Detection of Total Arsenic and Inorganic Arsenic Content in Health Food Raw Materials from Different Habitats
-
摘要: 为考察保健食品原料中砷污染情况,确保保健食品的质量安全,采用电感耦合等离子体质谱(ICP-MS)和高效液相色谱-电感耦合等离子体质谱(HPLC/ICP-MS)法对来自16个产地14种保健食品原料中总砷和无机砷含量进行测定。结果表明,总砷和无机砷浓度与信号强度在0~100 μg/L范围内呈良好的线性关系,样品检测结果的相对标准偏差(RSD)在0.00~2.52%之间,精密度良好。所检测保健食品原料中,总砷含量在(0.0004~0.3900)mg/kg之间,未超出保健食品限量标准;无机砷的含量在(0.0003~0.1962)mg/kg之间。河北金银花的总砷及无机砷含量最高;吉林的人参、新疆的大枣、云南的核桃肉、安徽的白芍、山西的山萸肉及福建的猴头菇等6种原料的砷含量较低,其中人参、大枣、核桃肉的总砷含量相同,且为最低,为0.0004 mg/kg,无机砷含量亦相同,为0.0003 mg/kg。本研究给出了多种保健食品原料不同产地的砷残留数据,扩充了保健食品原料砷含量数据库,为砷污染风险评估提供了重要参考。
-
关键词:
- 保健食品原料 /
- 总砷 /
- 无机砷 /
- ICP-MS /
- HPLC/ICP-MS
Abstract: To investigate the arsenic pollution in health food raw materials and to ensure the quality and safety of health food, the contents of total arsenic and inorganic arsenic in 14 kinds of health food raw materials from 16 habitats were determined by inductively coupled plasma-mass spectrometry (ICP-MS) and high-performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC/ICP-MS), respectively. The relationship between arsenic concentration and signal intensity is linear with R2 higer than 0.9999 in range of 0~100 μg/L. The relative standard deviation (RSD) of detecting results of health food raw materials were from 0.00% to 2.52%, and the precision was satisfactory. The total arsenic content was between (0.0004~0.3900) mg/kg, which did not exceed the health food limit standard. The content of the inorganic arsenic was (0.0003~0.1962) mg/kg. Among them, total arsenic and inorganic arsenic content of Hebei honeysuckle was the highest, the contents of arsenic in ginseng from Jilin, jujube from Xinjiang, walnut from Yunnan, white peony root from Anhui, cornus officinalis from Shanxi and Hericium erinaceus from Fujian were low. The total arsenic contents of ginseng, jujube and walnut meat were the same and the lowest, 0.0004 mg/kg, and the inorganic arsenic contents were also the same, 0.0003 mg/kg. The data of arsenic residues in a variety of health food raw materials were given, which expanded the arsenic content database of health food raw materials and would provide an important reference for arsenic pollution risk assessment. -
表 1 微波消解仪升温程序
Table 1. Heating program of microwave digestion instrument
步骤 功率(W) 升温时间(min) 控制温度(℃) 保持时间(min) 控制压力(Bar) 1 1200 5 120 6 10 2 1200 5 160 6 20 3 1200 5 190 20 30 表 2 五种样品ICP-MS与AFS两种方法总砷含量结果对比
Table 2. Comparison of the results of total arsenic content of five samples by ICP-MS and AFS
保健食品原料 产地 ICP-MS AFS 含量(mg/kg) RSD(%) 含量(mg/kg) RSD(%) 茯苓 安徽安庆 0.0068 0.05 未检出 − 云南大理 0.0261 0.02 未检出 − 黄芪 内蒙古 0.0886 0.06 未检出 − 青海 0.1155 0.04 未检出 − 甘肃 0.0689 0.03 未检出 − 表 3 砷在基质中的添加回收率和变异系数
Table 3. Recovery rate and coefficient of variation of arsenic added to the matrix
