• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020

不同产地保健食品原料中总砷及无机砷含量检测

李亚贤 田怀香 于海燕 陆智

李亚贤,田怀香,于海燕,等. 不同产地保健食品原料中总砷及无机砷含量检测[J]. 食品工业科技,2022,43(12):10−17. doi:  10.13386/j.issn1002-0306.2021120117
引用本文: 李亚贤,田怀香,于海燕,等. 不同产地保健食品原料中总砷及无机砷含量检测[J]. 食品工业科技,2022,43(12):10−17. doi:  10.13386/j.issn1002-0306.2021120117
LI Yaxian, TIAN Huaixiang, YU Haiyan, et al. Detection of Total Arsenic and Inorganic Arsenic Content in Health Food Raw Materials from Different Habitats[J]. Science and Technology of Food Industry, 2022, 43(12): 10−17. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021120117
Citation: LI Yaxian, TIAN Huaixiang, YU Haiyan, et al. Detection of Total Arsenic and Inorganic Arsenic Content in Health Food Raw Materials from Different Habitats[J]. Science and Technology of Food Industry, 2022, 43(12): 10−17. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021120117

不同产地保健食品原料中总砷及无机砷含量检测

doi: 10.13386/j.issn1002-0306.2021120117
基金项目: 国家重点研发计划项目(2018YFC1602106)。
详细信息
    作者简介:

    李亚贤(1985−),女,硕士,工程师,研究方向:食品安全,E-mail:Yaxian.Li@infinitus-int.com

    通讯作者:

    陆智(1981−),男,硕士,工程师,研究方向:食品安全,E-mail:Chris.Lu@infinitus-int.com

  • 中图分类号: O657.6;TS218

Detection of Total Arsenic and Inorganic Arsenic Content in Health Food Raw Materials from Different Habitats

  • 摘要: 为考察保健食品原料中砷污染情况,确保保健食品的质量安全,采用电感耦合等离子体质谱(ICP-MS)和高效液相色谱-电感耦合等离子体质谱(HPLC/ICP-MS)法对来自16个产地14种保健食品原料中总砷和无机砷含量进行测定。结果表明,总砷和无机砷浓度与信号强度在0~100 μg/L范围内呈良好的线性关系,样品检测结果的相对标准偏差(RSD)在0.00~2.52%之间,精密度良好。所检测保健食品原料中,总砷含量在(0.0004~0.3900)mg/kg之间,未超出保健食品限量标准;无机砷的含量在(0.0003~0.1962)mg/kg之间。河北金银花的总砷及无机砷含量最高;吉林的人参、新疆的大枣、云南的核桃肉、安徽的白芍、山西的山萸肉及福建的猴头菇等6种原料的砷含量较低,其中人参、大枣、核桃肉的总砷含量相同,且为最低,为0.0004 mg/kg,无机砷含量亦相同,为0.0003 mg/kg。本研究给出了多种保健食品原料不同产地的砷残留数据,扩充了保健食品原料砷含量数据库,为砷污染风险评估提供了重要参考。
  • 表  1  微波消解仪升温程序

    Table  1.   Heating program of microwave digestion instrument

    步骤功率(W)升温时间(min)控制温度(℃)保持时间(min)控制压力(Bar)
    112005120610
    212005160620
    3120051902030
    下载: 导出CSV

    表  2  五种样品ICP-MS与AFS两种方法总砷含量结果对比

    Table  2.   Comparison of the results of total arsenic content of five samples by ICP-MS and AFS

    保健食品原料产地ICP-MS AFS
    含量(mg/kg)RSD(%)含量(mg/kg)RSD(%)
    茯苓安徽安庆0.00680.05 未检出
    云南大理0.02610.02未检出
    黄芪内蒙古0.08860.06未检出
    青海0.11550.04未检出
    甘肃0.06890.03未检出
    下载: 导出CSV

    表  3  砷在基质中的添加回收率和变异系数

    Table  3.   Recovery rate and coefficient of variation of arsenic added to the matrix

