Extraction and Purification of Intracellular Polysaccharide from Chlorella vulgaris and Its Antioxidant Activity
-
摘要: 为提高小球藻胞内粗多糖得率,并探究小球藻胞内多糖纯化组分的抗氧化作用。本研究采取超声波破碎和热水浸提相结合的方法提取小球藻胞内粗多糖,利用响应面法进行提取条件优化,在此基础上,采用阴离子交换柱和葡聚糖凝胶柱层析对提取得到的粗多糖进行分离纯化,并进行结构表征和抗氧化试验。响应面结果显示,小球藻胞内粗多糖最优提取条件为:NaOH质量分数为2.0%,料液比为1:25(g/mL),超声功率为200 W,超声时间为20 min,提取温度为80 ℃,提取时间为1.5 h,在此条件下,小球藻胞内粗多糖的得率为18.086%±0.143%。结构表征和体外抗氧化结果显示,纯化多糖(Purification of intracellular polysaccharide,SCIP),主要由葡萄糖、鼠李糖及半乳糖成分组成,是一种含有糖醛酸的吡喃糖。其在20 mg/mL时,对1,1-二苯基-2-苦基肼(1,1-Diphenyl-2-picrylhydrazyl,DPPH)自由基的清除率最大,为75.64%±1.56%,在25 mg/mL时,对羟基自由基清除率最大,为71.08%±0.58%,IC50分别6.42 mg/mL和8.59 mg/mL。研究结果为深入了解小球藻胞内多糖理化性质及小球藻多糖的开发利用提供基础。Abstract: In order to improve the yield of crude polysaccharide from Chlorella vulgaris and explore the antioxidant effect of purified intracellular polysaccharide from Chlorella vulgaris, this study adopted the method of ultrasonic crushing and hot water extraction to extract intracellular crude polysaccharides from Chlorella vulgaris. Response surface method was used to optimize the extraction conditions. On this basis, anion exchange column and dextran gel column chromatography were used to separate and purify the extracted crude polysaccharides, and the characterization and antioxidant test were carried out. Response surface results showed that the optimal extraction conditions of intracellular crude polysaccharides from Chlorella vulgaris were as follows: The mass fraction of NaOH 2.0%, the material-liquid ratio 1:25 (g/mL), the ultrasonic power 200 W, the ultrasonic time 20 min, the extraction temperature 80 ℃, the extraction time 1.5 h. Under these conditions, the yield of intracellular crude polysaccharide was 18.086%±0.143%. The results of characterization and antioxidant activity in vitro showed that SCIP was a pyranose sugar containing uronic acid and was composed of glucose, rhamnose and galactose. At 20 mg/mL, the DPPH radical scavenging rate was the largest of 75.64%±1.56%, and at 25 mg/mL, the hydroxyl radical scavenging rate was the largest of 71.08%±0.58%. IC50 were 6.42 mg/mL and 8.59 mg/mL, respectively. The results provided a basis for further understanding of the physicochemical properties and biological activities of polysaccharides from Chlorella sp.