添加量(μg) 样品号 实际检出量(μg) 回收率(%) 平均回收率(%) 变异系数(%) 0.0010 1 0.00095 95.00 90.00 3.51 2 0.00090 90.00 3 0.00090 90.00 4 0.00090 90.00 5 0.00085 85.00 6 0.00090 90.00 0.0030 1 0.00285 95.00 100.00 4.94 2 0.00315 105.00 3 0.00315 105.00 4 0.00305 101.70 5 0.00280 93.33 6 0.00300 100.00 0.0100 1 0.00940 94.00 101.00 5.87 2 0.00985 98.50 3 0.00980 98.00 4 0.01085 108.50 5 0.00975 97.50 6 0.01075 107.50 表 4 保健食品原料样品中的总砷含量
Table 4. Total arsenic content in health food raw materials samples
保健食品原料名 产地 含量(mg/kg) 保健食品原料名 产地 含量(mg/kg) 金针菇 浙江江山 0.0470±0.0032c 核桃肉 云南 0.0004±0.0000a 福建 0.0310±0.0085bc 黄精 福建 0.1370±0.0058f 浙江常山 0.0280±0.0067b 生地黄 河南 0.2830±0.0252h 金银花 山东 0.0770±0.0139d 猴头菇 福建 0.0110±0.0046a 河南 0.2970±0.0208hi 葛根 安徽 0.0210±0.0036b 河北 0.3900±0.0200j 玄参 浙江 0.1800±0.0100g 巴戟天 广东肇庆 0.2900±0.0100h 河南 0.1300±0.0100f 广东云浮 0.3100±0.0200i 湖北 0.1370±0.0058f 木耳 福建 0.1644±0.0013g 人参 吉林 0.0004±0.0000a 浙江 0.1078±0.0013e 山萸肉 山西 0.0020±0.0020a 白芍 安徽 0.0021±0.0017a 大枣 新疆 0.0004±0.0000a 注:上标不同小写字母表示数据存在显著差异(P<0.05);表6同。 表 5 无机砷在基质中的添加回收率和变异系数
Table 5. Recovery rate and coefficient of variation of inorganic arsenic added to the matrix
添加量(μg) 样品号 信号强度 实际检出量(μg) 回收率(%) 平均回收率(%) 变异系数(%) As(III) As(V) 0.100 1 76010.17 161621.88 0.0951 95.09 95.00 0.54 2 76555.35 160698.42 0.0952 95.21 3 75143.21 160390.60 0.0940 94.05 4 75789.45 162356.88 0.0952 95.16 5 76393.13 162168.42 0.0956 95.55 6 76018.15 160698.42 0.0948 94.80 0.300 1 202597.09 465791.36 0.2871 95.71 94.90 0.69 2 202908.23 458340.87 0.2850 95.00 3 204628.86 459019.33 0.2865 95.50 4 201817.88 456745.24 0.2837 94.55 5 202200.84 451681.92 0.2823 94.11 6 200637.12 456877.16 0.2828 94.27 1.000 1 658320.60 1533428.17 0.9698 96.98 97.00 0.10 2 657618.52 1534031.24 0.9694 96.94 3 658921.63 1532674.32 0.9700 97.00 4 657094.63 1535413.29 0.9695 96.95 5 657440.35 1531499.58 0.9685 96.85 6 657903.08 1535897.00 0.9702 97.02 表 6 保健食品原料样品中无机砷含量
Table 6. Inorganic arsenic content in health food raw materials samples
保健食品原料名 产地 三价砷(mg/kg) 五价砷(mg/kg) 无机砷(mg/kg) 无机砷/总砷(%) 金针菇 浙江江山 0.0280 0.0066 0.0346±0.0016d 73.62 福建 0.0230 0.0319 0.0308±0.0026c 99.35 浙江常山 0.0170 0.0403 0.0256±0.0052c 91.43 金银花 山东 0.0150 0.0078 0.0228±0.0030b 29.61 河南 0.0790 0.0171 0.0961±0.0038h 32.36 河北 0.0050 0.1912 0.1962±0.0026m 50.31 巴戟天 肇庆 0.0250 0.1098 0.1348±0.0059j 46.48 云浮 0.0000 0.1736 0.1736±0.0013l 56.00 木耳 福建 0.0250 0.0442 0.0691±0.0020e 42.03 浙江 0.0059 0.0614 0.0673±0.0036e 62.43 白芍 安徽 0.0018 0.0000 0.0018±0.0001a 85.71 猴头菇 福建 0.0000 0.0009 0.0009±0.0004a 8.18 葛根 安徽 0.0037 0.0017 0.0054±0.0007a 25.71 玄参 浙江 0.0103 0.0981 0.1084±0.0031i 60.22 河南 0.0074 0.0670 0.0744±0.0015f 57.23 湖北 0.0072 0.0833 0.0905±0.0047g 66.06 山萸肉 山西 0.0000 0.0008 0.0008±0.0002a 40.00 人参 吉林 0.0000 0.0000 0.0003±0.0002a 75.00 大枣 新疆 0.0000 0.0000 0.0003±0.0002a 75.00 核桃肉 云南 0.0000 0.0000 0.0003±0.0000a 75.00 黄精 福建 0.0124 0.0190 0.0314±0.0013d 22.92 生地黄 河南 0.0167 0.1337 0.1504±0.0054k 53.14 -
