Effect of Enzymatic Hydrolysis Combined with High Temperature Processing on the Flavor of Cocoa Powder
-
摘要: 本文考察了酶解和高温联合处理对可可风味的作用。首先以游离氨基酸含量为评价指标,研究了5种蛋白酶对脱脂可可粉酶解液中游离氨基酸的影响,并进一步采用顶空-气相色谱-质谱联用(headspace gas chromatography mass spectrometry,HS-GC-MS)结合香气活力值(odor activity value,OAV)以及感官评价研究了高温(90~180 ℃)对可可挥发性物质的作用。结果表明,酶解处理提高了总氨基酸含量,为酶解前的1.4~5倍,且与未经酶处理的对照样(12种挥发物)相比,5种联合处理的样品分别检测出29(天冬氨酸酶)、31(酸性蛋白酶)、29(风味蛋白酶)、30(菠萝蛋白酶)、32(木瓜蛋白酶)种挥发物,挥发性物质种类明显增加。当反应温度达到150 ℃以上更有助于可可中具有坚果和奶油香气的杂环化合物的生成;由感官评价可得,经风味蛋白酶处理并在150 ℃反应2 h的可可风味最佳。基于OAV与感官评价的偏最小二乘(partial least squares,PLS)模型验证可得:酶解和高温处理使可可在保持原有巧克力香气的同时增加花果香和奶香风味,有助于提升可可整体香气品质。Abstract: The study aimed to evaluate the effect of enzymatic hydrolysis and high temperature on the flavor of cocoa. First, the effect of five proteases on free amino acids in enzymatic hydrolysate were investigated. Subsequently, headspace gas chromatography mass spectrometry (HS-GC-MS), odor activity value (OAV) and sensory valuation were applied to explore the influence of high temperature (90~180 ℃) on the volatile compounds of cocoa. The results showed that amino acids content increased by 1.4~5.0 times after enzymatic hydrolysis, and compared with the control sample untreated by enzyme (12 volatiles), five combinatorial treated samples promoted volatiles, which were identified 29 (asparaginase)、31 (acid Protease)、29 (flavourzyme)、30 (bromelain)、32 (papain) volatiles, respectively. More heterocyclic compounds with nutty and creamy aroma were generated when the temperature was up to 150 ℃, and the sensory valuation indicated that flavor protease hydrolysis combined with 150 ℃ heating for 2 h presented the best flavor characteristics. Meanwhile, partial least squares (PLS) analysis model based on OAV and sensory evaluation showed that enzymatic hydrolysis combined with high temperature gave cocoa more flower, fruit and milk aroma while still maintained chocolate flavor, confirming its contribution to flavor promotion.
-
表 1 不同酶的酶解条件
Table 1. Enzymatic hydrolysis conditions of different enzymes
蛋白酶
简写酶活度
(kU·g−1)酶解pH 酶解温度
(℃)酶添加量
(kU·g−1)天冬氨酸酶 Asp 100 2.0 40 10 酸性蛋白酶 Acid 500 3.5 40 10 风味蛋白酶 Fla 300 6.4 55 10 菠萝蛋白酶 Bro 1000 6.4 55 10 木瓜蛋白酶 Pap 1000 6.4 55 10 表 2 感官描述词和评分
Table 2. Sensory evaluation descriptions
描述词 感官描述 参比物 嗅觉 巧克力(10分) 巧克力的特殊香气 α-异丁基苯乙醇溶液20 mg/L 奶香(10分) 新鲜牛乳的特征风味 0.1 mg/kg δ-十二烷内酯 焦糖(10分) 一种带有甜香、焦苦的气味 糠醇水溶液60 mg/L 花香(10分) 鲜花特有的复合香气、带有香甜感 香叶醇水溶液1 mg/L 果香(10分) 熟透水果浓郁香气,甜香花香合感 苹果 坚果(10分) 烤味、木质味、油味的混合 2,6-二甲基吡嗪2 mg/L醇水溶液 木香(10分) 新切割的木材,树皮味 10 mg/L α-蛇麻烯 辛香(10分) 五香八角的气味 五香八角香料 烟熏(10分) 烟气熏制食品过程产生的一类特殊风味 10 g/L香芹酚丙二醇溶液 味觉 甜(10分) 如糖似蜜 蔗糖质量浓度为5.0 g/500 mL) 酸(10分) 像醋的味道 柠檬酸质量浓度为0.25 g/500 mL) 涩(10分) 舌头口腔表面收缩、收敛感 1 g/L的单宁酸水溶液 苦(10分) 苦瓜、啤酒、咖啡等特有的味感 氯化奎宁质量浓度为0.072 g/500 mL) 油脂(10分) 植物油、矿物油的气味 植物调和油 表 3 可可联合处理反应物的挥发物HS-GC-MS分析