    添加量(μg) 样品号实际检出量(μg)回收率(%)平均回收率(%)变异系数(%)
    0.001010.0009595.0090.003.51
    20.0009090.00
    30.0009090.00
    40.0009090.00
    50.0008585.00
    60.0009090.00
    0.003010.0028595.00100.004.94
    20.00315105.00
    30.00315105.00
    40.00305101.70
    50.0028093.33
    60.00300100.00
    0.010010.0094094.00101.005.87
    20.0098598.50
    30.0098098.00
    40.01085108.50
    50.0097597.50
    60.01075107.50
    下载: 导出CSV

    表  4  保健食品原料样品中的总砷含量

    Table  4.   Total arsenic content in health food raw materials samples

    保健食品原料名产地含量(mg/kg)保健食品原料名产地含量(mg/kg)
    金针菇浙江江山0.0470±0.0032c核桃肉云南0.0004±0.0000a
    福建0.0310±0.0085bc黄精福建0.1370±0.0058f
    浙江常山0.0280±0.0067b生地黄河南0.2830±0.0252h
    金银花山东0.0770±0.0139d猴头菇福建0.0110±0.0046a
    河南0.2970±0.0208hi葛根安徽0.0210±0.0036b
    河北0.3900±0.0200j玄参浙江0.1800±0.0100g
    巴戟天广东肇庆0.2900±0.0100h河南0.1300±0.0100f
    广东云浮0.3100±0.0200i湖北0.1370±0.0058f
    木耳福建0.1644±0.0013g人参吉林0.0004±0.0000a
    浙江0.1078±0.0013e山萸肉山西0.0020±0.0020a
    白芍安徽0.0021±0.0017a大枣新疆0.0004±0.0000a
    注:上标不同小写字母表示数据存在显著差异(P<0.05);表6同。
    下载: 导出CSV

    表  5  无机砷在基质中的添加回收率和变异系数

    Table  5.   Recovery rate and coefficient of variation of inorganic arsenic added to the matrix

    添加量(μg) 样品号信号强度实际检出量(μg)回收率(%)平均回收率(%)变异系数(%)
    As(III)As(V)
    0.100176010.17161621.880.095195.0995.000.54
    276555.35160698.420.095295.21
    375143.21160390.600.094094.05
    475789.45162356.880.095295.16
    576393.13162168.420.095695.55
    676018.15160698.420.094894.80
    0.3001202597.09465791.360.287195.7194.900.69
    2202908.23458340.870.285095.00
    3204628.86459019.330.286595.50
    4201817.88456745.240.283794.55
    5202200.84451681.920.282394.11
    6200637.12456877.160.282894.27
    1.0001658320.601533428.170.969896.9897.000.10
    2657618.521534031.240.969496.94
    3658921.631532674.320.970097.00
    4657094.631535413.290.969596.95
    5657440.351531499.580.968596.85
    6657903.081535897.000.970297.02
    下载: 导出CSV