[1] ZHAO J, GE L Y, XIONG W, et al. Advanced development in phytochemicals analysis of medicine and food dual purposes plants used in China (2011-2014)[J]. Journal of Chromatography A,2016,1428:39−54. doi: 10.1016/j.chroma.2015.09.006 [2] 谷善勇, 骆骄阳, 刘好, 等. 高效液相色谱电感耦合等离子体质谱法检测17种大宗常用中草药中砷元素形态[J]. 中国中药杂志,2019,44(14):3078−3086. [GU Shanyong, LUO Jiaoyang, LIU Hao, et al. Determination of arsenic species in 17 common Chinese herbal medicines by high performance liquid chromatographyinductively coupled plasma mass spectrometry[J]. China Journal of Chinese Materia Medica,2019,44(14):3078−3086. [3] FALLAHZADEH R A, GHANEIAN M T, MIRI M, et al. Spatial analysis and health risk assessment of heavy metals concentration in drinking water resources[J]. Environmental Science and Pollution Research,2017,24:24790−24802. doi: 10.1007/s11356-017-0102-3 [4] ZUO T T, JIN H Y, ZHANG L, et al. Innovative health risk assessment of heavy metals in Chinese herbal medicines based on extensive data[J]. Pharmacological Research,2020,163:104987. [5] 袁宇琳, 张静, 毛腾霄, 等. 成都市售即食中药预包装产品重金属含量分析及健康风险评估[J]. 中国实验方剂学杂志,2018,24(24):213−218. [YUAN Yulin, ZHANG Jing, MAO Tengxiao, et al. Heavy metal content analysis and health risk assessment of readytoeat Chinese medicine prepackaged products sold in Chengdu[J]. Chinese Journal of Experimental Formulas,2018,24(24):213−218. [6] ZHUANG Yongliang, XIAO Junjiang, SUN Liping, et al. Research progress on the bioaccumulation of cadmium, lead, mercury and arsenic by edible fungi[J]. Journal of Food Science and Technology,2019,37(3):19−32. [7] 王红波. 中药饮片发展现状及质量管理中存在的问题与分析[J]. 世界最新医学信息文摘,2017,17(17):194−195. [WANG Hongbo. Development status of traditional Chinese medicine decoction pieces and problems and analysis in quality management[J]. Digest of World Latest Medical Information,2017,17(17):194−195. [8] 李耀磊, 徐健, 金红宇等. 冬虫夏草及产区土壤中5种重金属及有害元素污染评价[J]. 药物分析杂志,2019,39(4):677−684. [LI Yaolei, XU Jian, JIN Hongyu et al. Pollution evaluation of 5 heavy metals and harmful elements in Cordyceps sinensis and soil in the production area[J]. Journal of Pharmaceutical Analysis,2019,39(4):677−684. [9] 吕翔, 王佳佳, 邵霞, 等. 砷元素形态分析和在中药研究中的应用进展[J]. 中成药,2017,39(8):1679−1683. [LÜ Xiang, WANG Jiajia, SHAO Xia, et al. Speciation analysis of arsenic and its application in traditional Chinese medicine research[J]. Chinese Patent Medicine,2017,39(8):1679−1683. doi: 10.3969/j.issn.1001-1528.2017.08.029 [10] 程敏, 展敏, 谭丽容, 等. 口服液类保健食品中18种重金属元素检测[J]. 现代食品科技,2019,35(2):285−290,269. [CHENG Min, ZHAN Min, TAN Lirong, et al. Detection of 18 heavy metal elements in oral liquid health foods[J]. Modern Food Science and Technology,2019,35(2):285−290,269. [11] 李爱阳, 黄建华. 应用氢化物发生微波等离子体原子发射光谱分析食用菌中总砷含量[J/OL]. 