Effects of Different Thawing Methods on the Quality Characteristics of the Duck Leg Meat
-
摘要: 为选择一种合适的解冻方式(冷藏解冻、室温解冻、流水解冻和微波解冻),以期减少冷冻原料肉解冻过程的损耗并保障产品质量,为企业生产提供理论参考依据。本文以冷冻鸭腿肉为研究对象,探究不同解冻方式对冷冻鸭腿肉的保水性、pH、色泽、硫代巴比妥酸(TBARS)、羰基、Ca2+-ATPase、总巯基、组织学特性等指标的影响,并结合凝胶电泳和拉曼光谱分析蛋白质的降解及蛋白质二级结构的稳定性。结果表明:冷藏解冻的鸭腿肉解冻损失最低,色泽保持红润,肌纤维间隙最小(6.97 μm),组织结构紧密;TBARS值最低(0.16 mg/100 g),脂质氧化程度轻;羰基含量最低(0.16 nmol/mg),总巯基含量(149.10 μmol/g)和Ca2+-ATPase活性(2.69 U/mg)最高,对蛋白氧化影响小,凝胶电泳显示蛋白降解程度轻,α-螺旋含量高(42.33%),蛋白质的二级结构稳定有序。与冷藏解冻相比,流水解冻对鸭腿肉的保水性、色泽、组织学特性、脂质氧化与蛋白质氧化的影响稍重,其次是室温解冻,微波解冻的影响较严重。因此,冷藏解冻对冷冻鸭腿肉的品质影响较小,是最合适的解冻方式。Abstract: In order to reduce product loss and guarantee product quality, this paper used frozen duck leg meat as raw material. The data would be provided to the enterprises as a theoretical reference. Four kinds of thawing methods, refrigerated thawing, room temperature thawing, running water thawing, and microwave thawing were used. The effects of thawing methods on the quality were discussed including water retention, pH, color, thiobarbituric acid value (TBARS), carbonyl groups, Ca2+-ATPase, total sulfhydryl groups, histological properties. Combined with gel electrophoresis and Raman spectroscopy, the degradation and the secondary structure of proteins were analyzed. The results showed that refrigerated thawing had minimum thawing loss, red color, muscle fiber gap (6.97 μm), and tight tissue structure. Lipid oxidation and protein oxidation were mild with minimum thiobarbituric acid value (0.16 mg/100 g), carbonyl content (0.16 nmol/mg), and maximum total sulfhydryl content (149.10 μmol/g), and Ca2+-ATPase activity (2.69 U/mg). Gel electrophoresis showed light protein degradation and Raman spectroscopy showed a stable and ordered secondary structure of the protein with high alpha helix content (42.33%). Compared with refrigerated thawing, the effect of running water thawing on water retention, color, histological properties, lipid oxidation, and protein oxidation of duck leg meat was slightly heavier, followed by room temperature thawing and more serious effect of microwave thawing. Collectively, refrigerated thawing is the optimal thawingmethod with less effect on the quality loss of frozen duck leg meat.
-
Key words:
- duck leg meat /
- thawing methods /
- quality /
- lipid oxidation /
- protein oxidation
-
表 1 不同解冻方式对鸭腿肉的pH、色泽的影响
Table 1. Effects of different thawing methods on pH and color of duck leg meat
解冻方式 pH 色泽 L*值 a*值 b*值 冷藏解冻 6.30±0.01a 37.93±1.62a 6.13±0.59b 8.41±0.57b 室温解冻 6.44±0.01b 44.27±1.86b 4.66±0.38a 7.08±0.75a 流水解冻 6.28±0.02a 43.77±0.02b 5.92±0.01b 7.69±0.18ab 微波解冻 6.54±0.05c 42.67±0.02b 4.11±0.01a 13.38±0.01c 注:同列不同小写字母表示不同解冻方式间差异显著(P<0.05)。 表 2 不同解冻方式对鸭腿肉肌纤维间隙的影响
Table 2. Effect of different thawing methods on the muscle fiber gap of duck leg meat
解冻方式 冷藏解冻 室温解冻 流水解冻 微波解冻 肌纤维间隙(μm) 6.97±0.91a 11.72±0.94b 8.06±0.59a 15.54±0.81c 注:同行不同小写字母表示不同解冻方式间差异显著(P<0.05)。 表 3 解冻处理鸭腿肉各指标相关性分析
Table 3. Correlation analysis of various indicators of thawed duck leg meat
指标 解冻损失率 蒸煮损失率 pH L*值 a*值 b*值 TBARS值 羰基
含量Ca2+-ATPase活性 总巯基含量 肌纤维间隙 解冻损失率 1 0.264 0.840** 0.457 −0.857** 0.552 0.759** 0.755** −0.889** −0.920** 0.927** 蒸煮损失率 1 0.505 −0.515 −0.341 0.665* 0.443 0.520 0.051 −0.063 0.418 pH 1 0.291 −0.861** 0.680* 0.843** 0.799** −0.733** −0.820** 0.936** L*值 1 −0.580* −0.097 0.256 0.195 −0.693* −0.675* 0.414 a*值 1 −0.510 −0.724** −0.727** 0.801** 0.848** −0.889** b*值 1 0.909** 0.924** −0.207 −0.529 0.738** TBARS值 1 0.974** −0.799** −0.803** 0.907** 羰基含量 1 −0.542 −0.748** 0.884** Ca2+-ATPase