    表  6  保健食品原料样品中无机砷含量

    Table  6.   Inorganic arsenic content in health food raw materials samples

    保健食品原料名产地三价砷(mg/kg)五价砷(mg/kg)无机砷(mg/kg)无机砷/总砷(%)
    金针菇浙江江山0.02800.00660.0346±0.0016d73.62
    福建0.02300.03190.0308±0.0026c99.35
    浙江常山0.01700.04030.0256±0.0052c91.43
    金银花山东0.01500.00780.0228±0.0030b29.61
    河南0.07900.01710.0961±0.0038h32.36
    河北0.00500.19120.1962±0.0026m50.31
    巴戟天肇庆0.02500.10980.1348±0.0059j46.48
    云浮0.00000.17360.1736±0.0013l56.00
    木耳福建0.02500.04420.0691±0.0020e42.03
    浙江0.00590.06140.0673±0.0036e62.43
    白芍安徽0.00180.00000.0018±0.0001a85.71
    猴头菇福建0.00000.00090.0009±0.0004a8.18
    葛根安徽0.00370.00170.0054±0.0007a25.71
    玄参浙江0.01030.09810.1084±0.0031i60.22
    河南0.00740.06700.0744±0.0015f57.23
    湖北0.00720.08330.0905±0.0047g66.06
    山萸肉山西0.00000.00080.0008±0.0002a40.00
    人参吉林0.00000.00000.0003±0.0002a75.00
    大枣新疆0.00000.00000.0003±0.0002a75.00
    核桃肉云南0.00000.00000.0003±0.0000a75.00
    黄精福建0.01240.01900.0314±0.0013d22.92
    生地黄河南0.01670.13370.1504±0.0054k53.14
    下载: 导出CSV
  • [1] ZHAO J, GE L Y, XIONG W, et al. Advanced development in phytochemicals analysis of medicine and food dual purposes plants used in China (2011-2014)[J]. Journal of Chromatography A,2016,1428:39−54. doi:  10.1016/j.chroma.2015.09.006
    [2] 谷善勇, 骆骄阳, 刘好, 等. 高效液相色谱电感耦合等离子体质谱法检测17种大宗常用中草药中砷元素形态[J]. 中国中药杂志,2019,44(14):3078−3086. [GU Shanyong, LUO Jiaoyang, LIU Hao, et al. Determination of arsenic species in 17 common Chinese herbal medicines by high performance liquid chromatographyinductively coupled plasma mass spectrometry[J]. China Journal of Chinese Materia Medica,2019,44(14):3078−3086.
    [3] FALLAHZADEH R A, GHANEIAN M T, MIRI M, et al. Spatial analysis and health risk assessment of heavy metals concentration in drinking water resources[J]. Environmental Science and Pollution Research,2017,24:24790−24802. doi:  10.1007/s11356-017-0102-3
    [4] ZUO T T, JIN H Y, ZHANG L, et al. Innovative health risk assessment of heavy metals in Chinese herbal medicines based on extensive data[J]. Pharmacological Research,2020,163:104987.
    [5] 袁宇琳, 张静, 毛腾霄, 等. 成都市售即食中药预包装产品重金属含量分析及健康风险评估[J]. 中国实验方剂学杂志,2018,24(24):213−218. [YUAN Yulin, ZHANG Jing, MAO Tengxiao, et al. Heavy metal content analysis and health risk assessment of readytoeat Chinese medicine prepackaged products sold in Chengdu[J]. Chinese Journal of Experimental Formulas,2018,24(24):213−218.
    [6] ZHUANG Yongliang, XIAO Junjiang, SUN Liping, et al. Research progress on the bioaccumulation of cadmium, lead, mercury and arsenic by edible fungi[J]. Journal of Food Science and Technology,2019,37(3):19−32.
    [7] 王红波. 中药饮片发展现状及质量管理中存在的问题与分析[J]. 世界最新医学信息文摘,2017,17(17):194−195. [WANG Hongbo. Development status of traditional Chinese medicine decoction pieces and problems and analysis in quality management[J]. Digest of World Latest Medical Information,2017,17(17):194−195.
    [8] 李耀磊, 徐健, 金红宇等. 冬虫夏草及产区土壤中5种重金属及有害元素污染评价[J]. 药物分析杂志,2019,39(4):677−684. [LI Yaolei, XU Jian, JIN Hongyu et al. Pollution evaluation of 5 heavy metals and harmful elements in Cordyceps sinensis and soil in the production area[J]. Journal of Pharmaceutical Analysis,2019,39(4):677−684.
    [9] 吕翔, 王佳佳, 邵霞, 等. 砷元素形态分析和在中药研究中的应用进展[J]. 中成药,2017,39(8):1679−1683. [LÜ Xiang, WANG Jiajia, SHAO Xia, et al. Speciation analysis of arsenic and its application in traditional Chinese medicine research[J]. Chinese Patent Medicine,2017,39(8):1679−1683. doi:  10.3969/j.issn.1001-1528.2017.08.029
    [10] 程敏, 展敏, 谭丽容, 等. 口服液类保健食品中18种重金属元素检测[J]. 现代食品科技,2019,35(2):285−290,269. [CHENG Min, ZHAN Min, TAN Lirong, et al. Detection of 18 heavy metal elements in oral liquid health foods[J]. Modern Food Science and Technology,2019,35(2):285−290,269.
    [11] 李爱阳, 黄建华. 应用氢化物发生微波等离子体原子发射光谱分析食用菌中总砷含量[J/OL]. 食品科学: 18[2021-09-29]. http://kns.cnki.net/kcms/detail/11.2206.TS.20201211.1712.042.html.

