• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020

龟肉蛋白肽延缓果蝇衰老的作用及机制研究

吴俊豪 王晶 KHOSETHYKUN 覃川 王倩倩 余鹏 冯凤琴

吴俊豪,王晶,KHO SETHYKUN,等. 龟肉蛋白肽延缓果蝇衰老的作用及机制研究[J]. 食品工业科技,2022,43(17):394−401. doi:  10.13386/j.issn1002-0306.2021110057
引用本文: 吴俊豪,王晶,KHO SETHYKUN,等. 龟肉蛋白肽延缓果蝇衰老的作用及机制研究[J]. 食品工业科技,2022,43(17):394−401. doi:  10.13386/j.issn1002-0306.2021110057
WU Junhao, WANG Jing, KHO Sethykun, et al. Research on Anti-aging Function and Mechanism of Pond Turtle Protein-derived Peptides on Drosophila melanogaster[J]. Science and Technology of Food Industry, 2022, 43(17): 394−401. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021110057
Citation: WU Junhao, WANG Jing, KHO Sethykun, et al. Research on Anti-aging Function and Mechanism of Pond Turtle Protein-derived Peptides on Drosophila melanogaster[J]. Science and Technology of Food Industry, 2022, 43(17): 394−401. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021110057

龟肉蛋白肽延缓果蝇衰老的作用及机制研究

doi: 10.13386/j.issn1002-0306.2021110057
基金项目: 宁波市自然基金项目(20211JCGY010347);余姚市农业农村和社会发展科技计划(2020NS03);宁波市“科技创新2025”重大专项(2019B10060)。
详细信息
    作者简介:

    吴俊豪(1998−),男,硕士研究生,研究方向:生物活性肽,E-mail:wujunhaojon@zju.edu.cn

    通讯作者:

    冯凤琴(1964−),女,博士,教授,研究方向:食品功能配料及营养健康,E-mail:fengfq@zju.edu.cn

  • 中图分类号: TS201.4

Research on Anti-aging Function and Mechanism of Pond Turtle Protein-derived Peptides on Drosophila melanogaster

  • 摘要: 目的:探究龟肉蛋白肽(pond turtle protein-derived peptides,PTPDP)延缓果蝇衰老的作用和机制。方法:酶解乌龟肉得到PTPDP,测定其营养成分、分子质量分布以及氨基酸组成;分别以0.2%、0.4%和0.8%的PTPDP喂养果蝇,通过生存实验和测定体内超氧化物歧化酶(superoxide dismutase,SOD)、过氧化氢酶(catalase,CAT)活性和丙二醛(malondialdehyde,MDA)含量来分析其抗衰老功能;通过测定0.8% PTPDP喂养的雌性果蝇抗氧化相关基因Sod1Sod2Cat和寿命相关基因mthRpn11的表达来探究其抗衰老机制。结果:龟肉酶解产物以1000 Da以下的小分子肽段为主,富含甘氨酸、谷氨酸和脯氨酸等具有抗氧化活性的氨基酸。生存实验和抗氧化活性实验中,0.8% PTPDP组雌雄果蝇的平均寿命分别显著延长了18.92%和9.37%(P<0.01);SOD活性分别显著提高了7.13%和7.37%(P<0.05);CAT活性分别极显著提高了42.14%和84.66%(P<0.01);MDA含量分别显著下降了22.22%和23.08%(P<0.05)。基因表达结果显示,0.8% PTPDP喂养显著上调了抗氧化相关基因Sod1Sod2P<0.05)和CatP<0.01)的表达,同时对寿命相关基因mthRpn11P<0.01)的表达也表现出显著的调节作用。结论:PTPDP通过影响果蝇抗氧化和寿命相关基因的表达,提高其体内抗氧化活性,延长果蝇寿命,有潜在的抗衰老功效。
  • 图  1  雌性(A)和雄性(B)果蝇的生存曲线

