• CA
  • JST
  • FSTA
  • SCOPUS
  • 北大核心期刊
  • 中国科技核心期刊CSTPCD
  • 中国精品科技期刊
  • RCCSE中国核心学术期刊
  • 中国农业核心期刊
  • 中国生物医学文献服务系统SinoMed收录期刊

响应面法优化工业化独立发酵凝固型发酵乳的发酵工艺

黄娟 黄燕燕 彭小霞

黄娟,黄燕燕,彭小霞. 响应面法优化工业化独立发酵凝固型发酵乳的发酵工艺[J]. 食品工业科技,2022,43(15):148−156. doi:  10.13386/j.issn1002-0306.2021120031
引用本文: 黄娟,黄燕燕,彭小霞. 响应面法优化工业化独立发酵凝固型发酵乳的发酵工艺[J]. 食品工业科技,2022,43(15):148−156. doi:  10.13386/j.issn1002-0306.2021120031
HUANG Juan, HUANG Yanyan, PENG Xiaoxia. Optimization of the Fermentation Process of Industrialized Independent Fermentation Coagulated Fermented Milk by Response Surface Methodology[J]. Science and Technology of Food Industry, 2022, 43(15): 148−156. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021120031
Citation: HUANG Juan, HUANG Yanyan, PENG Xiaoxia. Optimization of the Fermentation Process of Industrialized Independent Fermentation Coagulated Fermented Milk by Response Surface Methodology[J]. Science and Technology of Food Industry, 2022, 43(15): 148−156. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021120031

响应面法优化工业化独立发酵凝固型发酵乳的发酵工艺

doi: 10.13386/j.issn1002-0306.2021120031
详细信息
    作者简介:

    黄娟(1991−),女,博士,助理工程师,研究方向:微生物利用与乳品加工,E-mail:1185537582@qq.com

    通讯作者:

    黄娟(1991−),女,博士,助理工程师,研究方向:微生物利用与乳品加工,E-mail:1185537582@qq.com

  • 中图分类号: TS201.1

Optimization of the Fermentation Process of Industrialized Independent Fermentation Coagulated Fermented Milk by Response Surface Methodology

  • 摘要: 工业化独立发酵凝固型发酵乳受发酵温度波动、发酵时长及发酵后剪切破坏等因素的影响,易出现成品乳清析出量过多和凝固状态不佳等现象,本研究通过单因素实验初步探究了发酵温度波动、发酵温度、发酵时长、发酵菌种配比及模拟工业化灌装后破坏对产品质构和风味的影响,在单因素实验的基础上,设计响应面法Box-Behnken组合试验,对发酵温度、发酵时长、发酵菌种配比工艺参数进行了优化。单因素实验结果显示:灌装后发酵2 h内剪切破坏影响不大,但超出时间后将严重影响产品质构和酸化速度,灌装后发酵温度波动将显著影响产品的酸化速度和不良率,这提示工业化发酵过程中应当尽量缩短灌装后段液态乳在常温环境中的暂存时间,由于机器故障导致的灌装延迟超过2 h的液态乳应直接发酵为成品再进行二次利用,不适宜再经管道剪切后进行灌装。响应面模型最优解的结果表明,在实际发酵温度42 ℃,发酵时长5.6 h,菌种配比1:1最佳工艺条件条件下制备的工业化独立发酵凝固型发酵乳的质构完好率为100%,终止发酵的酸度为68.56°T,冷库后放置12 h的酸度为70.2°T,发酵乳的综合感官评分为8.24分,与预测值接近,证明模型有效。流变学特性曲线结果显示该发酵乳的抗剪切能力较弱,200 s−1高剪切后的酸奶黏度恢复率仅为25.55%,符合脆软嫩滑形式的凝固型发酵乳的感官特点。响应面法可有效拟合该凝固型发酵乳的发酵温度、发酵时长、发酵菌种配比之间的关系,为工业化生产中不可避免的菌种配比称量误差、发酵温度堆热传热波动、人为取样时机导致的发酵时长误差等情况给予了一定的理论指导,方便在实际操作中,快速提出相应的对策。
  • 图  1  发酵温度和发酵时长对发酵酸度、pH的影响

    Figure  1.  The influence of fermentation temperature and fermentation time on fermentation acidity and pH

