Research on Anti-aging Function and Mechanism of Pond Turtle Protein-derived Peptides on Drosophila melanogaster
-
摘要: 目的:探究龟肉蛋白肽(pond turtle protein-derived peptides,PTPDP)延缓果蝇衰老的作用和机制。方法:酶解乌龟肉得到PTPDP,测定其营养成分、分子质量分布以及氨基酸组成;分别以0.2%、0.4%和0.8%的PTPDP喂养果蝇,通过生存实验和测定体内超氧化物歧化酶(superoxide dismutase,SOD)、过氧化氢酶(catalase,CAT)活性和丙二醛(malondialdehyde,MDA)含量来分析其抗衰老功能;通过测定0.8% PTPDP喂养的雌性果蝇抗氧化相关基因Sod1、Sod2、Cat和寿命相关基因mth、Rpn11的表达来探究其抗衰老机制。结果:龟肉酶解产物以1000 Da以下的小分子肽段为主,富含甘氨酸、谷氨酸和脯氨酸等具有抗氧化活性的氨基酸。生存实验和抗氧化活性实验中,0.8% PTPDP组雌雄果蝇的平均寿命分别显著延长了18.92%和9.37%(P<0.01);SOD活性分别显著提高了7.13%和7.37%(P<0.05);CAT活性分别极显著提高了42.14%和84.66%(P<0.01);MDA含量分别显著下降了22.22%和23.08%(P<0.05)。基因表达结果显示,0.8% PTPDP喂养显著上调了抗氧化相关基因Sod1,Sod2(P<0.05)和Cat(P<0.01)的表达,同时对寿命相关基因mth和Rpn11(P<0.01)的表达也表现出显著的调节作用。结论:PTPDP通过影响果蝇抗氧化和寿命相关基因的表达,提高其体内抗氧化活性,延长果蝇寿命,有潜在的抗衰老功效。Abstract: Objective: To explore the anti-aging function and mechanism of pond turtle protein-derived peptides (PTPDP) on Drosophila melanogaster. Methods: PTPDP were obtained by enzymatic hydrolysis of turtle meat. Nutrients content, molecular weight distribution and amino acid composition of PTPDP were determined. D. melanogaster were fed with 0.2%, 0.4%, and 0.8% PTPDP. The activities of superoxide dismutase (SOD) and catalase (CAT), along with the content of malondialdehyde (MDA) were determined to analyze the anti-aging function of PTPDP. The anti-aging mechanism was explored by measuring the expression of antioxidant genes (Sod1, Sod2 and Cat) and lifespan-related genes (mth and Rpn11) in female D. melanogaster fed with 0.8% PTPDP. Results: The enzymatic hydrolysis products of turtle meat were mainly composed of small molecule peptides less than 1000 Da. PTPDP were rich in amino acids with antioxidant activity, such as glycine, glutamic acid and proline. In the survival experiment, the average lifespans of female and male D. melanogaster were significantly prolonged by 18.92% and 9.37% (P<0.01), respectively. In the antioxidant activity experiment, the SOD activity of female and male D. melanogaster increased significantly by 7.13% and 7.37% (P<0.05); the CAT activity of female and male D. melanogaster increased significantly by 42.14% and 84.66% (P<0.01); the MDA content of female and male D. melanogaster decreased significantly by 22.22% and 23.08% (P<0.05). In female D. melanogaster fed with 0.8% PTPDP, the expression of anti-oxidant related genes Sod1, Sod2 (P<0.05) and Cat (P<0.01) were significantly up-regulated, and genes (mth and Rpn11) related to lifespan also showed different degrees of regulation (P<0.01). Conclusion: PTPDP increase the antioxidant activity of D. melanogaster by affecting the expression of antioxidant genes and lifespan-related genes, thereby prolonging the lifespan of D. melanogaster. This mechanism implies that PTPDP has potential anti-aging effects.
