):1079−1095.
    [40] 方浩标, 郑经绍, 余宏达, 等. 挤压膨化对紫糙米粉营养品质及理化性质的影响[J]. 食品工业科技, 2021, 42(19): 70−77.

    FANG H B, ZHENG J S, YU H D, et al. Effect of extrusion process on the nutritious and physicochemical proper of purple brown rice flour [J]. Science and Technology of Food Industry, 2021, 42(19): 70−77.
    [41] MIAO M, ZHANG T, JIANG B. Characterisations of kabuli and desi chickpea starches cultivated in China[J]. Food Chemistry,2009,113(4):1025−1032. doi:  10.1016/j.foodchem.2008.08.056
    [42] ZAVAREZE E D R, DIAS A R G. Impact of heat-moisture treatment and annealing in starches: A review[J]. Carbohydrate Polymers,2011,83(2):317−328. doi:  10.1016/j.carbpol.2010.08.064
    [43] JONGSUTJSRITTAM O, CHAROENREIN S. The effect of moisture content on physicochemical properties of extruded waxy and non-waxy rice flour[J]. Carbohydrate Polymers,2014,114:133−140. doi:  10.1016/j.carbpol.2014.07.074
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  11
  • HTML全文浏览量:  4
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-11
  • 网络出版日期:  2022-06-17
  • 刊出日期:  2022-08-03

目录

    /

    返回文章
    返回

    重要通知

    《食品工业科技》青年编委专栏征稿 | 杂粮与主粮复配的营养学基础