    图  2  菌种比例对产品酸化速度的影响

    Figure  2.  The influence of strain ratio on the acidification speed of products

    图  3  各因素间交互作用对凝固型发酵乳感官评分影响的响应面及等高线

    Figure  3.  Response surface and contour lines of the interaction of various factors on the sensory score of coagulated fermented milk

    图  4  最优条件下凝固型发酵乳的酸化曲线

    Figure  4.  Acidification curve of coagulated fermented milk under optimal condition

    图  5  最优条件下凝固型发酵乳的流变学三段式剪切扫描曲线

    Figure  5.  Rheological three-section shear scan curve of coagulated fermented milk under optimal condition

    表  1  工业化独立发酵凝固型发酵乳的温度波动实验设计

    Table  1.   Experimental design of temperature fluctuation of industrialized independent fermentation coagulated fermented milk

    组别10 ℃25 ℃30 ℃42 ℃
    11 h006 h
    21 h01 h6 h
    31 h01 h30→42 ℃(6 h)*
    4001 h6 h
    501 h06 h
    60006 h
    注:每个组别均是从左至右进行的温度波动模拟实验,*表示该温度波动过程为培养箱温度由30 ℃改设置为42 ℃的缓慢升温变化过程,非直接将产品放入已升温至42 ℃的环境中。
    下载: 导出CSV

    表  2  工业化独立发酵凝固型发酵乳发酵工艺的BBD因素水平设计

    Table  2.   BBD factor level design of industrialized independent fermentation coagulated fermented milk fermentation process

    水平编码值因素
    A发酵温度(℃)B发酵时长(h)C菌种比例(DCU/DCU)
    −1384.01:2
    0405.01:1
    1426.03:2
    注:C菌种比例是指复配菌种型号1和型号2菌种的比例,DCU为丹尼斯克公司的菌活力标识单位。
    下载: 导出CSV

    表  3  凝固型发酵乳产品的感官评分标准

    Table  3.   Sensory scoring standard for coagulated fermented milk products

    评价项目计分权重wi单一评价项目得分xi
    1~4分5~7分8~10分
    镜面光滑度10%不能接受一般接受非常接受
    香气(自然浓郁程度)5%平淡一般浓郁
    冷藏后搅拌破坏后的质构15%碎块较多一般丝滑,存在些许碎块非常丝滑
    味道(按喜好程度打分)20%酸、涩等不良风味一般接受酸甜香感整体怡人
    发酵过程状态(是否有明显分层或乳清析出等情况)10%严重析水,产品离壁轻度不佳无任何异常
    冷藏后熟化状态(是否有明显分层或乳清析出等情况)25%严重析水,产品离壁轻度不佳无任何异常
    粘稠度等触感(按喜好程度打分)15%糊口等不良感官基本满意非常满意
    下载: 导出CSV

    表  4  不同条件下制备的工业化独立发酵凝固型发酵乳的感官评分及不同摇晃次数发酵7 h的产品酸度

    Table  4.   Sensory scores of industrialized independent fermentation coagulated fermented milk prepared under different conditions and acidity of products fermented for 7 hours with different shaking times

    评价项目计分权重不同发酵温度(℃)42 ℃发酵条件不同摇晃次数42 ℃不同菌种比例42 ℃不同发酵时间(h)
    434037012341:01:10:14.55.56.5
    镜面光滑度10%68797*6*4**4**496999
    香气(自然浓郁程度)5%8868875**5**487688
    冷藏后搅拌破坏后的质构15%578986*5**4**496799
    味道(按喜好程度打分)20%5878876*6*487787
    发酵过程状态(是否有明显分层
    或乳清析出等情况)
    10%577876*5**4**487888
    冷藏后熟化状态(是否有明显分层
    或乳清析出等情况)
    25%787987*6**5**497799
    粘稠度等触感(按喜好程度打分)15%6768786*6*785987
    综合得分100%5.907.606.958.507.65*6.80*5.50**5.00**4.458.506.457.558.508.15
    发酵7 h的酸度(°T)68.0265.61*65.60*64.85**63.09**
    注:表中“−”表示不关注其他发酵酸奶样品7 h的酸度且未检测;“*”和“**”标识分别表示42 ℃发酵条件摇晃次数≥1的组别分别与不摇晃的组别进行比较的差异显著性水平P<0.05和P<0.01。
    下载: 导出CSV