-
表 1 梯度洗脱时间
Table 1. Gradient elution time
时间(min) 流速(mL/min) 流动相A(%) 流动相B(%) 0 1 100 0 13 1 93 7 23 1 77 23 29 1 65 35 35 1 60 40 40 1 0 100 45 1 0 100 47 1 100 0 50 1 100 0 表 2 引物序列
Table 2. Primer sequences
基因 上游引物 下游引物 rp49 GCTAAGCTGTCGCACAAATG TGTGCACCAGGAACTTCTTG Sod1 ACCGACTCCAAGATTACGCTCT GTTGCCCGTTGACTTGCTC Sod2 CCACATCAACCACACCATCT CAGTTTGCCCGACTTCTTGT Cat TACGAGCAGGCCAAGAAGTT ACCTTGTACGGGCAGTTCAC mth CGTCTTTCTGGTGGCTGACT CGTGGATTTAGGATGGTTCC Rpn11 CATTTGGAGGAGAAGGTGGA GCGATTTGTGGGTATGAAGG 表 3 龟肉蛋白肽的营养成分
Table 3. Nutrient content of PTPDP
营养成分 龟肉蛋白肽 水分(%) 4.04±0.05 灰分(%) 3.11±0.08 蛋白含量(%) 86.49±1.17 酸溶蛋白含量(%) 85.98±1.02 表 4 龟肉蛋白肽分子量分布
Table 4. Molecular weight distribution of PTPDP
分子量(Da) 含量(%) <180 11.32±0.20 180~500 60.39±1.01 500~1000 22.99±0.77 >1000 5.29±0.08 表 5 龟肉蛋白肽的氨基酸组成
Table 5. Amino acids composition of PTPDP
氨基酸名称 含量(mg/g) 含量(%) 天冬氨酸 59.86±0.97 8.04±0.26 谷氨酸 109.47±3.54 14.70±0.23 丝氨酸 20.95±0.51 2.81±0.04 甘氨酸 117.59±7.63 15.79±0.87 组氨酸 9.17±0.47 1.23±0.07 精氨酸 31.28±0.81 4.20±0.05 苏氨酸 22.08±0.35 2.96±0.01 丙氨酸 55.99±0.42 7.52±0.16 脯氨酸 72.45±1.54 9.73±0.05 酪氨酸 20.55±0.70 2.76±0.10 缬氨酸 35.88±0.66 4.82±0.10 甲硫氨酸 14.21±0.75 1.91±0.13 异亮氨酸 52.87±2.29 7.10±0.28 亮氨酸 48.94±1.96 6.57±0.24 苯丙氨酸 22.87±1.33 3.07±0.16 赖氨酸 50.61±0.53 6.80±0.05 表 6 不同剂量龟肉蛋白肽对雌、雄果蝇寿命的影响
Table 6. Effects of different doses of PTPDP on the lifespan of female and male D. melanogaster
组别 半数死亡时间(d) 平均寿命(d) 平均最高寿命(d) 平均寿命延长率(%) 雌 雄 雌 雄 雌 雄 雌 雄 对照组 36 48 36.40±0.97 46.18±0.72 60.31±0.64 63.41±0.61 − − 低剂量组 36 48 38.54±1.01 46.49±0.82 63.21±0.51* 63.62±0.60 5.87±0.13 0.67±0.05 中剂量组 39 51 39.76±1.06 47.76±0.80 65.57±0.59** 65.57±0.63 9.24±0.17 3.43±0.12 高剂量组 45** 51 43.29±1.04** 50.51±0.78** 69.00±0.93** 68.33±0.82* 18.92±0.23 9.37±0.17 注:*表示各剂量组与对照组相比差异显著,P<0.05;**表示各剂量组与对照组相比差异极显著,P<0.01,表7~表9同。 表 7 不同剂量龟肉蛋白肽对果蝇体内SOD活性的影响
Table 7. Effects of different doses of PTPDP on SOD activity of D. melanogaster
组别 雌果蝇SOD活性(U/mg prot) 雄果蝇SOD活性(U/mg prot) 20 d 40 d 20 d 40 d 对照组 264.71±12.85 261.68±8.58 358.33±5.84 328.71±10.32 低剂量组 282.44±9.11 257.49±4.65 364.18±13.93 329.97±8.90 中剂量组 294.24±3.37* 283.59±7.15* 390.90±7.08* 333.45±2.91 高剂量组 315.30±14.33** 280.35±3.52* 385.16±10.76* 352.93±5.21* 表 8 不同剂量龟肉蛋白肽对雌、雄果蝇体内CAT活性的影响
Table 8. Effects of different doses of PTPDP on CAT activity of female and male D. melanogaster
组别 雌果蝇CAT活性(U/mg prot) 雄果蝇CAT活性(U/mg prot) 20 d 40 d 20 d 40 d 对照组 57.03±3.22 63.49±4.56 117.25±9.19 85.33±6.49 低剂量组 82.14±12.16* 81.24±5.36* 114.19±5.04 94.41±7.91 中剂量组 97.08±4.86** 88.32±3.48** 121.38±11.41 93.07±7.48 高剂量组 113.59±3.99** 90.31±9.77** 144.28±5.89* 157.57±3.58** 表 9 不同剂量龟肉蛋白肽对雌、雄果蝇体内MDA含量的影响
Table 9. Effects of different doses of PTPDP on MDA content of female and male D. melanogaster
组别 雌果蝇MDA含量
(nmol/mg prot)雄果蝇MDA含量
(nmol/mg prot)20 d 40 d 20 d 40 d 对照组 0.33±0.04 0.36±0.01 0.25±0.02 0.26±0.02 低剂量组 0.32±0.04 0.36±0.04 0.24±0.01 0.23±0.04 中剂量组 0.24±0.01 0.33±0.03 0.22±0.02 0.19±0.01* 高剂量组 0.21±0.03* 0.28±0.02* 0.19±0.04* 0.20±0.02* -
