• CA
  • JST
  • FSTA
  • SCOPUS
  • 北大核心期刊
  • 中国科技核心期刊CSTPCD
  • 中国精品科技期刊
  • RCCSE中国核心学术期刊
  • 中国农业核心期刊
  • 中国生物医学文献服务系统SinoMed收录期刊

采用QuEChERS结合UHPLC-MS/MS定量分析热加工肉制品中的三种胺类物质

秦志伟 叶博 刘玲

秦志伟,叶博,刘玲. 采用QuEChERS结合UHPLC-MS/MS定量分析热加工肉制品中的三种胺类物质[J]. 食品工业科技,xxxx,x(x):1−9. doi:  10.13386/j.issn1002-0306.2021120176
引用本文: 秦志伟,叶博,刘玲. 采用QuEChERS结合UHPLC-MS/MS定量分析热加工肉制品中的三种胺类物质[J]. 食品工业科技,xxxx,x(x):1−9. doi:  10.13386/j.issn1002-0306.2021120176
QIN Zhiwei, YE BO, LIU Ling. Quantitative Analysis of Three Amines in Thermally Processed Meat Products Using QuEChERS Combined with UHPLC-MS/MS[J]. Science and Technology of Food Industry, xxxx, x(x): 1−9. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021120176
Citation: QIN Zhiwei, YE BO, LIU Ling. Quantitative Analysis of Three Amines in Thermally Processed Meat Products Using QuEChERS Combined with UHPLC-MS/MS[J]. Science and Technology of Food Industry, xxxx, x(x): 1−9. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021120176

采用QuEChERS结合UHPLC-MS/MS定量分析热加工肉制品中的三种胺类物质

doi: 10.13386/j.issn1002-0306.2021120176
基金项目: 沈阳市科学计划项目:肉制品常见热加工方式中有毒有害化学因子的筛查和数据库的建立(20-206-4-22);辽宁省教育厅科学研究经费项目:肉制品热加工过程中形成有毒化学物质的风险评估(LSNJC202011)。
详细信息
    作者简介:

    秦志伟(1997−),男,硕士研究生,研究方向:食品加工与安全,E-mail:q1594301871@163.com

    通讯作者:

    刘玲(1973−),女,博士,教授,研究方向:食品化学与分析,E-mail:liuling4568@sina.com

  • 中图分类号: TS251.6

Quantitative Analysis of Three Amines in Thermally Processed Meat Products Using QuEChERS Combined with UHPLC-MS/MS

  • 摘要: 肉制品加热中产生的胺类物质对人体健康存在危害,检测方法不够简便。本文采用QuEChERS技术结合超高效液相色谱-串联质谱(UHPLC-MS/MS)技术建立同时检测丙烯酰胺(AA)、亚硝胺(NAs)和杂环胺(HAAs)含量的方法,用于分析热加工肉制品中产生的胺类物质。结果表明:该方法检测出的三类成分20种胺类物质在相应浓度范围内显示出良好的线性(R2>0.991),检测限和定量限分别为0.01~1.6 ng/g和0.03~4.8 ng/g,日内回收率介于66.3%~116.5%之间,日内精密度介于0.78%~9.0%之间。每个胺类物的5×LOQ加标水平计算的日间精度范围为3.4%~9.4%。该方法应用于煎烤的四种肉制品中AA、NAs和HAAs的分析,共检测出9种胺类物质,浓度范围为0.08~31.26 ng/g。
  • 图  1  流动相中不同乙酸铵添加条件下20种胺类物质的色谱图

    Figure  1.  Chromatograms of 20 amines under different ammonium acetate addition conditions in mobile phase

    注:A、B、C、D、E分别为20 mmol/L、10 mmol/L、5 mmol/L、1 mmol/L、0.5 mmol/L。

    图  2  流动相为1 mmol/L乙酸铵0.06%甲酸条件下20种胺类物质混合标准溶液色谱图

    Figure  2.  Chromatogram of a mixed standard solution of 20 amines with the mobile phase 1 mmol/L ammonium acetate and 0.06% formic acid

    (1.AA;2.NPYR;3;DMIP;4.IQ;5.MeIQ;6.IQx;7.MeIQx;8. 4,8-DiMeIQx,7,8-DiMeIQx;9. Norharman;10.4,7,8-DiMeIQx;11.Harman;12.NPIP;13.PHIP;14. TRP-P-1,TRP-P-2;15.AaC;16.NDPA;17.NDBA;18.NDPHA)