    表  5  发酵温度波动对产品不良率及酸化速度的影响

    Table  5.   The influence of fermentation temperature fluctuation on product defect rate and acidification speed

    组别终点酸度(°T)终点pH过夜发酵酸度(°T)过夜发酵pH产品不良率(%)
    159.58±0.53*4.38±0.0280.34±0.654.00±0.0157.14±7.14*
    262.35±0.424.34±0.0179.58±0.61*4.03±0.0166.67±8.33**
    361.98±0.44*4.37±0.0181.38±0.674.02±0.0171.43±14.29**
    463.48±0.264.26±0.0182.75±0.663.98±0.0260.00±6.67**
    564.05±0.224.30±0.0183.82±0.713.98±0.0275.00±5.00**
    664.96±0.174.30±0.0183.53±0.683.98±0.0238.46±7.69
    注:“*”和“**”标识分别表示第1~5组(有温度波动)相应数据分别与第6组(无温度波动)进行比较的差异显著性水平P<0.05和P<0.01。
    下载: 导出CSV

    表  6  基于Box-Behnken设计的不同因素水平组合下的凝固型发酵乳的综合感官得分

    Table  6.   Comprehensive sensory evaluation of coagulated fermented milk under different factor level combinations based on Box-Behnken design

    实验号ABC综合感官得分
    10008.10
    2−1−107.60
    31−107.90
    4−1015.80
    51016.10
    610−17.00
    70007.90
    80007.95
    90116.05
    101108.10
    110007.95
    120−115.25
    130007.85
    1401−16.70
    15−1108.10
    160−1−16.30
    17−10−16.35
    下载: 导出CSV

    表  7  基于Box-Behnken设计的响应曲面二次模型的方差分析

    Table  7.   Analysis of variance for quadratic model of response surface based on Box-Behnken design

    来源平方和自由度均方和FP
    模型14.9991.6791.91<0.0001**
    A-发酵温度0.195310.195310.780.0134*
    B-发酵时长0.451310.451324.900.0016**
    C-菌种比例1.2411.2468.43<0.0001**
    AB0.022510.02251.240.3020
    AC0.030610.03061.690.2348
    BC0.040010.04002.210.1810
    A20.047510.04752.620.1494
    B20.072510.07254.000.0856
    C212.80112.80706.36<0.0001**
    残差0.126970.0181
    失拟项0.091930.03063.500.1288
    净误差0.035040.0088
    总和15.1216
    注:*差异显著(P<0.05);**差异极显著(P<0.01)。
    下载: 导出CSV
  • [1] 张玉玉, 马建军, 苏文政, 等. 不同发酵剂对凝固型酸乳品质的影响[J]. 山东农业科学,2016,48(12):133−135. [ZHANG Yuyu, MA Jianjun, SU Wenzheng, et al. The effect of different starters on the quality of coagulated yogurt[J]. Shandong Agricultural Sciences,2016,48(12):133−135.

    ZHANG Yuyu, MA Jianjun, SU Wenzheng, et al. The effect of different starters on the quality of coagulated yogurt[J]. Shandong Agricultural Sciences, 2016, 48(12): 133-135.
    [2] 姜雨, 蒙六妹, 夏兵兵. 太妃糖味凝固型发酵乳的开发[J]. 食品与发酵科技,2019,55(6):50−54. [JIANG Yu, MENG Liumei, XIA Bingbing. Development of toffee-flavored coagulated fermented milk[J]. Food and Fermentation Technology,2019,55(6):50−54.

    JIANG Yu, MENG Liumei, XIA Bingbing. Development of toffee-flavored coagulated fermented milk[J]. Food and Fermentation Technology, 2019, 55(6): 50-54.
    [3] 贺小贤, 姚娇娇, 周欣, 等. 凝固型李子酸奶发酵条件优化[J]. 中国酿造,2019,38(10):5−10. [HE Xiaoxian, YAO Jiaojiao, ZHOU Xin, et al. Optimization of fermentation conditions for solidified plum yogurt[J]. China Brewing,2019,38(10):5−10.