    LI Aiyang, HUANG Jianhua. Using hydride generationmicrowave plasma atomic emission spectrometry to analyze the total arsenic content in edible fungi[J/OL]. Food Science: 18[2021-09-29]. http://kns.cnki. net/kcms/detail/11.2206.TS.20201211.1712.042.html.
    [12] 陈双阳, 陈贵堂, 胡秋辉, 等. 市售食用菌中砷的形态分析以及健康风险评价[J]. 食品工业科技,2020,41(1):180−188. [CHEN Shuangyang, CHEN Guitang, HU Qiuhui, et al. Speciation analysis and health risk assessment of arsenic in edible fungi on the market[J]. Science and Technology of Food Industry,2020,41(1):180−188.
    [13] 刘威, 王振中, 胡军华, 等. ICP-MS对牡丹皮中24种微量元素的形态及其溶出特性分析[J]. 中国实验方剂学杂志,2017,23(3):39−44. [LIU Wei, WANG Zhenzhong, HU Junhua, et al. Analysis of the morphology and dissolution characteristics of 24 trace elements in Moutan cortex by ICP-MS[J]. Chinese Journal of Experimental Formulas,2017,23(3):39−44.
    [14] SUN L, MA X, JIN H Y, et al. Geographical origin differentiation of Chinese Angelica by specific metal element fingerprinting and risk assessment[J]. Environmental Science and Pollution Research,2020,27(2):1−13.
    [15] 于丽, 顾俊杰, 张宁. ICP-MS法测定四种中药材中重金属含量[J]. 福建分析测试,2020,29(4):47−49. [YU Li, GU Junjie, ZHANG Ning. Determination of heavy metals in four Chinese medicinal materials by ICP-MS[J]. Fujian Analysis and Testing,2020,29(4):47−49. doi:  10.3969/j.issn.1009-8143.2020.04.09
    [16] DENG X, LI R, DENG S. Determination of the total content of arsenic, antimony, selenium and mercury in Chinese herbal food by chemical vapor generation-four-channel non-dispersive atomic fluorescence spectrometry[J]. Journal of Fluorescence,2020,30(4):949−954. doi:  10.1007/s10895-020-02569-0
    [17] WANG Z, WANG H, WANG H, et al. Heavy metal pollution and potential health risks of commercially available Chinese herbal medicines[J]. The Science of the Total Environment,2019,653(FEB.25):748−757.
    [18] YANG C M, CHIEN M Y, CHAO P C, et al. Investigation of toxic heavy metals content and estimation of potential health risks in Chinese herbal medicinet[J]. Journal of Hazardous Materials,2021,412:125142.
    [19] FU L, SHI S Y, CHEN X Q. Accurate quantification of toxic elements in medicine food homologous plants using ICP-MS/MS[J]. Food Chemistry,2018,245:692−697. doi:  10.1016/j.foodchem.2017.10.136
    [20] CHEN Y, JIANG Z, LI J, et al. Study on the arsenic content of Ophiocordyceps sinensis in Sichuan Province[J]. Medicinal Plant,2018,9(1):47−49.
    [21] ZHANG J, BARAKIEWICZ D, WANG Y, et al. Arsenic and arsenic speciation in mushrooms from China: A review[J]. Chemosphere,2020,246:125685. doi:  10.1016/j.chemosphere.2019.125685
    [22] KHAN I, AWAN S A, RIZWAN M, et al. Arsenic behavior in soil-plant system and its detoxification mechanisms in plants: A review[J]. Environmental Pollution,2021,286:117389. doi:  10.1016/j.envpol.2021.117389
    [23] BALI A S, SIDHU G. Arsenic acquisition, toxicity and tolerance in plants-From physiology to remediation: A review[J]. Chemosphere,2021(7):131050.