活性1 0.906** −0.799** 总巯基含量 1 −0.931** 肌纤维间隙 1 注:*表示显著相关(P<0.05),**表示极显著相关(P<0.01)。 -
[1] LEYGONIE C, BRITZ T J, HOFFMAN L C. Protein and lipid oxidative stability of fresh ostrich M. iliofibularis packaged under different modified atmospheric packaging conditions[J]. Food Chemistry,2011,127(4):1659−1667. doi: 10.1016/j.foodchem.2011.02.033 [2] ALVARENGA T, HOPKINS D L, RAMOS E M, et al. Ageing-freezing/thaw process affects blooming time and myoglobin forms of lamb meat during retail display[J]. Meat Science,2019,153:19−25. doi: 10.1016/j.meatsci.2019.02.016 [3] B G J A, C K S, B J M, et al. Effect of high voltage electrostatic field treatment on thawing characteristics and post-thawing quality of lightly salted, frozen pork tenderloin[J]. LWT,2019,99:268−275. doi: 10.1016/j.lwt.2018.09.064 [4] XIA X, KONG B, LIU J, et al. Influence of different thawing methods on physicochemical changes and protein oxidation of porcine longissimus muscle[J]. LWT-Food Science and Technology,2012,46(1):280−286. doi: 10.1016/j.lwt.2011.09.018 [5] 张帆, 范远景, 刘培志, 等. 不同解冻方法对鸭肉品质的影响[J]. 肉类研究,2016,30(5):35−39. [ZHANG F, FAN Y J, LIU P Z, et al. Effects of different thawing methods on quality of duck meat[J]. Meat Research,2016,30(5):35−39. doi: 10.15922/j.cnki.rlyj.2016.05.006 [6] 郭德斌, 刘薇, 苏婷, 等. 不同解冻方式对冷冻鸭翅品质的影响[J]. 浙江农业科学,2020,61(10):2099−2103. [GUO D B, LIU W, SU T, et al. Effects of different thawing methods on the quality of frozen duck wings[J]. Zhejiang Agricultural Science,2020,61(10):2099−2103. doi: 10.16178/j.issn.0528-9017.20201044 [7] 余力, 贺稚非, 王兆明, 等. 不同解冻方式对伊拉兔肉挥发性风味物质的影响[J]. 食品科学,2015,36(22):95−101. [YU L, HE Z F, WANG Z M, et al. Effects of different thawing methods on volatile flavor compounds of Ila rabbit meat[J]. Food Science,2015,36(22):95−101. doi: 10.7506/spkx1002-6630-201522017 [8] 李锦锦, 莫然, 唐善虎, 等. 不同解冻方式对猪肝理化特性及氧化稳定性的影响[J]. 食品工业科技,2021,42(14):302−309. [LI J J, MO R, TANG S H, et al. Effects of different thawing methods on physicochemical properties and oxidation stability of pig liver[J]. Science and Technology of Food Industry,2021,42(14):302−309. [9] 李学鹏, 刘慈坤, 周明言, 等. 羟自由基氧化对草鱼肌原纤维蛋白结构和凝胶性质的影响[J]. 食品科学,2017,38(21):30−37. [LI X P, LIU C K, ZHOU M Y, et al. Effects of hydroxyl radical oxidation on the structure and gel properties of myofibrin in grass carp (Ctenopharyngodon idellus)[J]. Food Science,2017,38(21):30−37. doi: 10.7506/spkx1002-6630-201721005 [10] 阿依木古丽, 蔡勇, 陈士恩, 等. 反复冷冻-解冻对牛肉品质及组织结构的影响[J]. 食品科学,2011(7):109−112. [A Y M G L, CAI Y, CHEN S E, et al. Effects of repeated freeze-thawing on beef quality and tissue structure[J]. Food Science,2011(7):109−112. [11] 顾赛麒, 周洪鑫, 郑皓铭, 等. 干制方式对腌腊草鱼脂肪氧化和挥发性风味成分的影响[J]. 食品科学,2018,39(21):1−10. [GU S Q, ZHOU H X, ZHEGN H M, et al. Effects of drying methods on lipid oxidation and volatile flavor components of preserved grass carp[J]. Food Science,2018,39(21):1−10. [12] LEVINE R L, GARLAND D, OLIVER C N, et al. Determination of carbonyl content in oxidatively modified proteins[J]. Methods in Enzymology,1990,186:464−478. [13] BEVERIDGE T, TOMA S J, NAKAI S. Determination of SH- and SS-groups in some food proteins using Ellman's reagent[J]. Journal of Food Science,1974,39(1):49−51. doi: 10.1111/j.1365-2621.1974.tb00984.x [14] 蔡路昀, 许晴, 曹爱玲. 