    图  3  流动相为1mmol/L乙酸铵0.06%甲酸条件下20种胺类物质提取离子流图

    Figure  3.  Ion flow diagram of 20 kinds of amines extracted with the mobile phase 1mmol/L ammonium acetate and 0.06% formic acid

    图  4  20种胺类物质在不同提取剂中的回收率

    Figure  4.  Extraction recoveries of 20 amines in different extractants

    图  5  20种胺类物质在不同吸附剂中的回收率

    Figure  5.  Extraction recoveries of 20 amines in different adsorbents

    表  1  AA、NAs、HAAs的质谱条件

    Table  1.   MS conditions of AA, NAs and HAAs

    化合物保留时间(min)锥孔电压(V)MRM离子对(m/z)碰撞电压(V)
    AA0.843572.13/55.27*
    72.13/43.93
    10
    10
    DMIP2.3448162.96/148.05*
    162.96/105.203
    22
    32
    IQx3.0258199.98/185.08*
    199.98/131.12
    26
    38
    IQ2.5156198.90/184.07
    198.90/130.00
    28
    40
    MeIQ2.8652212.97/198.01*
    212.97/116.87
    24
    50
    MeIQx3.3854213.97/130.97*
    213.97/199.02
    38
    26
    7,8-DiMeIQx3.6560228.00/213.06*
    228.00/131.03
    26
    38
    4,8-DiMeIQx3.6554227.94/212.94*
    227.94/144.83
    22
    38
    Norharman3.7660168.95/141.99*
    168.95/89.01
    26
    42
    Harman3.9358182.90/114.97*
    182.90/167.94
    32
    26
    TRP-P-24.1356197.97/127.59*
    197.97/77.09
    28
    48
    PHIP4.1558224.97/210.03*
    224.97/114.71
    28
    48
    TRP-P-14.2856211.98/179.19*
    211.98/115.04
    38
    44
    AaC4.4246183.91/157.003*
    183.91/88.95
    20
    46
    NPYR2.224100.85/55.12*
    100.85/40.00
    25
    15
    NDPA5.7724130.97/89.08*
    130.97/42.85
    8
    13
    NDPHA7.1228199.09/169.10*
    199.09/74.10
    10
    12
    NDBA6.9828158.97/102.99*
    158.97/56.95
    10
    13
    NMOR1.7230117/45*
    117/87
    18
    18
    NPIP4.0730115/41*
    115/69
    16
    12
    4,7,8-TriMeIQx3.8754241.87/145.0140
    Norharman-d73.7362176.03/120.3730
    注:*为定量离子。
    下载: 导出CSV

    表  2  20种目标化合物的标准曲线、定量限、检测线和基质效应

    Table  2.   Standard curves, quantification limits, detection lines and matrix effects of 20 target compounds

    化合物线性范围(ng/mL)校准曲线R2LOD(ug/kg)LOQ(ug/kg)ME
    AA1~100y=174.061x+74.12020.9970.752.250.93
    DMIP0.1~100y=0.0102x+0.0170.9980.10.30.67
    IQx0.1~100y=0.009x+0.00640.9990.060.180.83
    IQ0.1~100y=0.0069x+0.01720.9940.060.180.41
    MeIQ0.1~100y=0.0157x+0.00930.9910.10.31.17
    MeIQx0.1~100y=0.0105x+0.00480.9980.020.061.17
    7,8-DiMeIQx0.1~100y=0.032x−0.00930.9960.010.031.09
    4,8-DiMeIQx0.1~100y=0.0231x−0.00060.9970.020.060.97
    Norharman0.1~100y=0.0467x−0.01850.9990.060.181.15
    Harman0.1~100y=0.9079x−0.95260.9980.020.061.17
    TRP-P-21~100y=0.0059x−0.05480.9950.752.250.47
    PhIP0.1~100y=0.4951x−0.44040.9940.010.031.15
    TRP-P-10.1~100y=0.0448x−0.070.9970.010.031.23
    AaC0.5~100y=0.0127x+0.00150.9960.41.20.95
    NPYR2~100y=565.381x−62.98930.9951.54.50.63
    NDPA1~100y=272.29x−6.828130.9970.82.40.80
    NDPHA0.1~100y=187.967x+280.380.9990.060.180.79
    NDBA0.1~100y=666.164x+440.2690.9970.010.030.80
    NMOR2~100y=41.4562x−23.38520.9961.64.81.01
    NPIP0.5~100y=436.673x−552.9530.9980.51.51.10
    下载: 导出CSV