Table 3. Contents of volatile compounds from Cocoa combined reactants by HS-GC-MS
化合物 RI 鉴别
方式阈值 香气描述 对照样 天冬氨酸酶 酸性蛋白酶 风味蛋白酶 菠萝蛋白酶 木瓜蛋白酶 文献值 计算值 μg/g 挥发物质量分数(μg/g) 甲酸 543 538 MS, RI 0.046 强烈的刺激性 − 10.8±0.78b 12.56±2.38b 77.77±73.30a − 7.98±2.28b 2,3-丁二酮 600 615 MS, RI 0.005 稀释奶油 6.67±0.40b 13.07±0.97ab 7.64±1.80b 22.43±3.66a 1.77±0.41b 3.15±0.91b 乙酸乙酯 610 626 MS, RI 5 菠萝果香、白兰地 − − 2.77±0.55b 158.91±7.75a 3.43±0.70b − 异丁醇 622 634 MS, RI 3.3 透发的酒样香气 7.62±0.51b − − 29.84±1.46a 6.39±1.36b − 乙酸 646 644 MS, RI 10000 强烈的酸 305.41±21.42b 2128.74±697.42a 1948.8±77.17a 1133.43±239.48a 14.62±3.02b 17.20±12.74b 丙二酸 − 675 MS, RI − − − − − − 0.22±0.08 0.26±0.13 异戊醛 655 650 MS, RI − 辛辣、苹果杏仁 1.53±0.03b − 3.32±0.59b 23.54±23.75a 5.42±1.32b 6.73±1.79b 戊醛 658 660 MS, RI 0.012-0.1 发酵面包、坚果 − − 1.36±0.24b − 0.49±0.11b 14.71±4.32a 2-甲基丁醛 661 661 MS, RI 10 咖啡和可可 − − − 32.67±12.71a 2.12±0.50b 2.44±1.20b 2-戊酮 686 687 MS, RI 0.07 酒和丙酮样透发 − − − − 0.36±0.10 − 羟基丙酮 688 681 MS, RI − − 25.17±1.69b 154.23±3.98a 129.46±42.92a 53.53±64.19b − 12.52±3.65b 戊二酮 696 686 MS, RI 0.07-0.1 − 6.42±0.38b − − 13.47±0.66a − − 3-羟基-2-丁酮 720 705 MS, RI 10000 奶油 − − − 20.88±0.96a 2.22±0.46b 20.23±5.89a 丁酸甲酯 724 714 MS, RI 0.001-0.043 苹果和干酪 − − − − − 0.22±0.06 3-甲基丁醇 726 733 MS, RI 0.25-4.1 威士忌特征的辛辣 − − − − 5.07±1.08a 1.10±0.32b 2-甲基丁醇 733 739 MS, RI 0.0017 水果和酒精 − − − − 2.03±0.43a 0.28±0.08b 二甲基二硫醚 761 764 MS, RI 0.0012 洋葱 3.37±0.45b 3.84±0.58b 4.87±0.93b 13.11±0.64a − − 己醛 799 795 MS, RI 0.0228 青草、苹果 − − − − 0.25±0.06 0.21±0.05 羟基丁酮 803 796 MS, RI − 咖啡、奶油、香甜 − 17.99±0.38 − − − − 2,3-丁二醇 803 808 MS, RI − 甜巧克力 − 38.92±6.59b 10.23±1.94b 491.92±65.69a 23.10±9.17b 24.83±5.52b 糠醛 818 828 MS, RI 0.28-8 面包发酵、焦糖 93.73±6.59b 268.99±22.86ab 250.12±61.51ab 431.13±40.50a 26.00±8.81b 19.22±11.14b 异戊酸 834 840 MS, RI 2.8 腐臭的、奶酪 − − − 8.14±5.16 − − 糠醇 865 863 MS, RI 1.0-2.0 发酵、奶油、焦糖 − 12.75±0.11b 22.61±4.31a − − − 环戊烯二酮 880 880 MS, RI − − − 2.75±0.47a 1.85±0.35ab − − 0.22±0.06b 2-庚酮 889 884 MS, RI 160 水果、辛香 − − − − − 0.27±0.08 2-乙酰基呋喃 910 902 MS, RI 10 甜杏仁坚果、烟熏 − 47.35±2.11ab 42.21±14.13ab 133.79±6.55a 6.22±1.31b 3.21±0.94b 2,6-二甲基吡嗪 916 908 MS, RI 1.5 坚果、可可、咖啡 − 0.55±0.02b 0.37±0.06b 0.98 ±0.28a 0.47 ±0.11b 0.45 ±0.08b 己酸甲酯 936 926 MS, RI 0.087 菠萝 − 2.86±0.05b 1.34±0.27b 16.82±10.64a 0.32±0.09b 0.28±0.07b 甲基糠醇 953 940 MS, RI − 焦糖 − 3.21±0.07a 1.63±0.31b − − − 5-甲基糠醛 957 954 MS, RI 