[1] 周佳雯, 靳建亮. 衰老机制及其干预研究进展[J]. 医学研究生学报,2021,34(5):524−529. [ZHOU J W, JIN J L. Research progress on aging mechanism and its intervention[J]. Journal of Medical Postgraduates,2021,34(5):524−529. doi: 10.16571/j.cnki.1008-8199.2021.05.016ZHOU J W, JIN J L. Research progress on aging mechanism and its intervention[J]. Journal of Medical Postgraduates, 2021, 34(5): 524-529. doi: 10.16571/j.cnki.1008-8199.2021.05.016 [2] DATO S, CROCCO P, MIGLIORE N R, et al. Omics in a digital world: The role of bioinformatics in providing new insights into human aging[J]. Frontiers in Genetics,2021,12:689824. doi: 10.3389/fgene.2021.689824 [3] 卢春雪, 杨绍杰, 陶荟竹, 等. 衰老机制研究进展[J]. 中国老年学杂志,2018,38(1):248−250. [LU C X, YANG S J, TAO H Z, et al. Research progress on aging mechanism[J]. Chinese Journal of Gerontology,2018,38(1):248−250. doi: 10.3969/j.issn.1005-9202.2018.01.101LU C X, YANG S J, TAO H Z, et al. Research progress on aging mechanism[J]. Chinese Journal of Gerontology, 2018, 38(1): 248-250. doi: 10.3969/j.issn.1005-9202.2018.01.101 [4] NANDI A, YAN L J, JANA C K, et al. Role of catalase in oxidative stress-and age-associated degenerative diseases[J]. Oxidative Medicine and Cellular Longevity,2019,2019:9613090. [5] CARUSO G, GODOS J, CASTELLANO S, et al. The therapeutic potential of carnosine/anserine supplementation against cognitive decline: A systematic review with meta-analysis[J]. Biomedicines,2021,9(3):253. doi: 10.3390/biomedicines9030253 [6] SHEN C Y, JIANG J G, YANG L, et al. Anti-ageing active ingredients from herbs and nutraceuticals used in traditional Chinese medicine: Pharmacological mechanisms and implications for drug discovery[J]. British Journal of Pharmacology,2017,174(11):1395−1425. doi: 10.1111/bph.13631 [7] POMATTO L C, DAVIES K J. Adaptive homeostasis and the free radical theory of ageing[J]. Free Radical Biology and Medicine,2018,124:420−430. doi: 10.1016/j.freeradbiomed.2018.06.016 [8] AGUILAR-TOALA J E, LICEAGA A M. Cellular antioxidant effect of bioactive peptides and molecular mechanisms underlying: Beyond chemical properties[J]. International Journal of Food Science and Technology,2020,56(5):2193−2204. [9] TADESSE S A, EMIRE S A. Production and processing of antioxidant bioactive peptides: A driving force for the functional food market[J]. Heliyon,2020,6(8):e04765. doi: 10.1016/j.heliyon.2020.e04765 [10] ZENG W C, SUN Q, ZHANG W H, et al. Antioxidant activity in vivo and biological safety evaluation of a novel antioxidant peptide from bovine hair hydrolysates[J]. Process Biochemistry,2017,56:193−198. doi: 10.1016/j.procbio.2017.02.022 [11] CHEN S Y, YANG Q, CHEN X, et al. Bioactive peptides derived from crimson snapper and in vivo anti-aging effects on fat diet-induced high fat Drosophila melanogaster[J]. Food & Function,2020,11(1):524−533. [12] DING Y L, KO S C, MOON S H, et al. Protective effects of novel antioxidant peptide purified from alcalase hydrolysate of velvet antler against oxidative stress in chang liver cells in vitro and in a zebrafish model in vivo[J]. International Journal of Molecular Sciences,2019,20(20):5187. doi: 10.3390/ijms20205187 [13] TONOLO F, FOLDA A, CESARO L, et al. Milk-derived bioactive peptides exhibit antioxidant activity through the Keap1-Nrf2 signaling pathway[J]. Journal of Functional Foods,2020,64:103696. doi: 10.1016/j.jff.2019.103696 [14] 石扬, 张永进, 赖年悦, 等. 