-
表 1 单因素设计因素及水平
Table 1. Factors and levels of univariate design
因素 参数设置 A NaOH质量分数(%) 1.0 1.5 2.0 2.5 3.0 3.5 B 料液比(g/mL) 1:15 1:20 1:25 1:30 1:35 1:40 C 超声功率(W) 0 100 200 300 400 500 D 超声时间(min) 10 15 20 25 30 35 E 提取温度(℃) 50 60 70 80 90 100 F 提取时间(h) 1 2 3 4 5 6 表 2 Plackett-Burman试验因素及水平
Table 2. Factors and levels of PB design experiment
水平 因素 A(%) B(g/mL) C(W) D(min) E(℃) F(h) −1 2.5 1:30 300 20 80 3 1 3.5 1:40 400 25 100 4 表 3 响应面试验因素及水平
Table 3. Factors and level of response surface experiment
水平 因素 NaOH质量分数X1(%) 料液比X2(g/mL) 超声功率X3(W) 提取时间X4(h) −1 1.5 1:20 150 1.5 0 2.0 1:25 200 2.0 1 2.5 1:30 250 2.5 表 4 Plackett-Burman试验设计及结果
Table 4. Design and results of PB experiment
试验号 A B C D E F 粗多糖得率(%) 1 −1 −1 −1 1 −1 1 16.094 2 −1 1 −1 1 1 −1 14.567 3 −1 1 1 −1 1 1 7.900 4 −1 −1 −1 −1 −1 −1 17.422 5 1 −1 1 1 −1 1 8.100 6 −1 −1 1 −1 1 1 12.190 7 1 1 −1 1 1 1 8.777 8 1 1 1 −1 −1 −1 9.460 9 −1 1 1 1 −1 −1 9.056 10 1 −1 1 1 1 −1 9.016 11 1 1 −1 −1 −1 1 9.215 12 1 −1 −1 −1 1 −1 15.058 表 5 Plackett-Burman试验方差分析
Table 5. Variance analysis of PB experiment
来源 平方和 自由度 均方 F值 P值 T值 显著性 模型 124.97 6 20.83 14.64 0.0049 ** A 25.82 1 25.82 18.15 0.0080 −1.47 ** B 29.78 1 29.78 20.94 0.0060 −1.58 ** C 53.81 1 53.81 37.83 0.0017 −2.12 ** D 2.75 1 2.65 1.86 0.2307 −0.47 E 0.28 1 0.28 0.20 0.6749 −0.15 F 12.62 1 12.62 8.87 0.0309 −1.03 * 残差 7.11 5 1.42 总和 132.08 11 注:*表示对结果影响显著(P<0.05);**表示对结果影响极显著(P<0.01)。 表 6 最陡爬坡试验设计及结果
Table 6. Design and results of the steepest ascent experiment
试验号 NaOH质量
分数X1(%)料液比X2
(g/mL)超声功率
X3(W)提取时间
X4(h)粗多糖
得率(%)1 0.5 1:10 50 0.5 12.860 2 1.0 1:15 100 1.0 14.879 3 1.5 1:20 150 1.5 16.964 4 2.0 1:25 200 2.0 17.893 5 2.5 1:30 250 2.5 16.107 6 3.0 1:35 300 3.0 14.288 表 7 Box-Behnken试验设计与结果
Table 7. Design and results of Box-Behnken experiment
试验号 X1 X2 X3 X4 粗多糖得率(%) 1 0 0 0 0 18.073 2 −1 −1 0 0 14.195 3 0 0 −1 1 12.296 4 0 −1 0 −1 15.443 5 0 1 1 0 7.010 6 0 1 0 −1 14.939 7 0 0 1 1 11.897 8 0 0 0 0 17.781 9 −1 0 −1 0 11.539 10 1 0 0 −1 15.908 11 0 0 0 0 17.887 12 0 0 −1 −1 12.455 13 0 0 0 0 18.099 14 −1 0 0 −1 16.399 15 0 −1 0 1 15.204 16 0 1 0 1 14.646 17 −1 0 1 0 10.795 18 −1 1 0 0 13.411 19 0 0 0 0 17.223 20 1 0 0 1 15.696 21 0 0 1 −1 12.057 22 1 0 −1 0 11.287 23 0 −1 −1 0 9.786 24 1 −1 0 0 13.929 25 1 1 0 0 13.146 26 0 −1 1 0 7.727 27 1 0 1 0 10.530 28 0 1 −1 0 8.484 29 −1 0 0 1 16.147 表 8 回归方程及方差分析
Table 8. Variance analysis of regression equation
方差来源 平方和 自由度 均方 F值 P值 显著性 模型 271.15 14 19.37 49.34 <0.0001 ** X1 0.33 1 0.33 0.84 0.3742 X2 1.80 1 1.80 4.59 0.0503 X3 2.83 1 2.83 7.22 0.0177 * X4 0.14 1 0.14 0.37 0.5543 X1X2 0.000 1 0.000 0.000 1.0000 X1X3 4.409×10−5 1 4.409×10−5 1.123×10−4 0.9917 X1X4 3.968×10−4 1 3.968×10−4 1.011×10−3 0.9751 X2X3 0.085 1 0.085 0.22 0.6481 X2X4 7.055×10−4 1 7.055×10−4 1.797×10−3 0.9668 X3X4 0.000 1 0.000 0.000 1.0000 X12 9.95 1 9.95 25.36 0.0002 ** X22 63.19 1 63.19 161.00 <0.0001 ** X32 224.16 1 224.16 571.09 <0.0001 ** X42 3.880×10−3 1 3.880×10−3 9.885×10−3 0.9222 残差 5.50 14 0.39 失拟项 4.99 10 0.50 3.96 0.0984 误差 0.50 4 0.13 总和 276.64 28 注:“*”表示对结果影响显著(P<0.05);“**”表示对结果影响极显著(P<0.01)。 表 9 SCIP单糖组成
