• CA
  • JST
  • FSTA
  • SCOPUS
  • 北大核心期刊
  • 中国科技核心期刊CSTPCD
  • 中国精品科技期刊
  • RCCSE中国核心学术期刊
  • 中国农业核心期刊
  • 中国生物医学文献服务系统SinoMed收录期刊

不同渗透方式对芒果脱水效率和品质的影响

赵红伟 曹彬彬 张谐天 张钟元 李大婧 聂梅梅 顾千辉 王云海 牛丽影 谢宏

赵红伟,曹彬彬,张谐天,等. 不同渗透方式对芒果脱水效率和品质的影响[J]. 食品工业科技,2022,43(15):98−105. doi:  10.13386/j.issn1002-0306.2021100244
引用本文: 赵红伟,曹彬彬,张谐天,等. 不同渗透方式对芒果脱水效率和品质的影响[J]. 食品工业科技,2022,43(15):98−105. doi:  10.13386/j.issn1002-0306.2021100244
ZHAO Hongwei, CAO Binbin, ZHANG Xietian, et al. Comparison of Dehydration Efficiency and Quality of Mango with Different Osmotic Methods[J]. Science and Technology of Food Industry, 2022, 43(15): 98−105. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021100244
Citation: ZHAO Hongwei, CAO Binbin, ZHANG Xietian, et al. Comparison of Dehydration Efficiency and Quality of Mango with Different Osmotic Methods[J]. Science and Technology of Food Industry, 2022, 43(15): 98−105. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021100244

不同渗透方式对芒果脱水效率和品质的影响

doi: 10.13386/j.issn1002-0306.2021100244
详细信息
    作者简介:

    赵红伟(1992−),女,硕士研究生,研究方向:食品加工与安全,E-mail:1695902391@qq.com

    通讯作者:

    张钟元(1983−)女,博士,副研究员,研究方向:果蔬加工与营养健康,E-mail:zzyszy2012@163.com

  • 中图分类号: TS255.3

Comparison of Dehydration Efficiency and Quality of Mango with Different Osmotic Methods

  • 摘要: 为了比较在夏季(30 ℃)和冬季(20 ℃)生产环境下不同渗透方式在芒果脱水效率和品质上的差异,本文以失水率、固增率、水分有效扩散系数、可溶性固形物扩散系数、VC和总酚保留率以及三态水转化为考察指标,探究固态渗透(SSD)和液态渗透(LOD)对糖渍芒果脱水效率和品质的影响。结果表明,固态渗透的脱水效率以及营养物质保留率高于液态渗透;在糖渍48 h后,在环境温度20 ℃下SSD40(蔗糖:芒果(w/w)=4:10)的失水率和固增率最大为49%和5.11%,SSD20(蔗糖:芒果(w/w)=2:10)的VC和总酚保留率最高为47.43%和43.66%;在环境温度30 ℃下,SSD40的失水率和固增率最大为57.41%和6.36%,SSD20的VC、总酚保留率最高为43.79%和42.43%。渗透过程改变了芒果样品中水的结合状态,自由度高的水分向自由度低的方向迁移。本文研究结果将为果干类产品固态渗透预处理技术的应用提供理论参考。
  • 图  1  20、30 ℃不同渗透方式下芒果失水率的变化

    Figure  1.  Changes of water loss rate of mango in different osmotic dehydration methods at 20 or 30 ℃

    注:A代表20 ℃,B代表30 ℃;图2~图6同。

    图  2  20、30 ℃不同渗透方式下芒果失水率与时间的平方根的关系

    Figure  2.  Relationship between water loss rate of mango and square root of time in different osmotic dehydration methods at 20 or 30 ℃

    图  3  20、30 ℃不同渗透方式下芒果固增率的变化

    Figure  3.  Changes of solid gain rate of mango in different osmotic dehydration methods at 20 or 30 ℃

    图  4  20、30 ℃不同渗透方式下芒果固增率与时间的平方根的关系

    Figure  4.  Relationship between solid gain rate of mango and the square root of time in different osmotic dehydration methods at 20 or 30 ℃

    图  5  不同温度条件下不同渗透方式对芒果VC的影响

    Figure  5.  Effects of different osmotic dehydration methods on VC of mango at different temperatures

    图  6  不同温度条件下不同渗透方式对芒果总酚的影响

    Figure  6.  Effects of different osmotic dehydration methods on total phenols of mango at different temperatures

    图  7  20 ℃不同渗透方式条件下处理对芒果块水分分布的影响

    Figure  7.  Effect of different osmotic dehydration methods at 20 ℃ on water distribution of mango