6 焦糖的香甜 − 2.47±0.05b 5.18±1.06a − − − 苯甲醛 964 969 MS, RI 0.33 苦杏仁 3.11±0.16b 3.99±3.38b 2.77±0.51b 15.45±0.74a 1.92±0.46b 1.46±0.40b 乙酸糠醇酯 998 991 MS, RI 50 发酵奶油、焦糖 − 2.95±0.55a 1.09±0.22b − − − 2-乙基-6-甲基吡嗪 997 993 MS, RI 0.1 可可、坚果、烤土豆 − 0.18 ±0.19b 0.19 ±0.19b 0.46 ±0.15a 0.47 ±0.04a 0.28 ±0.28ab 2-乙基-3-甲基吡嗪 1003 997 MS, RI 2 玉米花、坚果 − 0.24 ±0.04 0.24 ±0.02 − 0.16 ±0.07 − 苯乙醛 1045 1038 MS, RI 0.004 强烈风信子花香 2.87±0.03b 4.42±2.92b 12.28±2.49ab 31.70±2.42a 1.77±0.77b 2.31±0.63b 4-羟基-2,5-二甲基-
3(2H)-呋喃酮1072 1069 MS, RI 0.06 烤面包、焦糖 − 2.35±0.07a 2.58±0.52a − − 0.40±0.10b 庚酸 1071 1081 MS, RI 10.4 酸臭、汗臭、脂肪味 2.67±0.04c 124.22±34.65a 44.77±10.73b 41.70±2.04b 7.85±1.68c 7.16±2.10c 2,3,5,6-四甲基吡嗪 1087 1080 MS, RI 1 坚果、可可、奶油 − 1.80±1.08a 0.47 ±0.17b 0.14 ±0.10b − 0.21 ±0.20b 庚酸乙酯 1108 1096 MS, RI − 菠萝 − − − − 0.38±0.07 − 苯乙醇 1121 1108 MS, RI 3.5 玫瑰花香 14.42±0.98a 2.83±0.54c 1.36±0.26c 6.94±0.33b 9.53±4.02b 2.44±0.71c 乙基环戊烯醇酮 1140 1145 MS, RI 500 焦糖、烟熏、咖啡 − 2.70±0.05 − − − − 2,3-二氢-3,5二羟基-
6-甲基-
4(H)-吡喃-4-酮1154 1161 MS, RI − 焦糖样甜香 − − 1.28±0.23b 8.33±0.92a − − 辛酸 1186 1178 MS, RI 1-19 果香 − 18.63±1.53bc 40.02±8.06b 80.41±34.93a 2.74±0.70c 1.35±0.36c 5-羟甲基糠醛 1233 1224 MS, RI − 黄油、焦糖 − 8.97±2.69a 1.64±0.33b − − − 癸酸 1380 1374 MS, RI 2.2-102 蜡、水果 − 4.71±0.44b 5.55±1.12b 14.63±9.26a 1.38±0.36bc 0.40±0.10c 月桂酸 1562 1566 MS, RI 100000 乳脂香 − 8.22±6.32b 13.93±2.71b 388.66±246.19a 23.99±0.18b 9.44±2.42b 肉豆蔻酸 1761 1749 MS, RI 10 − − − − 15.16±9.60a 0.26±0.06b 0.58±0.16b 咖啡因 1840 1857 MS, RI 29 − − − − 62.03±39.31a 1.04±0.27b 0.79±0.22b 注: - 未查到文献值或未检出。相关数据根据webbook.nist.gov和https://www.chemicalbook.com及文献报道[42- 43]查得。同行不同字母表示显著性差异,P < 0.05。 -
[1] SEYFRIED C, GRANVOGL M. Characterization of the key aroma compounds in two commercial dark chocolates with high cocoa contents by means of the sensomics approach[J]. Journal of Agricultural and Food Chemistry,2019,67(20):5827−5837. doi: 10.1021/acs.jafc.8b06183 [2] OEC. The observatory of economic complexity online data visualization [DB]. 2018.https://oec.world/en/profile/hs92/cocoa-powder?redirect=true. [3] 中华人民共和国海关总署. 2021年12月进出口商品类章总值表(美元值)[EB/OL](2022-01-18)[2022–01–22]. http://www.customs.gov.cn//customs/302249/zfxxgk/2799825/302274/302277/302276/4127446/index.html. [4] CUMMINGD N, MATEO J. Main objectives emphasized at first regional fisheries data and statistics working group [C]// FAO. Proceedings of the Food and Agriculture organization of the United Nations, Bridgetown, Barbados, FAO, 2018: 1−2. [5] WIAH E N, TWUMASI-ANKRAH S. Impact of climate change on cocoa yield in ghana using vector autoregressive