    表  3  20种胺类物质的加标回收率

    Table  3.   Standard recovery rates of 20 amines

    化合物本底量
    (ng/g)
    添加量
    (ng/g)
    回收率%
    1×LOQ5×LOQ10×LOQ
    AA33.0、15.0、30.089.4±3.796.4±6.497.8±7.8
    DMIPND0.3、1.5、3.089.1±4.992.3±4.394.4±5.5
    IQxND0.2、1.0、2.086.2±5.884.2±6.490.5±7.2
    IQND0.2、1.0、2.071.2±2.983.1±5.977.8±4.5
    MeIQND0.3、1.5、3.0111.5±9.2103.5±7.3115.2±7.0
    MeIQxND0.1、0.5、1.087.2±6.782.7±5.781.5±4.8
    7,8-DiMeIQxND0.1、0.5、1.090.4±3.092.5±3.983.7±4.4
    4,8-DiMeIQxND0.1、0.5、1.096.6±4.599.1±6.895.1±5.9
    Norharman1.70.2、1.0、2.0116.5±3.6104.3±4.0104.6±6.1
    Harman1.40.1、0.5、1.088.0±4.682.9±5.390.0±3.8
    TRP-P-2ND3.0、15.0、30.066.3±2.971.4±3.472.9±4.1
    PHIPND0.1、0.5、1.096.3±5.8110.3±6.7109.3±8.5
    TRP-P-1ND0.1、0.5、1.097.1±3.5105.1±8.4100.8±2.1
    AaCND1.0、5.0、10.098.5±9.590.2±8.3107.3±8.8
    NPYRND5.0、25.0、50.081.2±5.277.8±6.474.7±5.7
    NDPAND3.0、15.0、30.0109.4±7.696.4±6.497.9±7.8
    NDPHAND0.2、1.0、2.085.7±7.197.7±4.796.3±5.9
    NDBAND0.1、0.5、1.081.7±4.382.7±8.288.5±5.1
    NMORND5.0、25.0、50.086.4±4.780.1±5.677.3±3.6
    NPIPND2.0、10.0、20.086.3±3.192.3±7.086.3±5.5
    注:ND表示未检出。
    下载: 导出CSV

    表  4  20种胺类物质的精密度

    Table  4.   Precisions of 20 amines

    化合物本底量
    (ng/g)
    日间精密度
    (%)
    日内精密度(%,n=5)
    1×LOQ5×LOQ10×LOQ
    AA34.3±2.56.1±2.15.8±0.46.5±1.1
    DMIPND6.9±2.65.7±0.83.3±1.17.8±1.3
    IQxND8.0±2.45.1±0.85.5±1.37.7±1.5
    IQND8.9±1.87.3±1.67.2±3.03.1±0.7
    MeIQND7.0±2.15.9±1.77.8±1.36.4±2.6
    MeIQxND5.2±2.14.8±2.55.9±1.17.1±1.3
    7,8-DiMeIQxND5.4±2.35.4±1.62.9±1.24.0±0.7
    4,8-DiMeIQxND3.4±0.25.1±1.55.2±1.55.5±1.6
    Norharman1.77.1±3.15.2±1.17.8±3.55.9±2.5
    Harman1.47.9±1.14.5±1.10.78±0.46.2±1.2
    TRP-P-2ND5.8±2.96.6±1.36.2±1.98.1±1.6
    PHIPND7.0±2.46.7±2.25.3±1.65.3±1.3
    TRP-P-1ND8.5±2.48.2±3.34.1±0.83.9±1.6
    AaCND6.9±3.18.3±3.26.9±2.86.8±1.4
    NPYRND6.6±1.88.8±1.47.8±3.33.9±0.6
    NDPAND8.7±2.04.1±1.13.8±0.75.3±1.2
    NDPHAND9.4±2.65.3±1.57.2±2.93.8±0.8
    NDBAND5.4±2.39.0±2.14.3±1.56.6±1.6
    NMORND6.1±1.96.9±1.56.9±2.38.1±1.5
    NPIPND8.1±1.76.2±1.15.1±1.55.7±1.4
    注:ND表示未检出。
    下载: 导出CSV