    注:A代表SSD20,B代表SSD30,C代表SSD40, D代表L0DD30。

    图  8  20 ℃不同渗透方式条件下芒果块不同水分峰面积的变化曲线

    Figure  8.  Variation curve of different water peak areas of mango under different osmotic methods at 20 ℃

    表  1  20、30 ℃不同渗透方式下芒果的水分扩散系数

    Table  1.   Water diffusion coefficient of mango in different osmotic dehydration methods at 20 or 30 ℃

    温度(℃)渗透方式水分扩散系数(h-1/2R2水分扩散系数增量(%)

    20
    LOD302.51750.9531/
    SSD204.49820.846678.68
    SSD305.58200.8344121.73
    SSD405.80630.8319130.64

    30
    LOD302.91740.909315.88
    SSD206.21560.9513146.90
    SSD306.95830.9107176.40
    SSD407.46330.8955196.46
    注:水分扩散系数增量(%)=100×(某渗透方式的水分扩散系数−20 ℃ LOD30 下的水分扩散系数)/20 ℃ LOD30 下的水分扩散系数。
    下载: 导出CSV

    表  2  20、30 ℃不同渗透方式下芒果的可溶性固形物扩散系数

    Table  2.   The diffusion coefficient of soluble solids of mango in different osmotic dehydration methods at 20 or 30 ℃

    温度(℃)渗透方式可溶性固形物
    扩散系数(h-1/2
    R2可溶性固形物扩散
    系数增量(%)

    20
    LOD300.34060.7921/
    SSD200.43150.752826.69
    SSD300.57690.8369.38
    SSD400.65420.837692.07

    30
    LOD300.61440.869680.39
    SSD200.71030.8932108.54
    SSD300.77230.9003126.75
    SSD400.80870.8945137.43
    注:可溶性固形物扩散系数增量(%)=100×(某渗透方式的可溶性固形物扩散系数−20 ℃ LOD30 下的可溶性固形物扩散系数)/20 ℃ LOD30 下的可溶性固形物扩散系数。
    下载: 导出CSV
  • [1] ITA Sulistyawati, RUUD Verkerk, VINCENZO Fogliano, et al. Osmotic dehydration of mango: Effffect of vacuum impregnation, high pressure, pectin methylesterase and ripeness on quality[J]. LWT-Food Science and Technology,2018,98:179−186. doi:  10.1016/j.lwt.2018.08.032
    [2] 高贤玉, 张发明, 柏天琦, 等. 云南10个芒果栽培品种糖酸组分分析[J]. 中国热带农业,2019(5):54−59. [GAO X Y, ZHANG F M, BAI T Q, et al. Analysis of sugar and acid components of 10 mango cultivars in Yunnan[J]. China Tropical Agriculture,2019(5):54−59. doi:  10.3969/j.issn.1673-0658.2019.05.015

    GAO X Y, ZHANG F M, BAI T Q, et al. Analysis of sugar and acid components of 10 mango cultivars in Yunnan[J]. China Tropical Agriculture, 2019(5): 54-59. doi:  10.3969/j.issn.1673-0658.2019.05.015
    [3] ITA Sulistyawati, RUUD Verkerk, VINCENZO Fogliano, et al. Modelling the kinetics of osmotic dehydration of mango: Optimizing process conditions and pre-treatment for health aspects[J]. Journal of Food Engineering,2020,280(C):109985−109985.
    [4] 盛金凤, 李丽, 孙健, 等. 不同渗糖方式对芒果果脯品质及组织细胞的影响[J]. 现代食品科技,2014,30(6):202−206. [SHENG J F, LI L, SUN J, et al. Effects of different sugar penetrating methods on the quality and tissue cells of mango preserved fruit[J]. Modern Food Science and Technology,2014,30(6):202−206.

    SHENG J F, LI L, SUN J, et al. Effects of different sugar penetrating methods on the quality and tissue cells of mango preserved fruit[J]. Modern Food Science and Technology, 2014, 30(6): 202-206.
    [5] 蔡晨晨, 马瑞佳, 刘涛, 等. 百里香精油微胶囊复合涂膜在芒果保鲜中的应用[J]. 食品工业科技,2021,42(10):275−280. [CAI CC, MA R J, LIU T, et al. Application of thyme essential oil microcapsule composite coating film in mango preservation[J]. Food Industry Technology,2021,42(10):275−280.