Table 9. Monosaccharide composition of SCIP
名称 出峰时间(min) 摩尔比 GalN 8.684 0.051 Rha 9.225 0.190 Ara 9.792 0.062 GlcN 10.809 0.096 Gal 12.259 0.163 Glc 13.875 0.300 Xyl 16.184 0.041 GalA 43.759 0.049 GlcA 46.584 0.047 -
[1] 李莎兰, 洪亮, 李诚博, 等. 绿藻水溶性多糖的研究概况和进展[J]. 海洋科学,2016,40(9):145−151. [LI S L, HONG L, LI C B, et al. The research progress of water-soluble polysaccharides from green alga[J]. Marine Sciences,2016,40(9):145−151. doi: 10.11759/hykx20151217002LI S L, HONG L, LI C B, et al. The research progress of water-soluble polysaccharides from green alga[J]. Marine Sciences, 2016, 40(9): 145-151. doi: 10.11759/hykx20151217002 [2] CHEN Y X, LIUX Y, ZHENG X, et al. Antioxidant activities of polysaccharides obtained from Chlorella pyrenoidosa via different ethanol concentrations[J]. International Journal of Biological Macromolecules,2016,91:1−20. doi: 10.1016/j.ijbiomac.2016.05.093 [3] YU M G, CHEN M J, GUI J L, et al. Preparation of Chlorella vulgaris polysaccharides and their antioxidant activity in vitro and in vivo[J]. International Journal of Biological Macromolecules,2019,137:139−150. doi: 10.1016/j.ijbiomac.2019.06.222 [4] QI J, KIM S M. Characterization and immunomodulatory activities of polysaccharides extracted from green alga Chlorella ellipsoidea[J]. International Journal of Biological Macromolecules,2017,95:106−114. doi: 10.1016/j.ijbiomac.2016.11.039 [5] WU S W, LIU H Q, LI S Y, et al. Transcriptome analysis reveals possible immunomodulatory activity mechanism of Chlorella sp. exopolysaccharides on RAW264.7 macrophages[J]. Marine Drugs,2021,19(4):1−17. [6] 李晓楠, 秦松, 葛保胜. 微藻及其活性物质在免疫调节和抗病毒方面的研究进展[J]. 生物学杂志,2021,38(2):13−17. [LI X N, QIN S, GE B S. Progress of study on immunological regulation and antiviral effects of microalgae and its bioactives[J]. Journal of Biology,2021,38(2):13−17.LI X N, QIN S, GE B S. Progress of study on immunological regulation and antiviral effects of microalgae and its bioactives[J]. Journal of Biology, 2021, 38(2): 13-17. [7] SANTOYO S, PLAZA M, JAIME L, et al. Pressurized liquid extraction as an alternative process to obtain antiviral agents from the edible microalga Chlorella vulgaris[J]. Journal of Agricultural and Food Chemistry,2010,58(15):8522−8527. doi: 10.1021/jf100369h [8] 陈晓清, 郑怡, 苏育才. 海水小球藻抗菌多糖的分离纯化[J]. 食品科技,2012,37(4):168−170. [CHEN X Q, ZHENG Y, SU Y C. Isolation and purication of antimicrobial polysaccharides from Chlorella pacifica[J]. Food Science and Technology,2012,37(4):168−170.CHEN X Q, ZHENG Y, SU Y C. Isolation and purication of antimicrobial polysaccharides from Chlorella pacifica[J]. Food Science and Technology, 2012, 37(4): 168-170. [9] 谭成玉, 赵小霞, 孟繁桐, 等. 海洋小球藻多糖的制备及其体外抑制肿瘤血管生成活性的研究[J]. 