    表  5  煎烤3、5、7 min四种肉品中胺类物质的含量

    Table  5.   Amines contents in four types of meat products at grilling for 3, 5, and 7 minutes

    有害物种类加工时间(min)肉制品胺类物质含量(ng/g)
    牛肉鸡肉猪肉羊肉
    NDPHA39.06±0.01a2.53±0.41b1.29±0.10c
    511.47±0.76a5.53±1.46b1.09±0.13c
    711.83±0.25a6.56±0.11b1.28±0.34c
    4,8-DiMeIQx30.07±0.01d0.26±0.04a0.2±0.01b0.13±0.02c
    50.29±0.04b0.28±0.04b0.58±0.22a0.11±0.01c
    70.22±0.07c0.40±0.02b1.44±0.24a0.22±0.08c
    7,8-DiMeIQx30.03±0.02c0.17±0.05a0.13±0.06b0.16±0.05a
    50.22±0.11c0.25±0.10b0.99±0.07a0.12±0.06d
    70.46±0.19b0.30±0.12d1.76±0.08a0.41±0.05c
    PHIP30.08±0.02a0.06±0.02b
    50.14±0.03b0.68±0.36a
    70.14±0.02b1.89±0.39a0.14±0.02b
    Norharman315.48±2.68a6.68±0.40b6.48±1.00c5.37±0.44d
    517.8±6.89a5.45±0.23d7.59±2.95c9.07±0.68b
    722.69±2.02a7.69±0.84d8.75±1.24c15.18±3.96b
    Harman33.21±0.19a1.69±0.06c1.53±0.20d2.16±0.02b
    53.28±1.44b1.79±0.07d3.19±1.20c9.74±0.11a
    74.53±0.33b2.07±0.09d3.12±0.21c10.22±0.31a
    NDBA30.08±0.02c0.13±0.01b0.15±0.02a0.09±0.01c
    50.13±0.01d0.15±0.07c0.17±0.02b0.19±0.06a
    70.16±0.03c0.23±0.02b0.23±0.03b0.25±0.05a
    NPIP318.41±3.06a8.24±0.78b6.45±0.78c4.96±0.95d
    528.89±1.57a13.03±0.10b11.95±0.49c6.89±1.02d
    731.26±1.79a14.27±1.01b13.45±1.59c7.78±1.15d
    AA311.90±3.29b5.61±3.75d8.37±0.77c12.58±2.94a
    519.20±6.42a18.58±3.81b14.64±2.09c10.38±0.77d
    728.31±2.96a18.83±3.27b22.60±1.74c18.20±4.08d
    注:−表示未检出;同行数据间不同字母表示差异显著(P<0.05)。
    下载: 导出CSV
  • [1] LUND M N, RAY C A. Control of Maillard reactions in foods: strategies and chemical mechanisms[J]. Journal of Agricultural and Food Chemistry,2017,65(23):4537−4552. doi:  10.1021/acs.jafc.7b00882
    [2] OZ F, KABAN G, KAYA M. Effects of cooking methods and levels on formation of heterocyclic aromatic amines in chicken and fish with oasis extraction method[J]. LWT-Food Science and Technology,2010,43(9):1345−1350. doi:  10.1016/j.lwt.2010.04.014
    [3] 杨旭卉, 黄运安, 关天琪, 等. 红肉及其加工制品的营养价值及癌症风险控制的研究进展[J]. 现代食品,2021(8):33−37. [YANG X H, HUANG Y A, GUAN T Q, et al. Research progress on nutritional value and cancer risk control of red meat and its processed products[J]. Modern Food,2021(8):33−37. doi:  10.16736/j.cnki.cn41-1434/ts.2021.08.011

    YANG X H, HUANG Y A, GUAN T Q, et al. Research progress on nutritional value and cancer risk control of red meat and its processed products[J]. Modern Food, 2021(8): 33-37. doi:  10.16736/j.cnki.cn41-1434/ts.2021.08.011
    [4] 杨光, 李博, 李岳桦. QuEChERS-气相色谱-串联质谱法测定香肠和火腿肠制品中13种N-亚硝胺化合物[J]. 食品安全质量检测学报,2019,10(24):8436−8443. [YANG G, LI B, LI Y H. Determination of 13 N-nitrosamines in sausage and ham products by QuEChERS-gas chromatography-tandem mass spectrometry[J]. Journal of Food Safety and Quality,2019,10(24):8436−8443. doi:  10.19812/j.cnki.jfsq11-5956/ts.2019.24.041