    [24] REHMAN M U, KHAN R, KHAN A, et al. Fate of arsenic in living systems: Implications for sustainable and safe food chains[J]. Journal of Hazardous Materials,2021,417(1):126050.
    [25] DOS S, SILVA J, LEMOS V A, et al. An online preconcentration system for speciation analysis of arsenic in seawater by hydride generation flame atomic absorption spectrometry[J]. Microchemical Journal,2018,143:175−180. doi:  10.1016/j.microc.2018.08.004
    [26] 左甜甜, 张磊, 石上梅, 等. 10种根和根茎类保健食品原料中重金属及有害元素的风险评估及最大限量理论值[J]. 药物分析杂志,2020,40(10):1870−1876. [ZUO Tiantian, ZHANG Lei, SHI Shangmei, et al. Risk assessment and theoretical maximum limit values of heavy metals and harmful elements in 10 root and rhizome Chinese medicinal materials[J]. Chinese Journal of Pharmaceutical Analysis,2020,40(10):1870−1876.
    [27] AHMAD H, ZHAO Lihua, LIU Changkun, et al. Ultrasound assisted dispersive solid phase microextraction of inorganic arsenic from food and water samples using CdS nanoflowers combined with ICP-AES determination[J]. Food Chemistry,2021,338:128028. doi:  10.1016/j.foodchem.2020.128028
    [28] KOMOROWICZ I, HANC A, LORENC W, et al. Arsenic speciation in mushrooms using dimensional chromatography coupled to ICP-MS detector[J]. Chemosphere,2019,233:223−233. doi:  10.1016/j.chemosphere.2019.05.130
    [29] SEGURA F R, SOUZA J, PAULA E, et al. Arsenic speciation in Brazilian rice grains organically and traditionally cultivated: is there any difference in arsenic content?[J]. Food Research International,2016,89:169−176. doi:  10.1016/j.foodres.2016.07.011
    [30] JIA Xiaoyo, GONG Dirong, WANG Jiani, et al. Arsenic speciation in environmental waters by a new specific phosphine modified polymer microsphere preconcentration and HPLC/ICP-MS determination[J]. Talanta,2016,160:437−443. doi:  10.1016/j.talanta.2016.07.050
    [31] TANG F, NI Z, LU Y, et al. Arsenic speciation in honeysuckle (Lonicera japonica Thunb. ) from China[J]. Biologica Trace Element Research,2015,168(1):269−275. doi:  10.1007/s12011-015-0327-2
    [32] STACKELBERG K V, WILLIAMS P R D, ERNESTO S T. A systematic framework for collecting site-specific sampling and survey data to support analyses of health impacts from land-based pollution in low- and middle-income countries[J]. International Journal of Environmental Research and Public Health,2021,18(9):4676−4685. doi:  10.3390/ijerph18094676
    [33] 李艳苹, 王翠翠, 刘小骐, 等. 液相色谱-原子荧光联用测定海水中无机砷和有机砷[J]. 海洋技术学报,2020,39(3):6−10. [LI Yanping, WANG Cuicui, LIU Xiaoqi, et al. Determination of inorganic arsenic and organic arsenic in seawater by liquid chromatography-atomic fluorescence[J]. Journal of Marine Technology,2020,39(3):6−10.
  • 加载中
计量
  • 文章访问数:  111
  • HTML全文浏览量:  33
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-13
  • 网络出版日期:  2022-04-28
  • 刊出日期:  2022-06-15

目录

    /

    返回文章
    返回

    重要通知

    《食品工业科技》特邀主编专栏征稿:枸杞、红枣、沙棘等食药同源健康食品研究与开发