    CAI CC, MA R J, LIU T, et al. Application of thyme essential oil microcapsule composite coating film in mango preservation[J]. Food Industry Technology, 2021, 42(10): 275-280.
    [6] 孙丽婷, 刘立增, 刘爱国, 等. 不同渗糖方式对红宝石李果脯品质的影响[J]. 食品与发酵工业,2021,47(1):180−185. [SUN L T, LIU L Z, LIU A G, et al. Effects of different sugar penetration methods on the quality of ruby plum preserved fruit[J]. Food and Fermentation Industry,2021,47(1):180−185.

    SUN L T, LIU L Z, LIU A G, et al. Effects of different sugar penetration methods on the quality of ruby plum preserved fruit[J]. Food and Fermentation Industry, 2021, 47(1): 180-185.
    [7] 章斌, 罗嘉欣, 侯小桢, 等. 糖渍对板栗加工与风味品质的影响研究[J]. 现代食品,2020(2):102−104,109. [ZHANG B, LUO J X, HOU X Z, et al. Effects of sugar on processing and flavor quality of chestnut[J]. Modern Food,2020(2):102−104,109.

    ZHANG B, LUO J X, HOU X Z, et al. Effects of sugar on processing and flavor quality of chestnut[J]. Modern Food, 2020(2): 102-104, 109.
    [8] 宋璐瑶, 刘东红. 芒果片真空预处理联合超声辅助渗透脱水的传质动力学及品质分析[J]. 现代食品科技,2021,37(11):230−238. [SONG L Y, LIU D H. Mass transfer kinetics and quality analysis of vacuum pretreatment of mango slices combined with ultrasonic assisted osmotic dehydration[J]. Modern Food Technology,2021,37(11):230−238.

    SONG L Y, LIU D H. Mass transfer kinetics and quality analysis of vacuum pretreatment of mango slices combined with ultrasonic assisted osmotic dehydration[J]. Modern Food Technology, 2021, 37(11): 230-238.
    [9] 康佳琪, 赵金红, 孟欣欣, 等. 不同渗透脱水处理对芒果品质的影响[J]. 食品工业,2015,36(2):125−128. [KANG J Q, ZHAO J H, MENG X X, et al. Effects of different osmotic dehydration treatments on mango quality[J]. Food Industry,2015,36(2):125−128.

    KANG J Q, ZHAO J H, MENG X X, et al. Effects of different osmotic dehydration treatments on mango quality[J]. Food Industry, 2015, 36(2): 125-128.
    [10] 李珊珊. 中等水分芒果果脯的研制与保藏研究[D]. 无锡: 江南大学, 2020.

    LI S S. Development and preservation of medium moisture preserved mango[D]. Wuxi: Jiangnan University, 2020.
    [11] 王俊涛, 滕建文, 韦保耀, 等. 不同渗透方式对芒果脱水效率和品质的影响[J]. 食品科学,2020(10):225−236. [WANG J T, TENG J W, WEI B Y, et al. Effects of different infiltration methods on mango dehydration efficiency and quality[J]. Food Science,2020(10):225−236.

    WANG J T, TENG J W, WEI B Y, et al. Effects of different infiltration methods on mango dehydration efficiency and quality[J]. Food Science, 2020(10): 225-236.
    [12] 国家卫生和计划生育委员会. GB 5009.3-2016 食品安全国家标准食品中水分的测定[S]. 北京:中国标准出版社, 2016.

    National Health and Family Planning Commission. GB 5009.3-2016 National food safety standard determination of moisture in food[S].Beijing: China Standards Press, 2016.
    [13] ZECCHI B, GERLA P. Effective diffusion coefficients and mass flux ratio during osmotic dehydration considering real shape and shrinkage[J]. Journal of Food Engineering,2020,274:109821. doi:  10.1016/j.jfoodeng.2019.109821
    [14] 徐鑫, 王广峰, 陆保国, 等. 真空渗透对猕猴桃预脱水的影响[J]. 通化师范学院学报,2020,41(10):49−56. [XU X, WANG G F, LU B G, et al. Effect of vacuum infiltration on pre-dehydration of kiwifruit[J]. Journal of Tonghua Teachers College,2020,41(10):49−56.