    HE Xiaoxian, YAO Jiaojiao, ZHOU Xin, et al. Optimization of fermentation conditions for solidified plum yogurt[J]. China Brewing, 2019, 38(10): 5-10.
    [4] 王宇星, 王超, 严文莉, 等. 凝固型咖啡酸奶的研制[J]. 中国酿造,2020,39(10):205−209. [WANG Yuxing, WANG Chao, YAN Wenli, et al. Development of coagulated coffee yogurt[J]. China Brewing,2020,39(10):205−209. doi:  10.11882/j.issn.0254-5071.2020.10.038

    WANG Yuxing, WANG Chao, YAN Wenli, et al. Development of coagulated coffee yogurt[J]. China Brewing, 2020, 39(10): 205-209. doi:  10.11882/j.issn.0254-5071.2020.10.038
    [5] 周洁, 罗冠仪, 刘振民. 凝固型芝士风味发酵乳的制备[J]. 中国酿造,2020,39(2):216−219. [ZHOU Jie, LUO Guanyi, LIU Zhenmin. Preparation of coagulated cheese flavored fermented milk[J]. China Brewing,2020,39(2):216−219. doi:  10.11882/j.issn.0254-5071.2020.02.040

    ZHOU Jie, LUO Guanyi, LIU Zhenmin. Preparation of coagulated cheese flavored fermented milk[J]. China Brewing, 2020, 39(2): 216-219. doi:  10.11882/j.issn.0254-5071.2020.02.040
    [6] 代佳和, 赵存朝, 毕威, 等. 滇红茶凝固型发酵乳的研制及工艺的优化[J]. 中国酿造,2020,39(2):211−215. [DAI Jiahe, ZHAO Cunchao, BI Wei, et al. Development and process optimization of Yunnan black tea coagulated fermented milk[J]. China Brewing,2020,39(2):211−215. doi:  10.11882/j.issn.0254-5071.2020.02.039

    DAI Jiahe, ZHAO Cunchao, BI Wei, et al. . Development and process optimization of Yunnan black tea coagulated fermented milk[J]. China Brewing, 2020, 39(2): 211-215. doi:  10.11882/j.issn.0254-5071.2020.02.039
    [7] 陈文璐, 刘妍妍, 巩燕妮. 响应面法优化干酪风味发酵乳的发酵工艺[J]. 食品工业科技,2021,42(23):235−242. [CHEN Wenlu, LIU Yanyan, GONG Yanni. Response surface methodology to optimize the fermentation process of cheese-flavored fermented milk[J]. Food Industry Science and Technology,2021,42(23):235−242.

    CHEN Wenlu, LIU Yanyan, GONG Yanni. Response surface methodology to optimize the fermentation process of cheese-flavored fermented milk[J]. Food Industry Science and Technology, 2021, 42(23): 235-242.
    [8] 蔡达, 刘燕, 伍国杰, 等. 组合赋权法结合响应面分析法优化娟姗牛奶Mozzarella干酪制作工艺[J]. 食品工业科技,2015,36(12):239−243. [CAI Da, LIU Yan, WU Guojie, et al. Combination weighting method combined with response surface analysis method to optimize the production process of Juan Shan milk Mozzarella cheese[J]. Food Industry Science and Technology,2015,36(12):239−243.

    CAI Da, LIU Yan, WU Guojie, et al. Combination weighting method combined with response surface analysis method to optimize the production process of Juan Shan milk Mozzarella cheese[J]. Food Industry Science and Technology, 2015, 36(12): 239-243.
    [9] 胡盼盼. 响应面法优化副干酪乳杆菌发酵沙棘酸奶工艺[J]. 中国酿造,2021,40(6):202−206. [HU Panpan. Optimization of Lactobacillus paracasei fermented sea-buckthorn yogurt process by response surface methodology[J]. China Brewing,2021,40(6):202−206. doi:  10.11882/j.issn.0254-5071.2021.06.039

    HU Panpan. Optimization of Lactobacillus paracasei fermented sea-buckthorn yogurt process by response surface methodology[J]. China Brewing, 2021, 40(6): 202-206. doi:  10.11882/j.issn.0254-5071.2021.06.039
    [10] 孙敏, 李博, 梅俊. 低聚果糖对低脂凝固型发酵乳品质的影响研究[J]. 中国酿造,2021,40(3):84−89. [SUN Min, LI Bo, MEI Jun. The effect of fructooligosaccharides on the quality of low-fat coagulated fermented milk[J]. China Brewing,2021,40(3):84−89. doi:  10.11882/j.issn.0254-5071.2021.03.015

    SUN Min, LI Bo, MEI Jun. The effect of fructooligosaccharides on the quality of low-fat coagulated fermented milk[J]. China Brewing, 2021, 40(3): 84-89. doi:  10.11882/j.issn.0254-5071.2021.03.015
    [11] 邱爽, 宋铮, 张璟琳, 等. 细菌素bifidocin A对凝固型发酵乳品质及贮藏性能的影响[J]. 中国食品学报,2020,20(9):156−165. [QIU Shuang, SONG Zheng, ZHANG Jinglin, et al. The effect of bacteriocin bifidocin A on the quality and storage performance of coagulated fermented milk[J]. Chinese Journal of Food Science,2020,20(9):156−165.