中华草龟肉抗肿瘤活性肽的分离纯化及鉴定研究[J]. 现代食品科技,2018,34(5):24−31. [SHI Y, ZHANG Y J, LAI N Y, et al. Isolation, purification and identification of anti-tumor bioactive peptides from Chinemys reevesii[J]. Modern Food Science and Technology,2018,34(5):24−31.SHI Y, ZHANG Y J, LAI N Y, et al. Isolation, purification and identification of anti-tumor bioactive peptides from Chinemys reevesii[J]. Modern Food Science and Technology, 2018, 34(5): 24-31. [15] 杨昭, 曾琳琦, 凌叶婷, 等. 蛋白酶种类对龟肉酶解液品质的影响[J]. 食品工业,2021,42(3):188−191. [YANG Z, ZENG L Q, LING Y T, et al. Effect of protease species on the quality of enzymatic hydrolysate of turtle meat[J]. The Food Industry,2021,42(3):188−191.YANG Z, ZENG L Q, LING Y T, et al. Effect of protease species on the quality of enzymatic hydrolysate of turtle meat[J]. The Food Industry, 2021, 42(3): 188-191. [16] 段丽娟, 范慧君, 邢婕, 等. 龟龄集延缓果蝇衰老的作用研究[J]. 山西医科大学学报,2021,52(3):317−321. [DUAN L J, FAN H J, XING J, et al. Study on anti-aging effects of Guilingji in Drosophila melanogaster[J]. Journal of Shanxi Medical University,2021,52(3):317−321.DUAN L J, FAN H J, XING J, et al. Study on anti-aging effects of Guilingji in Drosophila melanogaster[J]. Journal of Shanxi Medical University, 2021, 52(3): 317-321. [17] 闫明亮, 周玉枝, 李明花, 等. 基于1H-NMR代谢组学的黄芩醇提物延长果蝇寿命研究[J]. 中草药,2016,47(10):1714−1722. [YAN M L, ZHOU Y Z, LI M H, et al. Metabonomic study of alcohol extract from Scutellariae Radix in prolonginglifespan of Drosophila melanogaster based on 1H-NMR[J]. Chinese Traditional and Herbal Drugs,2016,47(10):1714−1722. doi: 10.7501/j.issn.0253-2670.2016.10.015YAN M L, ZHOU Y Z, LI M H, et al. Metabonomic study of alcohol extract from Scutellariae Radix in prolonginglifespan of Drosophila melanogaster based on 1H-NMR[J]. Chinese Traditional and Herbal Drugs, 2016, 47(10): 1714-1722. doi: 10.7501/j.issn.0253-2670.2016.10.015 [18] 张永进, 石扬, 赖年悦, 等. 中华草龟抗肿瘤生物活性肽提取工艺的初步研究[J]. 肉类工业,2017,7:28−33. [ZHANG Y J, SHI Y, LAI N Y, et al. Preliminary study on extraction technology of antitumor bioactive peptides of Chinemys reevesii[J]. Meat Industry,2017,7:28−33. doi: 10.3969/j.issn.1008-5467.2017.04.008ZHANG Y J, SHI Y, LAI N Y, et al. Preliminary study on extraction technology of antitumor bioactive peptides of Chinemys reevesii. [J]. Meat Industry, 2017, 7: 28-33. doi: 10.3969/j.issn.1008-5467.2017.04.008 [19] 史晋源, 钟浩, 王倩倩, 等. 甲鱼肽对果蝇寿命及其抗氧化活性的影响[J]. 食品工业科技,2021,42(11):321−327. [SHI J Y, ZHONG H, WANG Q Q, et al. Effect of soft-shelled turtle peptide on the lifespan and antioxidant activities of Drosophila melanogaster[J]. Science and Technology of Food Industry,2021,42(11):321−327.SHI J Y, ZHONG H, WANG Q Q, et al. Effect of soft-shelled turtle peptide on the lifespan and antioxidant activities of Drosophila melanogaster[J]. Science and Technology of Food Industry, 2021, 42(11): 321-327. [20] 王耀辉, 任海虹, 王景雪, 等. 白灵菇多糖对果蝇寿命及抗氧化活性的影响[J]. 