    YANG G, LI B, LI Y H. Determination of 13 N-nitrosamines in sausage and ham products by QuEChERS-gas chromatography-tandem mass spectrometry[J]. Journal of Food Safety and Quality, 2019, 10(24): 8436-8443. doi:  10.19812/j.cnki.jfsq11-5956/ts.2019.24.041
    [5] DUDA-CHODAK A, TARKO T, SROKA P, et al. A review of the interactions between acrylamide, microorganisms and food components[J]. Food Function,2016,3:1282−1295.
    [6] BIESALSKI H K. Meat as a component of a healthy diet-are there any risks or benefits if meat is avoided in the diet[J]. Meat Science,2005,70(3):509−524. doi:  10.1016/j.meatsci.2004.07.017
    [7] OZ F, KABAN G, KAYA M. Effects of cooking methods on the formation of heterocyclic aromatic amines of two different species of trout[J]. Food Chemistry,2007,10:67−72.
    [8] MAAN A A, ANJUM M A, KASHIF M, et al. Acrylamide formation and different mitigation strategies during food processing-A review[J]. Food Reviews International,2022,38:78−80.
    [9] MOLLAKHALILI-MEYBODI N, KHORSHIDIAN N, NEMATOLLAHI A, et al. Acrylamide in bread: A review on formation, health risk assessment, and determination by analytical techniques[J]. Environmental Science and Pollution Research,2021,28(13):15627−15645. doi:  10.1007/s11356-021-12775-3
    [10] QIN L, ZHANG Y Y, XU X B, et al. Isotope dilution HPLC-MS/MS for simultaneous quantification of acrylamideand 5-hydroxymethylfurfural (HMF) in thermally processed seafood[J]. Food Chemistry,2017,232:633−638. doi:  10.1016/j.foodchem.2017.04.069
    [11] JAMALI M A, ZHANG Y W, TENG H, et al. Inhibitory effectof Rosa rugosa tea extract on the formation of heterocyclic amines in meat patties at different temperatures[J]. Molecules,2016,21:173−187. doi:  10.3390/molecules21020173
    [12] SUN S Y, YUN F, YONG M X. A facile detection of acrylamide in starchy food by using a solid extraction-GC strategy[J]. Food Control,2012,26(2):220−222. doi:  10.1016/j.foodcont.2012.01.028
    [13] ZOKAEI M, ABEDI A, KAMANKESH M, et al. Ultrasonic-assisted extraction and dispersive liquid-liquid microextraction combined with gas chromatography-mass spectrometry as an efficient and sensitive method for determining of acrylamide in potato chips samples[J]. Food Chemistry,2017,234:55−61. doi:  10.1016/j.foodchem.2017.04.141
    [14] AEENEHVAND S, TOUDEHROUSTA Z, KAMANKESH M. Evaluation and application of microwave-assisted extraction and dispersive liquid-liquid microextraction followed by high-performance liquid chromatography for the determination of polar heterocyclic aromatic amines in hamburger patties[J]. Food Chemistry,2016,190:429−435. doi:  10.1016/j.foodchem.2015.05.103
    [15] AMAYREH M, CHANBASHA B, ALHOOSHANI K, et al. Determination of N-nitrosamines by automated dispersive liquid-liquid microextraction integrated with gas chromatography and mass spectrometry[J]. Journal of Separation Science,2015,38(10):1741−1748. doi:  10.1002/jssc.201401043
    [16] IAMMARINO M, MICHELE M, CHIARAVALLE A E. Anion exchange polymeric sorbent coupled to high‐performance liquid chromatography with UV diode array detection for the determination of ten N ‐nitrosamines in meat products: A validated approach[J]. International Journal of Food Science and Technology,2019,55(3):1097−1109.
    [17] BORTOLOMEAZZI R, ANESE M, VERARDO G, et al. Rapid mixed mode solid phase extraction method for the determination of acrylamide in roasted coffee by HPLC-MS/MS[J]. Food Chemistry,2012,135(4):2687−2693. doi:  10.1016/j.foodchem.2012.07.057
    [18] NI W, MCNAUGHTON L, LEMASTER D M, et al. Quantitation of 13 heterocyclic aromatic amines in cooked beef, pork, and chicken by liquid chromatography-electrospray ionization/tandem mass spectrometry[J]. Journal of Agricultural and Food Chemistry,2008,56(1):68−78. doi:  10.1021/jf072461a
    [19] DONG H, XIAN Y, XIAO K. , et al. Development and comparison of single-step solid phase extraction and QuEChERS clean-up for the analysisof 7 mycotoxins in fruits and vegetables during storage by UHPLC-MS/MS[J]. Food Chemistry,2019,274:471−479. doi:  10.1016/j.foodchem.2018.09.035
    [20] 张甜. 肉制品中N-亚硝胺检测的前处理方法及色谱条件优化[D]. 晋中: 山西农业大学, 2017.