    QIU Shuang, SONG Zheng, ZHANG Jinglin, et al. The effect of bacteriocin bifidocin A on the quality and storage performance of coagulated fermented milk[J]. Chinese Journal of Food Science, 2020, 20(9): 156-165.
    [12] 吴倩, 余元善, 徐玉娟, 等. 不同乳酸菌对凝固型荔枝酸奶的发酵特性和质构的影响[J]. 现代食品科技,2019,35(7):99−106. [WU Qian, YU Yuanshan, XU Yujuan, et al. Effects of different lactic acid bacteria on the fermentation characteristics and texture of coagulated litchi yogurt[J]. Modern Food Science and Technology,2019,35(7):99−106.

    WU Qian, YU Yuanshan, XU Yujuan, et al. Effects of different lactic acid bacteria on the fermentation characteristics and texture of coagulated litchi yogurt[J]. Modern Food Science and Technology, 2019, 35(7): 99-106.
    [13] 薛依婷, 白红霞, 李明杰, 等. 黑木耳多糖凝固型酸奶发酵工艺优化[J]. 食品工业科技,2020,41(16):156−162. [XUE Yiting, BAI Hongxia, LI Mingjie, et al. Fermentation process optimization of black fungus polysaccharide coagulated yogurt[J]. Food Industry Science and Technology,2020,41(16):156−162.

    XUE Yiting, BAI Hongxia, LI Mingjie, et al. Fermentation process optimization of black fungus polysaccharide coagulated yogurt[J]. Food Industry Science and Technology, 2020, 41(16): 156-162.
    [14] 李梦怡. 二次凝固型酸奶的工艺及其影响因素的研究[D]. 长沙: 中南林业科技大学, 2017.

    LI Mengyi. Research on the technology of secondary solidification yogurt and its influencing factors[D]. Changsha: Central South University of Forestry and Technology, 2017.
    [15] 闫丹丽, 邹依婷, 李默, 等. 厌氧发酵对凝固型酸奶品质特性的影响[J]. 沈阳农业大学学报,2020,51(3):296−302. [YAN Danli, ZOU Yiting, LI Mo, et al. The effect of anaerobic fermentation on the quality characteristics of set yogurt[J]. Journal of Shenyang Agricultural University,2020,51(3):296−302.

    YAN Danli, ZOU Yiting, LI Mo, et al. The effect of anaerobic fermentation on the quality characteristics of set yogurt[J]. Journal of Shenyang Agricultural University, 2020, 51(3): 296-302.
    [16] 雷文平, 吴诗敏, 李彩虹, 等. 响应面法优化凝固型发酵椰奶工艺[J]. 中国酿造,2019,38(2):212−216. [LEI Wenping, WU Shimin, LI Caihong, et al. Optimization of coagulated fermentation coconut milk process by response surface methodology[J]. China Brewing,2019,38(2):212−216. doi:  10.11882/j.issn.0254-5071.2019.02.041