食品科学: 18[2021-09-29]. http://kns.cnki.net/kcms/detail/11.2206.TS.20201211.1712.042.html.LI Aiyang, HUANG Jianhua. Using hydride generationmicrowave plasma atomic emission spectrometry to analyze the total arsenic content in edible fungi[J/OL]. Food Science: 18[2021-09-29]. http://kns.cnki. net/kcms/detail/11.2206.TS.20201211.1712.042.html. [12] 陈双阳, 陈贵堂, 胡秋辉, 等. 市售食用菌中砷的形态分析以及健康风险评价[J]. 食品工业科技,2020,41(1):180−188. [CHEN Shuangyang, CHEN Guitang, HU Qiuhui, et al. Speciation analysis and health risk assessment of arsenic in edible fungi on the market[J]. Science and Technology of Food Industry,2020,41(1):180−188. [13] 刘威, 王振中, 胡军华, 等. ICP-MS对牡丹皮中24种微量元素的形态及其溶出特性分析[J]. 中国实验方剂学杂志,2017,23(3):39−44. [LIU Wei, WANG Zhenzhong, HU Junhua, et al. Analysis of the morphology and dissolution characteristics of 24 trace elements in Moutan cortex by ICP-MS[J]. Chinese Journal of Experimental Formulas,2017,23(3):39−44. [14] SUN L, MA X, JIN H Y, et al. Geographical origin differentiation of Chinese Angelica by specific metal element fingerprinting and risk assessment[J]. Environmental Science and Pollution Research,2020,27(2):1−13. [15] 于丽, 顾俊杰, 张宁. ICP-MS法测定四种中药材中重金属含量[J]. 福建分析测试,2020,29(4):47−49. [YU Li, GU Junjie, ZHANG Ning. Determination of heavy metals in four Chinese medicinal materials by ICP-MS[J]. Fujian Analysis and Testing,2020,29(4):47−49. doi: 10.3969/j.issn.1009-8143.2020.04.09 [16] DENG X, LI R, DENG S. Determination of the total content of arsenic, antimony, selenium and mercury in Chinese herbal food by chemical vapor generation-four-channel non-dispersive atomic fluorescence spectrometry[J]. Journal of Fluorescence,2020,30(4):949−954. doi: 10.1007/s10895-020-02569-0 [17] WANG Z, WANG H, WANG H, et al. Heavy metal pollution and potential health risks of commercially available Chinese herbal medicines[J]. The Science of the Total Environment,2019,653(FEB.25):748−757. [18] YANG C M, CHIEN M Y, CHAO P C, et al. Investigation of toxic heavy metals content and estimation of potential health risks in Chinese herbal medicinet[J]. Journal of Hazardous Materials,2021,412:125142. [19] FU L, SHI S Y, CHEN X Q. Accurate quantification of toxic elements in medicine food homologous plants using ICP-MS/MS[J]. Food Chemistry,2018,245:692−697. doi: 10.1016/j.foodchem.2017.10.136 [20] CHEN Y, JIANG Z, LI J, et al. Study on the arsenic content of Ophiocordyceps sinensis in Sichuan Province[J]. Medicinal Plant,2018,9(1):47−49. [21] ZHANG J, BARAKIEWICZ D, WANG Y, et al. Arsenic and arsenic speciation in mushrooms from China: A review[J]. Chemosphere,2020,246:125685. doi: 10.1016/j.chemosphere.2019.125685 [22] KHAN I, AWAN S A, RIZWAN M, et al. Arsenic behavior in soil-plant system and its detoxification mechanisms in plants: A review[J]. Environmental Pollution,2021,286:117389. doi: 