中国海洋药物,2014,33(4):33−38. [TAN C Y, ZHAO X X, MENG F T, et al. The preparation and anti-angiogenic activity study of chlorella polysaccharides[J]. Chinese Journal of Marine Drugs,2014,33(4):33−38.TAN C Y, ZHAO X X, MENG F T, et al. The preparation and anti-angiogenic activity study of chlorella polysaccharides[J]. Chinese Journal of Marine Drugs, 2014, 33(4): 33-38. [10] KANG S M, KIM K N, LEE S H, et al. Anti-inflammatory activity of polysaccharide purified from AMG-assistant extract of Ecklonia cava in LPS-stimulated RAW 264.7 macrophages[J]. Carbohydrate Polymers,2011,85(1):80−85. doi: 10.1016/j.carbpol.2011.01.052 [11] WAN X Z, LI T T, ZHONG R T, et al. Anti-diabetic activity of PUFAs-rich extracts of Chlorella pyrenoidosa and Spirulina platensis in rats[J]. Food and Chemical Toxicology,2019,128:1−23. doi: 10.1016/j.fct.2019.03.035 [12] SONG H, HE M L, GU C K. et al. Extraction optimization, purification, antioxidant activity, and preliminary structural characterization of crude polysaccharide from an arctic Chlorella sp[J]. Polymers,2018,10(3):1−18. [13] 席波, 宋东辉, 孙晶, 等. 十种微藻粗多糖的抑菌作用及海水小球藻粗多糖的抗氧化活性[J]. 天津科技大学学报,2015,30(5):20−25. [XI B, SONG D H, SUN J, et al. Anti-microbial activities of crude polysaccharide extracts from ten species of microalgae and the antioxidant activities of crude polysaccharide extracts from marineChlorella vulgaris[J]. Journal of Tianjin University of Science and Technology,2015,30(5):20−25.XI B, SONG D H, SUN J, et al. Anti-microbial activities of crude polysaccharide extracts from ten species of microalgae and the antioxidant activities of crude polysaccharide extracts from Marine chlorella vulgaris[J]. Journal of Tianjin University of Science and Technology, 2015, 30(5): 20-25. [14] 贾敬, 徐殿胜, 庄秀园, 等. 小球藻热水提取物功能成分的活性跟踪分离[J]. 生物工程学报,2017,33(5):743−756. [JIA J, XU D S, ZHUANG X Y, et al. Bioassay-guided isolation of functional components from hot water extract of Chlorella pyrenoidosa[J]. Chinese Journal of Biotechnology,2017,33(5):743−756.JIA J, XU D S, ZHUANG X Y, et al. Bioassay-guided isolation of functional components from hot water extract of Chlorella pyrenoidosa[J]. Chinese Journal of Biotechnology, 2017, 33(5): 743-756. [15] 赵小霞. 小球藻多糖的制备及芦苇生物活性成分的研究[D]. 大连: 大连海洋大学, 2014.ZHAO X X. Preparation of polysaccharides from Chlorella vulgaris and studies on bioactive components from the Phragmites australis[D]. Dalian: Dalian Ocean University, 2015. [16] 陈艺煊. 蛋白核小球藻多糖提取分离及抗衰老活性研究[D]. 福州: 福建农林大学, 2017.CHEN Y X. Studies on extraction process of polysaccharides from Chlorella pyrenoidosa and its anti-aging activity[D]. Fuzhou: Fujian Agriculture and Forestry University, 2017. [17] ZENG W C, ZHANG Z, GAO H, et al. Characterization of antioxidant polysaccharides from Auricularia auricular using microwave-assisted extraction[J]. Carbohydrate Polymers,2012,89(2):694−700. doi: 10.1016/j.carbpol.2012.03.078 [18] 段旭, 冉军舰, 孙俊良, 等. 甘薯渣多糖的提取工艺优化、结构鉴定及其功能活性研究[J]. 食品工业科技, 2022,43(8):228-237DU X, RAN J J, SUN J L, et al. Study on extraction process optimization, structure identification and functional activity of polysaccharide from sweet potato[J]. Science and Technology of Food Industry, 2022,43(8): 228-237. [19] 魏文志, 付立霞, 陈国宏. 