    LEI Wenping, WU Shimin, LI Caihong, et al. Optimization of coagulated fermentation coconut milk process by response surface methodology[J]. China Brewing, 2019, 38(2): 212-216. doi:  10.11882/j.issn.0254-5071.2019.02.041
    [17] PURI R, KHAMRUI K, TOMAR S K, et al. Effect of ingredients and processing parameters on the texture and microstructure of acid-heatrncoagulated dairy dessert[J]. Journal of Food Processing and Preservation,2017,41(2):1−12.
    [18] BULDO P, SOKOLOWSKY M, HOEGHOLM T. The role of starter cultures on oral processing properties of different fermented milk products[J]. Food Hydrocolloids,2020,114(1):1−13.
    [19] MONIQUE C, TODOROV S D, CARVALHO A F, et al. Technological properties of beneficial bacteria from the dairy environment and development of a fermented milk with the beneficial strain Lactobacillus casei MRUV6[J]. The Journal of Dairy Research,2020,87(2):259−262. doi:  10.1017/S0022029920000308
    [20] BUSANELLO M, FILHO M, GUERGOLETTO K B, et al. Optimization of the growth of Lactobacillus in skim milk added with green banana flour and determination functional properties[J]. Nutrition and Food Science,2019,49(2):249−261. doi:  10.1108/NFS-03-2018-0098
    [21] GUERGOLETTO K B, MAURO C S, GARCIA S. Juçara (Euterpe edulis) pulp as a substrate for probiotic bacteria fermentation: optimisation process and antioxidant activity[J]. Emirates Journal of Food Agriculture,2017,12(1):949−959.
    [22] 黄娟, 黄燕燕, 刘冬梅, 等. 响应面法优化多汁乳菇多糖提取工艺及抗氧化活性研究[J]. 食品工业科技,2017,38(11):55−60. [HUANG Juan, HUANG Yanyan, LIU Dongmei, et al. Optimization of Lactarius volemus polysaccharide extraction process and antioxidant activity by response surface methodology[J]. Food Industry Science and Technology,2017,38(11):55−60.

    HUANG Juan, HUANG Yanyan, LIU Dongmei, et al. Optimization of Lactarius succulent polysaccharide extraction process and antioxidant activity by response surface methodology[J]. Food Industry Science and Technology, 2017, 38(11): 55-60.
    [23] FACCIA M, GAMBACORTA G, MARTEMUCCI G, et al. Chemical-sensory traits of fresh cheese made by enzymatic coagulation of donkey milk[J]. Foods,2020,9(1):1−13.
    [24] HUANG Yanyan , ZHAO Shan, YAO Kun, et al. Physicochemical, microbiological, rheological, and sensory properties of yoghurts with new polysaccharide extracts from Lactarius volemus Fr. using three probiotics[J]. International Journal of Dairy Technology,2020,73(1):168−181. doi:  10.1111/1471-0307.12653
    [25] BAREEN M A, JOSHI S, SAHU J K, et al. Assessment of 3D printability of heat acid coagulated milk semi-solids 'soft cheese' by correlating rheological, microstructural, and textural properties[J]. Journal of Food Engineering,2021,300(1):110−118.
    [26] BIGASKI RIBEIRO J C, GRANATO D, MASSON M L, et al. Effect of lactobionic acid on the acidification, rheological properties and aroma release of dairy gels[J]. Food Chemistry,2016,207(2):101−106.
    [27] LUCEY J A. Formation, structural properties, and rheology of acid-coagulated milk gels[M]. Cheese (Fourth edition), 2017: 179−197.
    [28] LI Z, YANG Z, OTTER D, et al. Rheological and structural properties of coagulated milks reconstituted in D2O: Comparison between rennet and a tamarillo enzyme (tamarillin)[J]. Food Hydrocolloids,2018,79(1):170−178.
    [29] EVELIN K, LASZL V. Exopolysaccharides from lactic acid bacteria: Techno-functional application in the food industry[J]. Trends in Food Science & Technology,2021,110(1):375−384.
    [30] XU Z, GUO Q, ZHANG H, et al. Structural characterisation of EPS of Streptococcus thermophilus S-3 and its application in milk fermentation[J]. International Journal of Biological Macromolecules,2021,178(2):263−269.
    [31] HASSAN A N, IPSEN R, JANZEN T, et al. Microstructure and rheology of yogurt made with cultures differing only in their ability to produce exopolysaccharides[J]. Journal of Dairy Science,2003,86(5):1632−1638. doi:  10.3168/jds.S0022-0302(03)73748-5
    [32] KARATAS S M, EKICI L, DEVELI I, et al. Effects of GSM 1800 band radiation on composition, structure and bioactivity of exopolysaccharides produced by yoghurt starter cultures[J]. Archives of Microbiology,2021,203(4):1697−1706. doi:  10.1007/s00203-020-02168-4
  • 加载中
图(5) / 表(7)
计量
  • 文章访问数:  19
  • HTML全文浏览量:  4
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-06
  • 网络出版日期:  2022-06-19
  • 刊出日期:  2022-08-03

目录

    /

    返回文章
    返回

    重要通知

    《食品工业科技》青年编委专栏征稿 | 杂粮与主粮复配的营养学基础