model[J]. Ghana Journal of Technology,2017,1(2):32−39. [6] ACULEY P C, SNITKJAER P, OWUSU M, et al. Ghanaian cocoa bean fermentation characterized by spectroscopic and chromatographic methods and chemometrics[J]. Journal of Food Science,2010,75(6):300−307. doi: 10.1111/j.1750-3841.2010.01710.x [7] JANEK K, NIEWIENDA A, WÖSTEMEYER J, et al. The cleavage specificity of the aspartic protease of cocoa beans involved in the generation of the cocoa-specific aroma precursors[J]. Food Chemistry,2016,211:320−328. doi: 10.1016/j.foodchem.2016.05.033 [8] AFOAKWA E O, QUAO J, BUDU A S, et al. Effect of pulp preconditioning on acidification, proteolysis, sugars and free fatty acids concentration during fermentation of cocoa (Theobroma cacao) beans[J]. International Journal of Food Sciences and Nutrition,2011,62(7):755−764. doi: 10.3109/09637486.2011.581224 [9] HINNEH M, SEMANHYIA E, VAN DE WALLE D, et al. Assessing the influence of pod storage on sugar and free amino acid profiles and the implications on some Maillard reaction related flavor volatiles in Forastero cocoa beans[J]. Food Research International,2018,111:607−620. doi: 10.1016/j.foodres.2018.05.064 [10] HINNEH M, VAN W D, TZOMPA S D A, et al. Tuning the aroma profiles of FORASTERO cocoa liquors by varying pod storage and bean roasting temperature[J]. Food Research International,2019,125:108550. doi: 10.1016/j.foodres.2019.108550 [11] MOULAY L, MANZANARES P, VALLÉS S, et al. Effect of enzyme treatments and drying temperatures on methylpyrazine content in cocoa (Theobroma Cacao L. ) powder extract[J]. Journal of Food Science,2006,71(9):621−625. doi: 10.1111/j.1750-3841.2006.00181.x [12] VOIGT J, JANEK K, TEXTORIS-TAUBE K, et al. Partial purification and characterisation of the peptide precursors of the cocoa-specific aroma components[J]. Food Chemistry,2016,192:706−713. doi: 10.1016/j.foodchem.2015.07.068 [13] D'SOUZA R N, GRIMB A, GRIMB S, et al. Degradation of cocoa proteins into oligopeptides during spontaneous fermentation of cocoa beans[J]. Food Research International,2018,109:506−516. doi: 10.1016/j.foodres.2018.04.068 [14] BERGER R G. From fermentation to white biotechnology: How microbial catalysts generate flavours [M]. Modifying Flavour in Food. Berger; Woodhead Publishing Limited. 2013: 64−94. [15] 康超, 杨玉霞, 刘俐俐, 等. 响应面法优化百香果的酶解工艺[J]. 