    Figure  1.  The survival curves of female (A) and male (B) D. melanogaster

    图  2  0.8% PTPDP喂养的雌性果蝇基因表达

    Figure  2.  Gene expressions of female D. melanogaster fed by 0.8% PTPDP

    注:*表示与对照组相比差异显著,P<0.05;**表示与对照组相比差异极显著,P<0.01。

    表  1  梯度洗脱时间

    Table  1.   Gradient elution time

    时间(min)流速(mL/min)流动相A(%)流动相B(%)
    011000
    131937
    2317723
    2916535
    3516040
    4010100
    4510100
    4711000
    5011000
    下载: 导出CSV

    表  2  引物序列

    Table  2.   Primer sequences

    基因上游引物下游引物
    rp49GCTAAGCTGTCGCACAAATGTGTGCACCAGGAACTTCTTG
    Sod1ACCGACTCCAAGATTACGCTCTGTTGCCCGTTGACTTGCTC
    Sod2CCACATCAACCACACCATCTCAGTTTGCCCGACTTCTTGT
    CatTACGAGCAGGCCAAGAAGTTACCTTGTACGGGCAGTTCAC
    mthCGTCTTTCTGGTGGCTGACTCGTGGATTTAGGATGGTTCC
    Rpn11CATTTGGAGGAGAAGGTGGAGCGATTTGTGGGTATGAAGG
    下载: 导出CSV

    表  3  龟肉蛋白肽的营养成分

    Table  3.   Nutrient content of PTPDP

    营养成分龟肉蛋白肽
    水分(%)4.04±0.05
    灰分(%)3.11±0.08
    蛋白含量(%)86.49±1.17
    酸溶蛋白含量(%)85.98±1.02
    下载: 导出CSV

    表  4  龟肉蛋白肽分子量分布

    Table  4.   Molecular weight distribution of PTPDP

    分子量(Da)含量(%)
    <18011.32±0.20
    180~50060.39±1.01
    500~100022.99±0.77
    >10005.29±0.08
    下载: 导出CSV

    表  5  龟肉蛋白肽的氨基酸组成

    Table  5.   Amino acids composition of PTPDP

    氨基酸名称含量(mg/g)含量(%)
    天冬氨酸59.86±0.978.04±0.26
    谷氨酸109.47±3.5414.70±0.23
    丝氨酸20.95±0.512.81±0.04
    甘氨酸117.59±7.6315.79±0.87
    组氨酸9.17±0.471.23±0.07
    精氨酸31.28±0.814.20±0.05
    苏氨酸22.08±0.352.96±0.01
    丙氨酸55.99±0.427.52±0.16
    脯氨酸72.45±1.549.73±0.05
    酪氨酸20.55±0.702.76±0.10
    缬氨酸35.88±0.664.82±0.10
    甲硫氨酸14.21±0.751.91±0.13
    异亮氨酸52.87±2.297.10±0.28
    亮氨酸48.94±1.966.57±0.24
    苯丙氨酸22.87±1.333.07±0.16
    赖氨酸50.61±0.536.80±0.05
    下载: 导出CSV

    表  6  不同剂量龟肉蛋白肽对雌、雄果蝇寿命的影响

    Table  6.   Effects of different doses of PTPDP on the lifespan of female and male D. melanogaster

    组别半数死亡时间(d)平均寿命(d)平均最高寿命(d)平均寿命延长率(%)
    对照组364836.40±0.9746.18±0.7260.31±0.6463.41±0.61
    低剂量组364838.54±1.0146.49±0.8263.21±0.51*63.62±0.605.87±0.130.67±0.05
    中剂量组395139.76±1.0647.76±0.8065.57±0.59**65.57±0.639.24±0.173.43±0.12
    高剂量组45**5143.29±1.04**50.51±0.78**69.00±0.93**68.33±0.82*18.92±0.239.37±0.17
    注:*表示各剂量组与对照组相比差异显著,P<0.05;**表示各剂量组与对照组相比差异极显著,P<0.01,表7表9同。
    下载: 导出CSV