10.1016/j.envpol.2021.117389 [23] BALI A S, SIDHU G. Arsenic acquisition, toxicity and tolerance in plants-From physiology to remediation: A review[J]. Chemosphere,2021(7):131050. [24] REHMAN M U, KHAN R, KHAN A, et al. Fate of arsenic in living systems: Implications for sustainable and safe food chains[J]. Journal of Hazardous Materials,2021,417(1):126050. [25] DOS S, SILVA J, LEMOS V A, et al. An online preconcentration system for speciation analysis of arsenic in seawater by hydride generation flame atomic absorption spectrometry[J]. Microchemical Journal,2018,143:175−180. doi: 10.1016/j.microc.2018.08.004 [26] 左甜甜, 张磊, 石上梅, 等. 10种根和根茎类保健食品原料中重金属及有害元素的风险评估及最大限量理论值[J]. 药物分析杂志,2020,40(10):1870−1876. [ZUO Tiantian, ZHANG Lei, SHI Shangmei, et al. Risk assessment and theoretical maximum limit values of heavy metals and harmful elements in 10 root and rhizome Chinese medicinal materials[J]. Chinese Journal of Pharmaceutical Analysis,2020,40(10):1870−1876. [27] AHMAD H, ZHAO Lihua, LIU Changkun, et al. Ultrasound assisted dispersive solid phase microextraction of inorganic arsenic from food and water samples using CdS nanoflowers combined with ICP-AES determination[J]. Food Chemistry,2021,338:128028. doi: 10.1016/j.foodchem.2020.128028 [28] KOMOROWICZ I, HANC A, LORENC W, et al. Arsenic speciation in mushrooms using dimensional chromatography coupled to ICP-MS detector[J]. Chemosphere,2019,233:223−233. doi: 10.1016/j.chemosphere.2019.05.130 [29] SEGURA F R, SOUZA J, PAULA E, et al. Arsenic speciation in Brazilian rice grains organically and traditionally cultivated: is there any difference in arsenic content?[J]. Food Research International,2016,89:169−176. doi: 10.1016/j.foodres.2016.07.011 [30] JIA Xiaoyo, GONG Dirong, WANG Jiani, et al. Arsenic speciation in environmental waters by a new specific phosphine modified polymer microsphere preconcentration and HPLC/ICP-MS determination[J]. Talanta,2016,160:437−443. doi: 10.1016/j.talanta.2016.07.050 [31] TANG F, NI Z, LU Y, et al. Arsenic speciation in honeysuckle (Lonicera japonica Thunb. ) from China[J]. Biologica Trace Element Research,2015,168(1):269−275. doi: 10.1007/s12011-015-0327-2 [32] STACKELBERG K V, WILLIAMS P R D, ERNESTO S T. A systematic framework for collecting site-specific sampling and survey data to support analyses of health impacts from land-based pollution in low- and middle-income countries[J]. International Journal of Environmental Research and Public Health,2021,18(9):4676−4685. doi: 10.3390/ijerph18094676 [33] 李艳苹, 王翠翠, 刘小骐, 等. 液相色谱-原子荧光联用测定海水中无机砷和有机砷[J]. 海洋技术学报,2020,39(3):6−10. [LI Yanping, WANG Cuicui, LIU Xiaoqi, et al. Determination of inorganic arsenic and organic arsenic in seawater by liquid chromatography-atomic fluorescence[J]. Journal of Marine Technology,2020,39(3):6−10. -