食品工业科技,2018,39(5):313−318. [WANG Y H, REN H H, WANG J X, et al. Effect of polysaccharides of Pleurotus nebrodensis on the life-span and antioxidant activities of Drosophila melanogaster[J]. Science and Technology of Food Industry,2018,39(5):313−318.WANG Y H, REN H H, WANG J X, et al. Effect of polysaccharides of Pleurotus nebrodensis on the life-span and antioxidant activities of Drosophila melanogaster[J]. Science and Technology of Food Industry, 2018, 39(5): 313-318. [21] XIN X X, CHEN Y, CHEN D, et al. Supplementation with major royal-jelly proteins increases lifespan, feeding, and fecundity in Drosophila[J]. Journal of Agricultural and Food Chemistry,2016,64(29):5803−5812. doi: 10.1021/acs.jafc.6b00514 [22] 张明, 何超, 邵颖, 等. 蛹虫草多糖对果蝇寿命及抗氧化活性的影响[J]. 食品科技,2016,41(11):179−183. [ZHANG M, HE C, SHAO Y, et al. Effect of polysaccharides from fruiting body of Cordyceps militaries on lifespan and antioxidant activity in Drosophila melanogaster[J]. Food Science and Technology,2016,41(11):179−183.ZHANG M, HE C, SHAO Y, et al. Effect of polysaccharides from fruiting body of Cordyceps militaries on lifespan and antioxidant activity in Drosophila melanogaster[J]. Food Science and Technology, 2016, 41(11): 179-183. [23] 张晓寒, 赵江, 韩英, 等. 根皮素延缓雌性果蝇的衰老作用[J]. 现代食品科技,2020,36(3):9−16, 166. [ZHANG X H, ZHAO J, HAN Y, et al. Anti-aging effects of phloretin on female Drosophila melanogaster[J]. Modern Food Science and Technology,2020,36(3):9−16, 166.ZHANG X H, ZHAO J, HAN Y, et al. Anti-aging effects of phloretin on female Drosophila melanogaster[J]. Modern Food Science and Technology, 2020, 36(3): 9-16, 166. [24] 余楠楠, 陈琛. 生物活性肽功能及制备技术研究进展[J]. 中国酿造,2018,37(9):17−21. [YU N N, CHEN C. Research progress of bioactive peptide function and preparation technology[J]. China Brewing,2018,37(9):17−21. doi: 10.11882/j.issn.0254-5071.2018.09.004YU N N, CHEN C. Research progress of bioactive peptide function and preparation technology[J]. China Brewing, 2018, 37(9): 17-21. doi: 10.11882/j.issn.0254-5071.2018.09.004 [25] HU X M, WANG Y M, ZHAO Y Q, et al. Antioxidant peptides from the protein hydrolysate of monkfish (Lophius litulon) muscle: Purification, identification, and cytoprotective function on HepG2 cells damage by H2O2[J]. Marine Drugs,2020,18(3):153. doi: 10.3390/md18030153 [26] 申彩红. 海参肽的酶法制备及其抗氧化、抗疲劳活性研究[D]. 厦门: 华侨大学, 2015SHEN C H. Study on the enzymatic preparation of sea cucumber peptide and its antioxidant and anti-fatigue activities[D]. Xiamen: Huaqiao University, 2015. [27] 赵翊君. 鲈鱼鱼肉抗氧化肽的分离鉴定及其对HepG2细胞氧化损伤的保护作用研究[D]. 广州: 华南理工大学, 2018ZHAO Y J. Separation and characterization of antioxidant peptides from bass muscle and their protective effects against oxidative damage in HepG2 cells[D]. Guangzhou: South China University of Technology, 2018. [28] 杜瑞平, 张兴夫, 高民, 等. 甘氨酸的免疫调节作用及其分子机制[J]. 