    表  7  不同剂量龟肉蛋白肽对果蝇体内SOD活性的影响

    Table  7.   Effects of different doses of PTPDP on SOD activity of D. melanogaster

    组别雌果蝇SOD活性(U/mg prot)雄果蝇SOD活性(U/mg prot)
    20 d40 d20 d40 d
    对照组264.71±12.85261.68±8.58358.33±5.84328.71±10.32
    低剂量组282.44±9.11257.49±4.65364.18±13.93329.97±8.90
    中剂量组294.24±3.37*283.59±7.15*390.90±7.08*333.45±2.91
    高剂量组315.30±14.33**280.35±3.52*385.16±10.76*352.93±5.21*
    下载: 导出CSV

    表  8  不同剂量龟肉蛋白肽对雌、雄果蝇体内CAT活性的影响

    Table  8.   Effects of different doses of PTPDP on CAT activity of female and male D. melanogaster

    组别雌果蝇CAT活性(U/mg prot)雄果蝇CAT活性(U/mg prot)
    20 d40 d20 d40 d
    对照组57.03±3.2263.49±4.56117.25±9.1985.33±6.49
    低剂量组82.14±12.16*81.24±5.36*114.19±5.0494.41±7.91
    中剂量组97.08±4.86**88.32±3.48**121.38±11.4193.07±7.48
    高剂量组113.59±3.99**90.31±9.77**144.28±5.89*157.57±3.58**
    下载: 导出CSV

    表  9  不同剂量龟肉蛋白肽对雌、雄果蝇体内MDA含量的影响

    Table  9.   Effects of different doses of PTPDP on MDA content of female and male D. melanogaster

    组别雌果蝇MDA含量
    (nmol/mg prot)
    雄果蝇MDA含量
    (nmol/mg prot)
    20 d40 d20 d40 d
    对照组0.33±0.040.36±0.010.25±0.020.26±0.02
    低剂量组0.32±0.040.36±0.040.24±0.010.23±0.04
    中剂量组0.24±0.010.33±0.030.22±0.020.19±0.01*
    高剂量组0.21±0.03*0.28±0.02*0.19±0.04*0.20±0.02*
    下载: 导出CSV
  • [1] 周佳雯, 靳建亮. 衰老机制及其干预研究进展[J]. 医学研究生学报,2021,34(5):524−529. [ZHOU J W, JIN J L. Research progress on aging mechanism and its intervention[J]. Journal of Medical Postgraduates,2021,34(5):524−529. doi:  10.16571/j.cnki.1008-8199.2021.05.016

    ZHOU J W, JIN J L. Research progress on aging mechanism and its intervention[J]. Journal of Medical Postgraduates, 2021, 34(5): 524-529. doi:  10.16571/j.cnki.1008-8199.2021.05.016
    [2] DATO S, CROCCO P, MIGLIORE N R, et al. Omics in a digital world: The role of bioinformatics in providing new insights into human aging[J]. Frontiers in Genetics,2021,12:689824. doi:  10.3389/fgene.2021.689824
    [3] 卢春雪, 杨绍杰, 陶荟竹, 等. 衰老机制研究进展[J]. 中国老年学杂志,2018,38(1):248−250. [LU C X, YANG S J, TAO H Z, et al. Research progress on aging mechanism[J]. Chinese Journal of Gerontology,2018,38(1):248−250. doi:  10.3969/j.issn.1005-9202.2018.01.101