    XU X, WANG G F, LU B G, et al. Effect of vacuum infiltration on pre-dehydration of kiwifruit[J]. Journal of Tonghua Teachers College, 2020, 41(10): 49-56.
    [15] 刘伟东, 顾欣, 郭君钰, 等. 微波热风联合干燥工艺对枸杞品质和表面微生物的影响[J]. 农业工程学报,2019,35(20):296−302. [LIU W D, GU X, GUO J, et al. Effect of microwave hot air drying process on the quality and surface microbes of lyciumbarbarum[J]. Journal of Agricultural Engineering,2019,35(20):296−302. doi:  10.11975/j.issn.1002-6819.2019.20.036

    LIU W D, GU X, GUO J, et al. Effect of microwave hot air drying process on the quality and surface microbes of lyciumbarbarum[J]. Journal of Agricultural Engineering, 2019, 35(20): 296-302. doi:  10.11975/j.issn.1002-6819.2019.20.036
    [16] SHI X Q, FITO P, CHIRALT A. Influence of vacuum treatment on mass transfer during osmotic dehydration of fruits[J]. Food Research International,1995,28(5):445−454. doi:  10.1016/0963-9969(96)81391-3
    [17] SHIXQ M P F. Vacuum osmotic dehydration of fruits[J]. Drying Technology,1993,11(6):1429−1442. doi:  10.1080/07373939308916908
    [18] 刘胜辉, 臧小平. 高效液相色谱法测定水果中的抗坏血酸[J]. 生命科学仪器,2005,3(4):38−40. [LIU S H, ZANG X P. Determination of ascorbic acid in fruits by high performance liquid chromatography[J]. Life Science Instruments,2005,3(4):38−40. doi:  10.3969/j.issn.1671-7929.2005.04.009

    LIU S H, ZANG X P. Determination of ascorbic acid in fruits by high performance liquid chromatography[J]. Life Science Instruments, 2005, 3(4): 38-40. doi:  10.3969/j.issn.1671-7929.2005.04.009
    [19] 汪小娉, 宋江峰, 李大婧, 等. 真空微波干燥对南瓜主要类胡萝卜素的影响[J]. 食品科学,2016,37(21):91−96. [WANG X P, SONG J F, LI D J, et al. Effect of vacuum microwave drying on main carotenoids of pumpkin[J]. Food Science,2016,37(21):91−96. doi:  10.7506/spkx1002-6630-201621016

    WANG X P, SONG J F, LI D J, et al. Effect of vacuum microwave drying on main carotenoids of pumpkin[J]. Food Science, 2016, 37(21): 91-96. doi:  10.7506/spkx1002-6630-201621016
    [20] 李静, 聂继云, 毋永龙. Folin-Ciocalteus法测定马铃薯中的总多酚[J]. 中国马铃薯,2014,28(1):27−30. [LI J, NIE J Y, WU Y L. Determination of total polyphenols in potatoes by Folin-Ciocalteus method[J]. Chinese Potato,2014,28(1):27−30. doi:  10.3969/j.issn.1672-3635.2014.01.008

    LI J, NIE J Y, WU Y L. Determination of total polyphenols in potatoes by Folin-Ciocalteus method[J]. Chinese Potato, 2014, 28(1): 27-30. doi:  10.3969/j.issn.1672-3635.2014.01.008
    [21] CHENLO F, MOREIRA R, FEMA'NDEZ Herrero C, et al. Experimental results and modeling of the osmotic dehydration kinetics of chestnut with glucose solutions[J]. Journal of Food Engineering,2006,74(3):324−334. doi:  10.1016/j.jfoodeng.2005.03.002
    [22] FIGEN K E, MUSTAFAS. Modelling of mass transfer during osmotic dehydration of apples[J]. Journal of Food Engineering,2000,46(4):243−250. doi:  10.1016/S0260-8774(00)00084-4
    [23] 王俊涛. 固体糖渍对芒果脱水传质和品质的影响研究[D]. 广西: 广西大学, 2020.

    WANG J T. Study on the effect of solid sugar on mango dehydration mass transfer and quality[D]. Guangxi: Guangxi University, 2020.
    [24] 赵金红, 胡锐, 刘冰, 等. 渗透脱水前处理对芒果冻结速率和品质的影响[J]. 农业机械学报,2014,45(2):220−227. [ZHAO J H, HU R, LIU B, et al. Effects of osmotic dehydration pretreatment on freezing rate and quality of mango[J]. Journal of Agricultural Machinery,2014,45(2):220−227. doi:  10.6041/j.issn.1000-1298.2014.02.037

    ZHAO J H, HU R, LIU B, et al. Effects of osmotic dehydration pretreatment on freezing rate and quality of mango[J]. Journal of Agricultural Machinery, 2014, 45(2): 220-227. doi:  10.6041/j.issn.1000-1298.2014.02.037
    [25] 江龙. 不同贮藏温度下丝瓜营养成分变化研究[J]. 大众标准化,2020(24):255−256. [JIANG L. Study on the changes of nutrient composition of loofah under different storage temperatures[J]. Mass Standardization,2020(24):255−256. doi:  10.3969/j.issn.1007-1350.2020.24.125