    ZHANG T. Pretreatment method and optimization of chromatographic conditions for the detection of N-nitrosamines in meat products[D]. Jinzhong: Shanxi Agricultural University, 2017.
    [21] AKYÜZ M. , ATA S, DINÇ E. A chemometric optimization of method for determination of nitrosamines in gastric juices by GC-MS[J]. Journal of Pharmaceutical and Biomedical Analysis,2016,117:26−36. doi:  10.1016/j.jpba.2015.08.021
    [22] 侯慧文. 不同烤制程度下羊肉中杂环胺生成规律的研究[D]. 锦州: 渤海大学, 2021.

    HOU W H. Study on the formation law of heterocyclic amines in mutton under different roasting degrees[D]. Jinzhou: Bohai University, 2021.
    [23] ALAM S, AHMAD R, PRANAW K, et al. Asparaginase conjugated magnetic nanoparticles used for reducing acrylamide formation in food model system[J]. Bioresource Technology,2018,269:121−126. doi:  10.1016/j.biortech.2018.08.095
    [24] DOURADO C, PINTO C A, CUNHA S C, et al. A novel strategy of acrylamide mitigation in fried potatoes using asparaginase and high pressure technology[J]. Innovative Food Science and Emerging Technologies,2020,60:102310. doi:  10.1016/j.ifset.2020.102310
    [25] ZUO S, ZHANG T, JIANG B. et al. Reduction of acrylamide level through blanching with treatment by an extremely thermostable L-asparaginase during French fries process[J]. Extremophiles,2015,19(4):841−851. doi:  10.1007/s00792-015-0763-0
    [26] 李潇潇. 肉制品中丙烯酰胺形成规律的研究[D]. 天津: 天津科技大学, 2016.

    LI X X. Study on formation regularity of acrylamide in meat products[D]. Tianjin: Tianjin University of Science and Technology, 2016.
    [27] DONG H, ZENG X F, BAI W D. Solid phase extraction with high polarity Carb/PSA as composite fillers prior to UPLC-MS/MS to determine six bisphenols and alkylphenols in trace level hotpot seasoning[J]. Food Chemistry,2018,258:206−213. doi:  10.1016/j.foodchem.2018.03.074
    [28] FLORES M, MORA L, REIG M, et al. Risk assessment of chemical substances of safety concern generated in processed meats[J]. Food Science and Human Wellness,2019,8(3):244−251. doi:  10.1016/j.fshw.2019.07.003
    [29] 朱清清. 腊肉加工过程中亚硝胺生成规律及其控制研究[D]. 天津: 天津科技大学, 2015.

    ZHU Q Q. Research on the formation law and control of nitrosamines in the processing of bacon[D]. Tianjin: Tianjin University of Science and Technology, 2015.
    [30] HASKARACA G, DEMIROK SONCU E, KOLSARICI N, et al. Heterocyclic aromatic amines content in chicken burgers and chicken nuggets sold in fast food restaurants and effects of green tea extract and microwave thawing on their formation[J]. Journal of Food Processing and Preservation,2017,41(6):e13240. doi:  10.1111/jfpp.13240
    [31] GU Y S, KIM I S. AHN J K. Mutagenic and carcinogenic heterocyclic amines as affected by muscle types/skin and cooking in pan roasted mackerel[J]. Mutatation Research,2020,515(1−2):189−195.
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  34
  • HTML全文浏览量:  10
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-20
  • 网络出版日期:  2022-08-04

目录

    /

    返回文章
    返回

    重要通知

    《食品工业科技》青年编委专栏征稿 | 杂粮与主粮复配的营养学基础