    LU C X, YANG S J, TAO H Z, et al. Research progress on aging mechanism[J]. Chinese Journal of Gerontology, 2018, 38(1): 248-250. doi:  10.3969/j.issn.1005-9202.2018.01.101
    [4] NANDI A, YAN L J, JANA C K, et al. Role of catalase in oxidative stress-and age-associated degenerative diseases[J]. Oxidative Medicine and Cellular Longevity,2019,2019:9613090.
    [5] CARUSO G, GODOS J, CASTELLANO S, et al. The therapeutic potential of carnosine/anserine supplementation against cognitive decline: A systematic review with meta-analysis[J]. Biomedicines,2021,9(3):253. doi:  10.3390/biomedicines9030253
    [6] SHEN C Y, JIANG J G, YANG L, et al. Anti-ageing active ingredients from herbs and nutraceuticals used in traditional Chinese medicine: Pharmacological mechanisms and implications for drug discovery[J]. British Journal of Pharmacology,2017,174(11):1395−1425. doi:  10.1111/bph.13631
    [7] POMATTO L C, DAVIES K J. Adaptive homeostasis and the free radical theory of ageing[J]. Free Radical Biology and Medicine,2018,124:420−430. doi:  10.1016/j.freeradbiomed.2018.06.016
    [8] AGUILAR-TOALA J E, LICEAGA A M. Cellular antioxidant effect of bioactive peptides and molecular mechanisms underlying: Beyond chemical properties[J]. International Journal of Food Science and Technology,2020,56(5):2193−2204.
    [9] TADESSE S A, EMIRE S A. Production and processing of antioxidant bioactive peptides: A driving force for the functional food market[J]. Heliyon,2020,6(8):e04765. doi:  10.1016/j.heliyon.2020.e04765
    [10] ZENG W C, SUN Q, ZHANG W H, et al. Antioxidant activity in vivo and biological safety evaluation of a novel antioxidant peptide from bovine hair hydrolysates[J]. Process Biochemistry,2017,56:193−198. doi:  10.1016/j.procbio.2017.02.022
    [11] CHEN S Y, YANG Q, CHEN X, et al. Bioactive peptides derived from crimson snapper and in vivo anti-aging effects on fat diet-induced high fat Drosophila melanogaster[J]. Food & Function,2020,11(1):524−533.
    [12] DING Y L, KO S C, MOON S H, et al. Protective effects of novel antioxidant peptide purified from alcalase hydrolysate of velvet antler against oxidative stress in chang liver cells in vitro and in a zebrafish model in vivo[J]. International Journal of Molecular Sciences,2019,20(20):5187. doi:  10.3390/ijms20205187
    [13] TONOLO F, FOLDA A, CESARO L, et al. Milk-derived bioactive peptides exhibit antioxidant activity through the Keap1-Nrf2 signaling pathway[J]. Journal of Functional Foods,2020,64:103696. doi:  10.1016/j.jff.2019.103696
    [14] 石扬, 张永进, 赖年悦, 等. 中华草龟肉抗肿瘤活性肽的分离纯化及鉴定研究[J]. 现代食品科技,2018,34(5):24−31. [SHI Y, ZHANG Y J, LAI N Y, et al. Isolation, purification and identification of anti-tumor bioactive peptides from Chinemys reevesii[J]. Modern Food Science and Technology,2018,34(5):24−31.

    SHI Y, ZHANG Y J, LAI N Y, et al. Isolation, purification and identification of anti-tumor bioactive peptides from Chinemys reevesii[J]. Modern Food Science and Technology, 2018, 34(5): 24-31.
    [15] 杨昭, 曾琳琦, 凌叶婷, 等. 蛋白酶种类对龟肉酶解液品质的影响[J]. 食品工业,2021,42(3):188−191. [YANG Z, ZENG L Q, LING Y T, et al. Effect of protease species on the quality of enzymatic hydrolysate of turtle meat[J]. The Food Industry,2021,42(3):188−191.

    YANG Z, ZENG L Q, LING Y T, et al. Effect of protease species on the quality of enzymatic hydrolysate of turtle meat[J]. The Food Industry, 2021, 42(3): 188-191.
    [16] 段丽娟, 范慧君, 邢婕, 等. 龟龄集延缓果蝇衰老的作用研究[J]. 山西医科大学学报,2021,52(3):317−321. [DUAN L J, FAN H J, XING J, et al. Study on anti-aging effects of Guilingji in Drosophila melanogaster[J]. Journal of Shanxi Medical University,2021,52(3):317−321.