    JIANG L. Study on the changes of nutrient composition of loofah under different storage temperatures[J]. Mass Standardization, 2020(24): 255-256. doi:  10.3969/j.issn.1007-1350.2020.24.125
    [26] KUCNER A, KLEWICKI R, SJKA M. The influence of selected osmotic dehydration and pretreatment parameters on dry matter and polyphenol content in highbush blueberry (Vaccinium corymbosum L.) fruits[J]. Food and Bioprocess Technology,2013,6(8):2031−2047. doi:  10.1007/s11947-012-0997-0
    [27] 卢映洁, 任广跃, 段续, 等. 热风干燥过程中带壳鲜花生水分迁移特性及品质变化[J]. 食品科学,2020,41(7):86−92. [LU Y J, REN G Y, DUAN X, et al. Water migration characteristics and quality changes of fresh flowers with shells during hot air drying[J]. Food Science,2020,41(7):86−92. doi:  10.7506/spkx1002-6630-20190311-134

    LU Y J, REN G Y, DUAN X, et al. Water migration characteristics and quality changes of fresh flowers with shells during hot air drying[J]. Food Science, 2020, 41(7): 86-92. doi:  10.7506/spkx1002-6630-20190311-134
    [28] 李娜, 李瑜. 利用低场核磁共振技术分析冬瓜真空干燥过程中的内部水分变化[J]. 食品科学,2016,37(23):84−88. [LI N, LI Y. Using low-field NMR technology to analyze the internal moisture changes of wax gourd during vacuum drying[J]. Food Science,2016,37(23):84−88. doi:  10.7506/spkx1002-6630-201623014

    LI N, LI Y. Using low-field NMR technology to analyze the internal moisture changes of wax gourd during vacuum drying[J]. Food Science, 2016, 37(23): 84-88. doi:  10.7506/spkx1002-6630-201623014
    [29] LU Z, SEETHARAMN K. 1H nuclear magnetic resonance (NMR) and differential scanning calorimetry (DSC) studies of water mobility in dough systems containing barley flour[J]. Cereal Chemistry,2013,90(2):120−126. doi:  10.1094/CCHEM-09-12-0116-R
    [30] 陈童, 张慜, 陈晶晶. 超声波辅助渗透脱水处理及其对西兰花冻结品质的影响[J]. 食品与生物技术学报,2020,39(4):33−40. [CHEN T, ZHANG M, CHEN J J. Ultrasonic assisted osmotic dehydration and its effect on frozen quality of broccoli[J]. Journal of Food and Biotechnology,2020,39(4):33−40. doi:  10.3969/j.issn.1673-1689.2020.04.005

    CHEN T, ZHANG M, CHEN J J. Ultrasonic assisted osmotic dehydration and its effect on frozen quality of broccoli[J]. Journal of Food and Biotechnology, 2020, 39(4): 33-40. doi:  10.3969/j.issn.1673-1689.2020.04.005
    [31] 朱文学, 尤泰斐, 白喜婷, 等. 基于低场核磁的马铃薯切片干燥过程水分迁移规律研究[J]. 农业机械学报,2018,49(12):364−370. [ZHU W X, YOU T F, BAI X T. Study on water transfer during potato slice drying based on low field NMR[J]. Journal of Agricultural Machinery,2018,49(12):364−370. doi:  10.6041/j.issn.1000-1298.2018.12.043

    ZHU W X, YOU T F, BAI X T. Study on water transfer during potato slice drying based on low field NMR[J]. Journal of Agricultural Machinery, 2018, 49(12): 364-370. doi:  10.6041/j.issn.1000-1298.2018.12.043
    [32] 张鹏飞, 吕健, 毕金峰, 等. 超声及超声渗透预处理对红外辐射干燥特性研究[J]. 现代食品科技,2016,32(11):197−202. [ZHANG P F, LÜ J, BI J F, et al. Study on infrared radiation drying characteristics of ultrasonic and ultrasonic penetration pretreatment[J]. Modern Food Technology,2016,32(11):197−202.

    ZHANG P F, LÜ J, BI J F, et al. Study on infrared radiation drying characteristics of ultrasonic and ultrasonic penetration pretreatment[J]. Modern Food Technology, 2016, 32(11): 197-202.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  17
  • HTML全文浏览量:  6
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-25
  • 网络出版日期:  2022-06-17
  • 刊出日期:  2022-08-03

目录

    /

    返回文章
    返回

    重要通知

    《食品工业科技》青年编委专栏征稿 | 杂粮与主粮复配的营养学基础