食品工业科技,2017,38(21):157−161. [KANG C, YANG Y X, LIU L L, et al. Optimization of enzymolysis technology of passifloraceae by response surface methodology[J]. Science and Technology of Food Industry,2017,38(21):157−161. doi: 10.13386/j.issn1002-0306.2017.21.032KANG C, YANG Y X, LIU L L, et al. Optimization of enzymolysis technology of passifloraceae by response surface methodology[J]. Science and Technology of Food Industry, 2017, 38(21): 157-161]. doi: 10.13386/j.issn1002-0306.2017.21.032 [16] TIAN H X, SHI Y H, ZHANG Y, et al. Screening of aroma‐producing lactic acid bacteria and their application in improving the aromatic profile of yogurt[J]. Journal of Food BioChemistry,2019,43(10):e12837. doi: 10.1111/jfbc.12837 [17] 李明, 王培义, 田怀香. 香料香精应用基础[M]. 北京: 中国纺织出版社, 2010: 197, 199−203LI M, WANG P Y, TIAN H X, Fundamental and application of fragrance and flavor[M]. Beijing: China Textile Publisher, 2010: 197, 199−203. [18] 刘长姣, 杨越越, 王妮, 等. 茚三酮比色法测定秋葵中氨基酸含量条件的优化[J]. 中国食品添加剂,2018(1):187−193. [LIU C J, YANG Y Y, WANG N, et al. Optimization of detection conditions of amino acids in Okra by ninhydrin colorimetric method[J]. China Food Additive,2018(1):187−193. doi: 10.3969/j.issn.1006-2513.2018.01.020LIU C J, YANG Y Y, WANG N, et al. Optimization of detection conditions of amino acids in Okra by ninhydrin colorimetric method[J]. China Food Additive, 2018, (01): 187-193]. doi: 10.3969/j.issn.1006-2513.2018.01.020 [19] 孙文佳, 王雪梅, 李亚隆, 等. 外源添加氨基酸对郫县豆瓣模拟体系感官及特征风味的影响[J]. 食品科学,2021,42(22):283−290. [SUN W J, WANG X M, LI Y L, et al. Effects of exogenous amino acid addition on Pixian broad-bean paste simulation system[J]. Food Science,2021,42(22):283−290. doi: 10.7506/spkx1002-6630-20200802-025SUN W J, WANG X M, LI Y L, et al. Effects of exogenous amino acid addition on Pixian broad-bean paste simulation system [J]. Food Science, 2021, 42(22): 283-290. doi: 10.7506/spkx1002-6630-20200802-025 [20] 赵镭, 邓少平, 刘文. 食品感官分析词典[M]. 北京: 中国轻工业出版社, 2015ZHAO L, DENG S P, LIU W. Food sensory analysis vocabulary[M]. Beijing: China light industry publisher, 2015. [21] END , M J, DAND R. Cocoa beans: Chocolate and cocoa industry quality requirements [M]. CAOBISCO/ECA/FCC, September 2015: 11−18. [22] SAPAM S, MANDAL N, SINHA B. Latin square designs with neighbor effects-part II[J]. Communications in Statistics-Theory and Methods,2021,50(14):3371−3379. doi: 10.1080/03610926.2019.1702694 [23] 朱宏, 王爱莉, 仇菊, 等. 动态顶空结合气质联用法测定山西老陈醋发酵过程中挥发性物质的变化[J]. 