    DUAN L J, FAN H J, XING J, et al. Study on anti-aging effects of Guilingji in Drosophila melanogaster[J]. Journal of Shanxi Medical University, 2021, 52(3): 317-321.
    [17] 闫明亮, 周玉枝, 李明花, 等. 基于1H-NMR代谢组学的黄芩醇提物延长果蝇寿命研究[J]. 中草药,2016,47(10):1714−1722. [YAN M L, ZHOU Y Z, LI M H, et al. Metabonomic study of alcohol extract from Scutellariae Radix in prolonginglifespan of Drosophila melanogaster based on 1H-NMR[J]. Chinese Traditional and Herbal Drugs,2016,47(10):1714−1722. doi:  10.7501/j.issn.0253-2670.2016.10.015

    YAN M L, ZHOU Y Z, LI M H, et al. Metabonomic study of alcohol extract from Scutellariae Radix in prolonginglifespan of Drosophila melanogaster based on 1H-NMR[J]. Chinese Traditional and Herbal Drugs, 2016, 47(10): 1714-1722. doi:  10.7501/j.issn.0253-2670.2016.10.015
    [18] 张永进, 石扬, 赖年悦, 等. 中华草龟抗肿瘤生物活性肽提取工艺的初步研究[J]. 肉类工业,2017,7:28−33. [ZHANG Y J, SHI Y, LAI N Y, et al. Preliminary study on extraction technology of antitumor bioactive peptides of Chinemys reevesii[J]. Meat Industry,2017,7:28−33. doi:  10.3969/j.issn.1008-5467.2017.04.008

    ZHANG Y J, SHI Y, LAI N Y, et al. Preliminary study on extraction technology of antitumor bioactive peptides of Chinemys reevesii. [J]. Meat Industry, 2017, 7: 28-33. doi:  10.3969/j.issn.1008-5467.2017.04.008
    [19] 史晋源, 钟浩, 王倩倩, 等. 甲鱼肽对果蝇寿命及其抗氧化活性的影响[J]. 食品工业科技,2021,42(11):321−327. [SHI J Y, ZHONG H, WANG Q Q, et al. Effect of soft-shelled turtle peptide on the lifespan and antioxidant activities of Drosophila melanogaster[J]. Science and Technology of Food Industry,2021,42(11):321−327.

    SHI J Y, ZHONG H, WANG Q Q, et al. Effect of soft-shelled turtle peptide on the lifespan and antioxidant activities of Drosophila melanogaster[J]. Science and Technology of Food Industry, 2021, 42(11): 321-327.
    [20] 王耀辉, 任海虹, 王景雪, 等. 白灵菇多糖对果蝇寿命及抗氧化活性的影响[J]. 食品工业科技,2018,39(5):313−318. [WANG Y H, REN H H, WANG J X, et al. Effect of polysaccharides of Pleurotus nebrodensis on the life-span and antioxidant activities of Drosophila melanogaster[J]. Science and Technology of Food Industry,2018,39(5):313−318.

    WANG Y H, REN H H, WANG J X, et al. Effect of polysaccharides of Pleurotus nebrodensis on the life-span and antioxidant activities of Drosophila melanogaster[J]. Science and Technology of Food Industry, 2018, 39(5): 313-318.
    [21] XIN X X, CHEN Y, CHEN D, et al. Supplementation with major royal-jelly proteins increases lifespan, feeding, and fecundity in Drosophila[J]. Journal of Agricultural and Food Chemistry,2016,64(29):5803−5812. doi:  10.1021/acs.jafc.6b00514
    [22] 张明, 何超, 邵颖, 等. 蛹虫草多糖对果蝇寿命及抗氧化活性的影响[J]. 食品科技,2016,41(11):179−183. [ZHANG M, HE C, SHAO Y, et al. Effect of polysaccharides from fruiting body of Cordyceps militaries on lifespan and antioxidant activity in Drosophila melanogaster[J]. Food Science and Technology,2016,41(11):179−183.