动物营养学报,2015,27(3):663−670. [DU R P, ZHANG X F, GAO M, et al. Immunomodulatory effect and molecular mechanism of glycine[J]. Chinese Journal of Animal Nutrition,2015,27(3):663−670. doi: 10.3969/j.issn.1006-267x.2015.03.001DU R P, ZHANG X F, GAO M, et al. Immunomodulatory effect and molecular mechanism of glycine[J]. Chinese Journal of Animal Nutrition, 2015, 27(3): 663-670. doi: 10.3969/j.issn.1006-267x.2015.03.001 [29] GARCIA E J, CAIN M E. Isolation housing elevates amphetamine seeking independent of nucleus accumbens glutamate receptor adaptations[J]. European Journal of Neuroscience,2021,54(7):6382−6396. doi: 10.1111/ejn.15441 [30] CHEN C L, HSU S C, ANN D K. Arginine signaling and cancer metabolism[J]. Cancers,2021,13(14):3541. doi: 10.3390/cancers13143541 [31] SADEGHI M, TENBERG V, MUNZBERG S, et al. Phase equilibria of l-valine/l-leucine solid solutions[J]. Journal of Molecular Liquids,2021,340:117315. doi: 10.1016/j.molliq.2021.117315 [32] 秦永燕, 王妤婕, 李颖, 等. 黄芪多糖对果蝇寿命和抗氧化作用的影响[J]. 食品工业科技,2020,41(2):288−291. [QIN Y Y, WANG Y J, LI Y, et al. Effects of astragalus polysaccharide on life span and antioxidation of Drosophila melanogaster[J]. Science and Technology of Food Industry,2020,41(2):288−291.QIN Y Y, WANG Y J, LI Y, et al. Effects of astragalus polysaccharide on life span and antioxidation of Drosophila melanogaster[J]. Science and Technology of Food Industry, 2020, 41(2): 288-291. [33] ZHANG J J, LIU X, PAN J H, et al. Anti-aging effect of brown black wolfberry on Drosophila melanogaster and d-galactose-induced aging mice[J]. Journal of Functional Foods,2020,65:103724. doi: 10.1016/j.jff.2019.103724 [34] 张婉迎, 赵文学, 尹翌秋, 等. 人参水提物对果蝇抗衰老的作用机制[J]. 吉林农业大学学报,2018,40(5):557−562. [ZHANG W Y, ZHAO W X, YIN Y Q, et al. Mechanism of anti-aging activity of water extract of ginseng in Drosophila melanogaster[J]. Journal of Jilin Agricultural University,2018,40(5):557−562.ZHANG W Y, ZHAO W X, YIN Y Q, et al. Mechanism of anti-aging activity of water extract of ginseng in Drosophila melanogaster[J]. Journal of Jilin Agricultural University, 2018, 40(5): 557-562. [35] WONG D, HU X Q, TAO N P, et al. Effect and mechanism of pyridoxamine on the lipid peroxidation and stability of polyunsaturated fatty acids in beef patties[J]. Journal of the Science of Food and Agriculture,2016,96(10):3418−3423. doi: 10.1002/jsfa.7522 [36] 张静静, 刘暄, 赵琦, 等. 褐变黑枸杞对紫外照射损伤果蝇寿命及抗氧化能力的影响[J]. 中国食品添加剂,2020,31(1):53−58. [ZHANG J J, LIU X, ZHAO Q, et al. Brown black wolfberry on the life-span of UV damaged Drosophila melanogaster and its anti-oxidation activities[J]. China Food Additives,2020,31(1):53−58.ZHANG J J, LIU X, ZHAO Q, et al. Brown black wolfberry on the life-span of UV damaged Drosophila melanogaster and its anti-oxidation activities[J]. China Food Additives, 2020, 31(1): 53-58. [37] DORAN M L, KNEE J M, WANG N, et al. Metabolomic analysis of oxidative stress: Superoxide dismutase mutation and paraquat induced stress in Drosophila melanogaster[J]. Free Radical Biology and Medicine,2017,113:323−334. doi: 10.1016/j.freeradbiomed.2017.10.011 [38] PANDEY A, KHATOON R, SAINI S, et al. Efficacy of methuselah gene mutation toward tolerance of dichlorvos exposure in Drosophila melanogaster[J]. Free Radical Biology and Medicine,2015,83:54−65. doi: 10.1016/j.freeradbiomed.2015.02.025 [39] TANG R, CHEN X Y, DANG T T, et al. Lycium barbarum polysaccharides extend the mean lifespan of Drosophila melanogaster[J]. Food & Function,2019,10(7):4231−4241. -