基于冻融辅助超声波法的小球藻多糖提取工艺优化[J]. 农业工程学报,2012,28(16):270−274. [WEI W Z, FU L X, CHEN G H. Process optimization of polysaccharides extraction from Chlorella pyrenoidosa based on ultrasound assisted by freezing and thawing[J]. Transactions of the Chinese Society of Agricultural Engineering,2012,28(16):270−274. doi: 10.3969/j.issn.1002-6819.2012.16.042WEI W Z, FU L X, CHEN G H. Process optimization of polysaccharides extraction from Chlorella pyrenoidosa based on ultrasound assisted by freezing and thawing[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(16): 270-274. doi: 10.3969/j.issn.1002-6819.2012.16.042 [20] ANDERSEN R A. Algal culturing techniques[M]. Oxford: Elsevier Academic Press, 2005: 429−538. [21] 钟闰, 吴思伟, 何秀苗, 等. 杜氏盐藻胞外多糖抗肿瘤活性及其机制研究[J]. 食品工业科技,2020,41(22):126−133. [ZHONG R, WU S W, HE X M, et al. Antitumor activity and mechanism of exopolysaccharide from Dunaliella salina[J]. Science and Technology of Food Industry,2020,41(22):126−133.ZHONG R, WU S W, HE X M, et al. Antitumor activity and mechanism of exopolysaccharide from Dunaliella salina[J]. Science and Technology of Food Industry, 2020, 41(22): 126-133. [22] 吴思伟, 李思雨, 孙寒, 等. 一株产胞外多糖微藻的分离鉴定及其多糖抗氧化活性的研究[J]. 食品与发酵工业,2021,47(24):193−200. [WU S W, LI S Y, SUN H, et al. Isolation and identification of an exopolysaccharide-producing microalgae strain and its antioxidant activity[J]. Food and Fermentation Industries,2021,47(24):193−200. doi: 10.13995/j.cnki.11-1802/ts.027350WU S W, LI S Y, SUN H, et al. Isolation and identification of an exopolysaccharide-producing microalgae strain and its antioxidant activity[J]. Food and Fermentation Industries, 2021,47(24): 193-200. doi: 10.13995/j.cnki.11-1802/ts.027350 [23] 严尚隆, 潘创, 杨贤庆, 等. 长松藻多糖降解、结构表征及降血糖活性测定[J]. 食品与发酵工业,2021,47(18):119−126. [YAN S L, PAN C, YANG X Q, et al. Degradation, structural characterization and hypoglycemic activity of polysaccharides from Codium cylindricum[J]. Food and Fermentation Industry,2021,47(18):119−126. doi: 10.13995/j.cnki.11-1802/ts.027466YAN S L, PAN C, YANG X Q, et al. Degradation, structural characterization and hypoglycemic activity of polysaccharides from Codium cylindricum[J]. Food and Fermentation Industry, 2021,47(18): 119-126. doi: 10.13995/j.cnki.11-1802/ts.027466 [24] 史瑞琴, 梁静静, 李大伟, 等. 小球藻多糖的分离纯化及理化性质[J]. 食品科学,2020,41(20):61−67. [SHI R Q, LIANG J J, LI D W, et al. Isolation, purification and physicochemical properties of polysaccharides from Chlorella[J]. Food Science,2020,41(20):61−67. doi: 10.7506/spkx1002-6630-20190515-173SHI R Q, LIANG J J, LI D W, et al. Isolation, purification and physicochemical properties of polysaccharides from Chlorella[J]. Food Science, 2020, 41(20): 61-67. doi: 10.7506/spkx1002-6630-20190515-173 [25] 申希峰, 黄杰涛, 张莲姬, 等. 蒽酮-硫酸法测定榛花多糖含量条件的优化[J]. 