    ZHANG M, HE C, SHAO Y, et al. Effect of polysaccharides from fruiting body of Cordyceps militaries on lifespan and antioxidant activity in Drosophila melanogaster[J]. Food Science and Technology, 2016, 41(11): 179-183.
    [23] 张晓寒, 赵江, 韩英, 等. 根皮素延缓雌性果蝇的衰老作用[J]. 现代食品科技,2020,36(3):9−16, 166. [ZHANG X H, ZHAO J, HAN Y, et al. Anti-aging effects of phloretin on female Drosophila melanogaster[J]. Modern Food Science and Technology,2020,36(3):9−16, 166.

    ZHANG X H, ZHAO J, HAN Y, et al. Anti-aging effects of phloretin on female Drosophila melanogaster[J]. Modern Food Science and Technology, 2020, 36(3): 9-16, 166.
    [24] 余楠楠, 陈琛. 生物活性肽功能及制备技术研究进展[J]. 中国酿造,2018,37(9):17−21. [YU N N, CHEN C. Research progress of bioactive peptide function and preparation technology[J]. China Brewing,2018,37(9):17−21. doi:  10.11882/j.issn.0254-5071.2018.09.004

    YU N N, CHEN C. Research progress of bioactive peptide function and preparation technology[J]. China Brewing, 2018, 37(9): 17-21. doi:  10.11882/j.issn.0254-5071.2018.09.004
    [25] HU X M, WANG Y M, ZHAO Y Q, et al. Antioxidant peptides from the protein hydrolysate of monkfish (Lophius litulon) muscle: Purification, identification, and cytoprotective function on HepG2 cells damage by H2O2[J]. Marine Drugs,2020,18(3):153. doi:  10.3390/md18030153
    [26] 申彩红. 海参肽的酶法制备及其抗氧化、抗疲劳活性研究[D]. 厦门: 华侨大学, 2015

    SHEN C H. Study on the enzymatic preparation of sea cucumber peptide and its antioxidant and anti-fatigue activities[D]. Xiamen: Huaqiao University, 2015.
    [27] 赵翊君. 鲈鱼鱼肉抗氧化肽的分离鉴定及其对HepG2细胞氧化损伤的保护作用研究[D]. 广州: 华南理工大学, 2018

    ZHAO Y J. Separation and characterization of antioxidant peptides from bass muscle and their protective effects against oxidative damage in HepG2 cells[D]. Guangzhou: South China University of Technology, 2018.
    [28] 杜瑞平, 张兴夫, 高民, 等. 甘氨酸的免疫调节作用及其分子机制[J]. 动物营养学报,2015,27(3):663−670. [DU R P, ZHANG X F, GAO M, et al. Immunomodulatory effect and molecular mechanism of glycine[J]. Chinese Journal of Animal Nutrition,2015,27(3):663−670. doi:  10.3969/j.issn.1006-267x.2015.03.001

    DU R P, ZHANG X F, GAO M, et al. Immunomodulatory effect and molecular mechanism of glycine[J]. Chinese Journal of Animal Nutrition, 2015, 27(3): 663-670. doi:  10.3969/j.issn.1006-267x.2015.03.001
    [29] GARCIA E J, CAIN M E. Isolation housing elevates amphetamine seeking independent of nucleus accumbens glutamate receptor adaptations[J]. European Journal of Neuroscience,2021,54(7):6382−6396. doi:  10.1111/ejn.15441
    [30] CHEN C L, HSU S C, ANN D K. Arginine signaling and cancer metabolism[J]. Cancers,2021,13(14):3541. doi:  10.3390/cancers13143541
    [31] SADEGHI M, TENBERG V, MUNZBERG S, et al. Phase equilibria of l-valine/l-leucine solid solutions[J]. Journal of Molecular Liquids,2021,340:117315. doi:  10.1016/j.molliq.2021.117315
    [32] 秦永燕, 王妤婕, 李颖, 等. 黄芪多糖对果蝇寿命和抗氧化作用的影响[J]. 食品工业科技,2020,41(2):288−291. [QIN Y Y, WANG Y J, LI Y, et al. Effects of astragalus polysaccharide on life span and antioxidation of Drosophila melanogaster[J]. Science and Technology of Food Industry,2020,41(2):288−291.