中国食品学报,2016,16(1):264−271. [ZHU H, WANG A L, QIU J, et al. Changes of aroma compounds in Shanxi aged vinegar during its fermentation determined by dynamic headspace-gas chromatography[J]. Journal of Chinese Institute of Food Science and Technology,2016,16(1):264−271. doi: 10.16429/j.1009-7848.2016.01.035ZHU H, WANG A L, QIU J, et al. Changes of aroma compounds in Shanxi aged vinegar during its fermentation determined by dynamic headspace-gas chromatography[J]. Journal of Chinese Institute of Food Science and Technology, 2016, 16(01): 264-271]DOI: 10.16429/j.1009-7848.2016.01.035. [24] MOHAMADI ALASTI F, ASEFI N, MALEKI R, et al. Investigating the flavor compounds in the cocoa powder production process[J]. Food Science & Nutrition,2019,7(12):3892−3901. doi: 10.1002/fsn3.1244 [25] 王姣, 王绒雪, 张晋华等. 乳扇加工工艺优化及其风味成分分析[J]. 食品与发酵工业,2019,45(23):189−198. [WANG J, WANG R X, ZHANG J H, et al. Optimization of Rushan processing technology and analysis of flavor components[J]. Food and Fermentation Industries,2019,45(23):189−198. doi: 10.13995/j.cnki.11-1802/ts.021676WANG J, WANG R X, ZHANG J H, et al. Optimization of Rushan processing technology and analysis of flavor components [J]. Food and Fermentation Industries, 2019, 45(23): 189-198]DOI: 10.13995/j.cnki.11-1802/ts.021676 [26] 段春红. 7S、11S酶解产物的特性及其在肉肠中的应用研究[D]. 武汉: 华中农业大学, 2009DUAN C H, Study on properties of 7S and 11S modified by enzyme and application in pork sausage[D]. Wuhan: Huazhong Agricultural University, 2009 [27] CABALLERO B T L, FINGLAS P. Encyclopedia of food sciences and nutrition [M]. 2nd ed. USA: Academic Press, 2005: 1436-1448 [28] ROHSIUS C, REINHARD M, LIEBEREI R. Free amino acid amounts in raw cocoas from different origins[J]. European Food Research and Technology,2006,222:432−438. doi: 10.1007/s00217-005-0130-y [29] KADOW D, NIEMENAK N, ROHN S, et al. Fermentation-like incubation of cocoa seeds (Theobroma cacao L. ) – Reconstruction and guidance of the fermentation process[J]. LWT - Food Science and Technology,2015,62(1):357−361. doi: 10.1016/j.lwt.2015.01.015 [30] MARSEGLIA A, MUSCI M, RINALDI M, et al. Volatile fingerprint of unroasted and roasted cocoa beans (Theobroma cacao L.) from different geographical origins[J]. Food Research International,2020,132:109101. doi: 10.1016/j.foodres.2020.109101 [31] RAMLI N, HASSAN O, SAID M, et al. Influence of roasting condition on volatile flavour of roasted Malaysian cocoa beans[J]. Journal of Food Processing and Preservation,2006,30:280−98. doi: 10.1111/j.1745-4549.2006.00065.x [32] 胡梓妍, 刘伟, 何双, 等. 基于HS-SPME-GC-MS法分析3种金橘的香气挥发性成分[J]. 食品科学,2021,42(16):176−184. [HU Z Y, LIU W, HE S, et al. Analysis of volatile components in three kinds of Kumquat by HS-SPME-GC-MS[J]. Food Science,2021,42(16):176−184. doi: 10.7506/spkx1002-6630-20200821-290HU Z Y, LIU W, HE S, et al. Analysis of volatile components in three kinds of Kumquat by HS-SPME-GC-MS [J]. Food Science, 2021, 42(16): 176-184]. doi: 10.7506/spkx1002-6630-20200821-290 [33] ZHANG W C, TANG J M. Tracing the production area of citrus fruits using aroma‐active compounds and their quality evaluation models[J]. Journal of the Science of Food and Agriculture,2020,100(2):517−526. doi: 10.1002/jsfa.10026 [34] 王丹, 况丹妮, 刘若阳, 等. 