食品研究与开发,2017,38(18):150−154. [SHEN X F, HUANG J T, ZHANG L J, et al. Determination of optimal conditions of polysaccharide content of Hazel's flower by anthrone sulfuric acid method[J]. Food Research and Development,2017,38(18):150−154.SHEN X F, HUANG J T, ZHANG L J, et al. Determination of optimal conditions of polysaccharide content of Hazel's flower by anthrone sulfuric acid method [J]. Food Research and Development, 2017, 38(18): 150-154. [26] 胡月. 红花多糖的结构分析及其抗氧化活性研究 [D]. 石河子: 石河子大学, 2020.HU Y. Structural analysis and antioxidant activities of polysaccharide isolated from Carthamus tinctorius L.[D]. Shihezi: Shihezi University, 2020. [27] THIRUCHELVI R, VENKATARAHAVAN R, SHARMILA D. Optimization of environmental parameters by Plackett-Burman design and response surface methodology for the adsorption of malachite green onto Gracilaria edulis[J]. Materials Today: Proceedings,2021,37(P2):1−6. [28] 付婷婷, 马宁, 蒙健宗, 等. 基于响应面法优化一株海洋绿藻胞内多糖提取工艺[J]. 中国酿造,2015,34(9):115−120. [FU T T, MA N, MENG J Z, et al. Optimization of extraction technology of amarine algae intracellular polysaccharide based on response surface methodology[J]. China Brewing,2015,34(9):115−120. doi: 10.11882/j.issn.0254-5071.2015.09.027FU T T, MA N, MENG J Z, et al. Optimization of extraction technology of amarine algae intracellular polysaccharide based on response surface methodology [J]. China Brewing, 2015, 34(9): 115-120. doi: 10.11882/j.issn.0254-5071.2015.09.027 [29] 吴金松, 耿广威, 陈晓培, 等. 信阳毛尖茶末多糖的分离纯化和体外抗氧化活性研究[J]. 食品工业科技,2020,41(13):181−186. [WU J S, GENG G W, CHEN X P, et al. Isolation, purification and in vitro antioxidant activity of tea dust polysaccharide from Xinyang Maojian[J]. Science and Technology of Food Industry,2020,41(13):181−186.WU J S, GENG G W, CHEN X P, et al. Isolation, purification and in vitro antioxidant activity of Tea Dust polysaccharide from Xinyang Maojian [J]. Science and Technology of Food Industry, 2020, 41(13): 181-186. [30] SHANG X L, LIU C Y, DONG H Y, et al. Extraction, purification, structural characterization, and antioxidant activity of polysaccharides from wheat bran[J/OL]. Journal of Molecular Structure. 2021-02-15 [2022-2-17]. https://doi.org/10.1016/j.molstruc.2021.130096. [31] LIU D, SUN Q, XU J, et al. Purification, characterization, and bioactivities of a polysaccharide from mycelial fermentation of Bjerkandera fumosa[J]. Carbohydrate Polymers,2017,167:115−122. [32] AIPIRE A, YUAN P, AIMAIER A, et al. Preparation, characterization, and immuno-enhancing activity of polysaccharides from Glycyrrhiza uralensis[J]. Biomolecules,2020,10(1):159. doi: 10.3390/biom10010159 [33] 赵丹, 聂波, 宋昆, 等. 离子色谱法测定不同产地葛根多糖中的单糖组成[J]. 分析试验室,2017,36(7):745−749. [ZHAO D, NIE B, SONG K, et al. Determination of monosaccharide in radix puerariae polysaccharide by ion chromatography[J]. Chinese Journal of Analysis Laboratory,2017,36(7):745−749.ZHAO D, NIE B, SONG K, et al. Determination of monosaccharide in radix puerariae polysaccharide by ion chromatography[J]. Chinese Journal of Analysis Laboratory, 2017, 36(7): 745-749. [34] 杨海燕, 李洁琼, 刘红全, 等. 小球藻EC04产胞内多糖条件优化及抗氧化活性研究[J]. 