    QIN Y Y, WANG Y J, LI Y, et al. Effects of astragalus polysaccharide on life span and antioxidation of Drosophila melanogaster[J]. Science and Technology of Food Industry, 2020, 41(2): 288-291.
    [33] ZHANG J J, LIU X, PAN J H, et al. Anti-aging effect of brown black wolfberry on Drosophila melanogaster and d-galactose-induced aging mice[J]. Journal of Functional Foods,2020,65:103724. doi:  10.1016/j.jff.2019.103724
    [34] 张婉迎, 赵文学, 尹翌秋, 等. 人参水提物对果蝇抗衰老的作用机制[J]. 吉林农业大学学报,2018,40(5):557−562. [ZHANG W Y, ZHAO W X, YIN Y Q, et al. Mechanism of anti-aging activity of water extract of ginseng in Drosophila melanogaster[J]. Journal of Jilin Agricultural University,2018,40(5):557−562.

    ZHANG W Y, ZHAO W X, YIN Y Q, et al. Mechanism of anti-aging activity of water extract of ginseng in Drosophila melanogaster[J]. Journal of Jilin Agricultural University, 2018, 40(5): 557-562.
    [35] WONG D, HU X Q, TAO N P, et al. Effect and mechanism of pyridoxamine on the lipid peroxidation and stability of polyunsaturated fatty acids in beef patties[J]. Journal of the Science of Food and Agriculture,2016,96(10):3418−3423. doi:  10.1002/jsfa.7522
    [36] 张静静, 刘暄, 赵琦, 等. 褐变黑枸杞对紫外照射损伤果蝇寿命及抗氧化能力的影响[J]. 中国食品添加剂,2020,31(1):53−58. [ZHANG J J, LIU X, ZHAO Q, et al. Brown black wolfberry on the life-span of UV damaged Drosophila melanogaster and its anti-oxidation activities[J]. China Food Additives,2020,31(1):53−58.

    ZHANG J J, LIU X, ZHAO Q, et al. Brown black wolfberry on the life-span of UV damaged Drosophila melanogaster and its anti-oxidation activities[J]. China Food Additives, 2020, 31(1): 53-58.
    [37] DORAN M L, KNEE J M, WANG N, et al. Metabolomic analysis of oxidative stress: Superoxide dismutase mutation and paraquat induced stress in Drosophila melanogaster[J]. Free Radical Biology and Medicine,2017,113:323−334. doi:  10.1016/j.freeradbiomed.2017.10.011
    [38] PANDEY A, KHATOON R, SAINI S, et al. Efficacy of methuselah gene mutation toward tolerance of dichlorvos exposure in Drosophila melanogaster[J]. Free Radical Biology and Medicine,2015,83:54−65. doi:  10.1016/j.freeradbiomed.2015.02.025
    [39] TANG R, CHEN X Y, DANG T T, et al. Lycium barbarum polysaccharides extend the mean lifespan of Drosophila melanogaster[J]. Food & Function,2019,10(7):4231−4241.
  • 加载中
图(2) / 表(9)
计量
  • 文章访问数:  188
  • HTML全文浏览量:  39
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-08
  • 网络出版日期:  2022-06-26
  • 刊出日期:  2022-08-26

目录

    /

    返回文章
    返回

    重要通知

    《食品工业科技》特邀主编专栏征稿:枸杞、红枣、沙棘等食药同源健康食品研究与开发