焦糖化与美拉德反应中DDMP、HMF及糠醛的生成研究 [J/OL]. 食品工业科技: 1-13[2022-01-25] [WANG D, KUANG D N, LIU R Y, et al. Study on the formation of DDMP, HMF and furfural in caramelization and Maillard reaction[J/OL]. Science and Technology of Food Industry: 1−13 [2022-01-25]WANG D, KUANG D N, LIU R Y, et al. Study on the formation of DDMP, HMF and furfural in caramelization and Maillard reaction[J/OL]. Science and Technology of Food Industry: 1−13[2022-01-25]DOI: 10.13386/jissn1002-0306.2021090221. [35] AFOAKWA E O, PATERSON A, FOWLER M, et al. Matrix effects on flavour volatiles release in dark chocolates[J]. Food Chemistry,2009,113(01):208−215. doi: 10.1016/j.foodchem.2008.07.088 [36] AFOAKWA E O, QUAO J, TAKRAMA F, et al. Changes in total polyphenols, o-diphenols and anthocyanin concentrations during fermentation of pulp pre-conditioned cocoa (Theobroma cacao) beans[J]. International Food Research Journal,2012,19(3):1071−1077. [37] RAMOS C L, DIAS D R, MIGUEL M G D C P, et al. Impact of different cocoa hybrids (Theobroma cacao L. ) and S. cerevisiae UFLA CA11 inoculation on microbial communities and volatile compounds of cocoa fermentation[J]. Food research international,2014,64:908−918. doi: 10.1016/j.foodres.2014.08.033 [38] FEBRIANTO N A, ZHU F. Changes in the composition of methylxanthines, polyphenols, and volatiles and sensory profiles of cocoa beans from the Sul 1 genotype affected by fermentation[J]. Journal of Agricultural and Food Chemistry,2020,68(32):8658−8675. doi: 10.1021/acs.jafc.0c02909 [39] MIRALLES G J. Chemical composition and flavour development of cocoa products by thermal and enzymatic technologies [J]. University of Salford, 2008. [40] YAYLAYAN V A, HAFFENDEN L J. Mechanism of imidazole and oxazole formation in [13C-2]-labelled glycine and alanine model systems[J]. Food Chemistry,2003,81(3):403−409. doi: 10.1016/S0308-8146(02)00470-3 [41] SMIT G, SMIT B A, ENGELS W J. Flavour formation by lactic acid bacteria and biochemical flavour profiling of cheese products[J]. FEMS Microbiology Reviews,2005,29(3):591−610. doi: 10.1016/j.fmrre.2005.04.002 [42] GEMERT L J V. Odour_thresholds [M]. 2nd ed. The Netherlands: Oliemans Punter & Partners BV, 2011. [43] BURDOCK G A. Fenaroli’s handbook of flavor ingredients [M]. 6th ed. Boca Raton: CRC Press, 2016. -