热带海洋学报,2019,38(6):98−104. [YANG H Y, LI J Q, LIU H Q, et al. Study on the optimum conditions for polysaccharide production of Chlorella EC04 and its antioxidant activity analysis[J]. Journal of Tropical Oceanography,2019,38(6):98−104.YANG H Y, LI J Q, LIU H Q, et al. Study on the optimum conditions for polysaccharide production of Chlorella EC04 and its antioxidant activity analysis[J]. Journal of Tropical Oceanography, 2019, 38(6): 98-104. [35] 刘芬, 朱顺妮, 徐忠斌, 等. 超声辅助热水浸提小球藻多糖及抗氧化活性测定[J]. 中国酿造,2020,39(2):177−181. [LIU F, ZHU S N, XU Z B, et al. Extraction of polysaccharides from Chlorella sp. by ultrasound-assisted hot water extraction and determination of antioxidant activity[J]. China Brewing,2020,39(2):177−181. doi: 10.11882/j.issn.0254-5071.2020.02.033LIU F, ZHU S N, XU Z B, et al. Extraction of polysaccharides from Chlorella sp. by ultrasound-assisted hot water extraction and determination of antioxidant activity[J]. China Brewing, 2020, 39(2): 177-181. doi: 10.11882/j.issn.0254-5071.2020.02.033 [36] 葛珍珍, 王杰, 周灿灿, 等. 响应面法优化小球藻培养基[J]. 食品工业科技,2012,33(16):195−198. [GE Z Z, WANG J, ZHOU C C, et al. Optimization of medium for Chlorella vulgaris by response surface analysis[J]. Science and Technology of Food Industry,2012,33(16):195−198.GE Z Z, WANG J, ZHOU C C, et al. Optimization of medium for Chlorella vulgaris by response surface analysis[J]. Science and Technology of Food Industry, 2012; 33(16): 195-198. [37] 邹成梅, 王甜甜, 何思艳, 等. 响应面法优化茯苓多糖发酵培养基[J]. 中国酿造,2018,37(7):107−111. [ZOU C M, WANG T T, HE S Y, et al. Optimization of fermentation medium of polysaccharides from Poria cocosby response surface methodology[J]. China Brewing,2018,37(7):107−111. doi: 10.11882/j.issn.0254-5071.2018.07.022ZOU C M, WANG T T, HE S Y, et al. Optimization of fermentation medium of polysaccharides from Poria cocosby response surface methodology[J]. China Brewing, 2018, 37(7): 107-111. doi: 10.11882/j.issn.0254-5071.2018.07.022 [38] VENKATARAGHAVAN R, THIRUCHELVI R, SHARMILA D. Statistical optimization of textile dye effluent adsorption by Gracilaria edulis using Plackett-Burman design and response surface methodology[J]. Heliyon,2020,6(10):1−15. [39] RATANA C, NATTAYAPORE C, PANYA T, et al. Polysaccharide extraction from Spirulina sp. and its antioxidant capacity[J]. International Journal of Biological Macromolecules,2013,58:73−78. doi: 10.1016/j.ijbiomac.2013.03.046 [40] 孙建瑞, 符丹丹, 赵君峰, 等. 响应面法优化Chlamydomonas sp. 212产胞内多糖发酵工艺及其抑菌活性[J]. 食品科学,2017,38(18):1−7. [SUN J R, FU D D, ZHAO J F, et al. Optimization of fermentation process for the production of intracellular polysaccharide from Chlamydomonas sp. 212 and its antimicrobial activity[J]. Food Science,2017,38(18):1−7. doi: 10.7506/spkx1002-6630-201718001SUN J R, FU D D, ZHAO J F, et al. Optimization of fermentation process for the production of intracellular polysaccharide from Chlamydomonas sp. 212 and its antimicrobial activity[J]. Food Science, 2017, 38(18): 1-7. doi: 10.7506/spkx1002-6630-201718001 [41] 何坤明, 王国锭, 白新鹏, 等. 山茱萸籽多糖分离纯化、结构表征及抗氧化活性[J]. 食品科学, 2021, 42(19): 81-88.HE K M, GUO G D, BAI X P, et al. Isolation, purification, structure characterization and antioxidant activity of cornus officinalis seeds polysaccharides [J]. Food Science, 2021, 42(19): 81-88. [42] 贾红倩, 刘嵬, 颜军, 等. 杏鲍菇多糖的分离纯化、乙酰化修饰及其抗氧化活性[J]. 食品工业科技,2018,39(3):39−44. [JIA H Q, LIU W, YAN J, et al. Isolation and purification, acetylation modification and antioxidant activity of polysaccharides of Pleurotus eryngii Quel[J]. Science and Technology of Food Industry,2018,39(3):39−44.JIA H Q, LIU W, YAN J, et al. Isolation and purification, acetylation modification and antioxidant activity of polysaccharides of Pleurotus eryngii Quel[J]. Science and Technology of Food Industry, 2018, 39(3): 39-44. [43] YANG B, LUO Y X, WU Q J, et al. Hovenia dulcis polysaccharides: Influence of multi-frequency ultrasonic extraction on structure, functional properties, and biological activities[J]. International Journal of Biological Macromolecules,2020,148:1010−1020. doi: 10.1016/j.ijbiomac.2020.01.006 [44] 李亚清, 杨海波, 刘艳, 等. 小球藻多糖的分离纯化和组成分析[J]. 大连水产学院学报,2006(3):294−296. [LI Y Q, YANG H B, LIU Y, et al. Separation purification and analysis of Chlorella polysaccharides from Chlorella sp[J]. Journal of Dalian Fisheries University,2006(3):294−296.LI Y Q, YANG H B, LIU Y, et al. Separation purification and analysis of Chlorella polysaccharides from Chlorella sp[J]. Journal of Dalian Fisheries University, 2006, (3): 294-296. [45] 何钢, 刘嵬, 李会萍, 等. 银杏叶多糖分离纯化、结构鉴定及抗氧化活性研究[J]. 食品工业科技,2015,36(22):81−86. [HE G, LIU W, LI H P, et al. Isolation and purification, structure identification and antioxidant activity of polysaccharides of Ginkgo biloba leaf[J]. Science and Technology of Food Industry,2015,36(22):81−86.HE G, LIU W, LI H P, et al. Isolation and purification, structure identification and antioxidant activity of polysaccharides of Ginkgo biloba leaf[J]. Science and Technology of Food Industry, 2015, 36(22): 81-86. [46] 刘艺珠, 刘佩冶, 赵玉梅, 等. 黄花菜多糖的表征与抗氧化活性分析[J]. 食品工业科技, 2022, 43(12): 54-61.LIU Y Z, LIU P Y, ZHAO Y M, et al. Characterization and antioxidant activity analysis of daylily polysaccharides[J]. Food Industry Science and Technology, 2022, 43(12): 54-61. [47] XU R H, SHEN Q, DING X L, et al. Chemical characterization and antioxidant activity of an exopolysaccharide fraction isolated from Bifidobacterium animalis RH[J]. European Food Research & Technology,2011,232(2):231−240. [48] 孙建瑞, 赵君峰, 符丹丹, 等. Chlorella vulgaris胞内多糖抗氧化活性及其与糖代谢相关酶的关系[J]. 应用与环境生物学报,2020,26(3):512−519. [SUN J R, ZHAO J F, FU D D, et al. Assessing the antioxidant activity of intracellular polysaccharide from Chlorella vulgaris and its relationship with glycometabolism-related enzymes[J]. Chin J Appl Environ Biol,2020,26(3):512−519.SUN J R, ZHAO J F, FU D D, et al. Assessing the antioxidant activity of intracellular polysaccharide from Chlorella vulgaris and its relationship with glycometabolism-related enzymes[J]. Chin J Appl Environ Biol, 2020, 26 (3): 512-519. -