不同超声辅助解冻方式对海鲈鱼肌原纤维蛋白的影响[J]. 食品与发酵工业,2020,46(20):1−8. [CAI L Y, XU Q, CAO A L. Effects of different ultrasound-assisted thawing methods on myofibrin of sea bass[J]. Food and Fermentation Industries,2020,46(20):1−8. doi: 10.13995/j.cnki.11-1802/ts.024414 [15] 王琳琳, 陈炼红, 李璐倩, 等. 解冻方式对牦牛肉蛋白氧化、功能特性及新鲜度的影响[J]. 农业机械学报,2021,52(5):342−349. [WANG L L, CHEN L H, LI L Q, et al. Effects of thawing methods on oxidation, functional characteristics and freshness of yak protein[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(5):342−349. doi: 10.6041/j.issn.1000-1298.2021.05.038 [16] 刘欢, 陈雪, 宋立玲, 等. 不同解冻方式对鲐鱼鲜度及品质的影响[J]. 食品科学,2016,37(10):259−265. [LIU H, CHEN X, SONG L L, et al. Effects of different thawing methods on freshness and quality of mackerel[J]. Food Science,2016,37(10):259−265. [17] 常海军, 唐翠, 唐春红. 不同解冻方式对猪肉品质特性的影响[J]. 食品科学,2014,35(10):1−5. [CHANG H J, TANG C, TANG C H. Effects of different thawing methods on pork quality and characteristics[J]. Food Science,2014,35(10):1−5. [18] HUGHES J, CLARKE F, PURSLOW P, et al. High pH in beef longissimus thoracis reduces muscle fibre transverse shrinkage and light scattering which contributes to the dark colour[J]. Food Research International,2017,101:228−238. doi: 10.1016/j.foodres.2017.09.003 [19] ZHANG Y M, HOPKINS D L, ZHAO X X, et al. Characterisation of pH decline and meat color development of beef carcasses during the early postmortem period in a Chinese beef cattle abattoir[J]. Journal of Integrative Agriculture,2018,17(7):1691−1695. doi: 10.1016/S2095-3119(17)61890-2 [20] 牛改改, 秦成丰, 游刚, 等. 解冻方式对近江牡蛎肉感官特征和理化指标的影响[J]. 食品工业科技,2020,41(16):271−278. [NIU G G, QIN C F, YOU G, et al. Effects of thawing methods on sensuality characteristics and physicochemical indexes of Crassostrea crassostrea[J]. Science and Technology of Food Industry,2020,41(16):271−278. doi: 10.13386/j.issn1002-0306.2020.16.043 [21] ZAKRYS P I, HOGAN S A, O'SULLIVAN M G, et al. Effects of oxygen concentration on the sensory evaluation and quality indicators of beef muscle packed under modified atmosphere[J]. Meat Science,2008,79(4):648−655. doi: 10.1016/j.meatsci.2007.10.030 [22] 朱宏星, 孙冲, 王道营, 等. 肌红蛋白理化性质及肉色劣变影响因素研究进展[J]. 肉类研究,2019,33(6):55−63. [ZHU H X, SUN C, WANG D Y, et al. Research progress on physicochemical properties of myoglobin and influencing factors of meat deterioration[J]. Meat Research,2019,33(6):55−63. [23] 李慧芝, 谢含仪, 赵燕芳, 等. 反复冻融过程对肉类氧化关键指标的影响[J]. 食品科技,2020,45(11):102−109. [LI H Z, XIE H Y, ZHAO Y F, et al. Effects of repeated freezing and thawing on key parameters of meat oxidation[J]. Food Science and Technology,2020,45(11):102−109. doi: 10.13684/j.cnki.spkj.2020.11.017 [24] XIANG W, SONG X, QIU Z, et al. Mapping of TBARS distribution in frozen-thawed pork using NIR hyperspectral imaging[J]. Meat Science,2016,113(MAR.):92−96. [25] BHATTACHARYA D, KANDEEPAN G, VISHNURAJ M R. Protein oxidation in meat and meat products-A review[J]. Food and Health,2016,2(4):171−183. [26] AKAGAWA M. Protein carbonylation: Molecular mechanisms, biological implications, and analytical approaches[J]. Free Radical Research,2021,55(4):307−320. doi: 10.1080/10715762.2020.1851027 [27] 赵冰, 张顺亮, 李素, 等. 脂肪氧化对肌原纤维蛋白氧化及其结构和功能性质的影响[J]. 食品科学,2018,39(5):40−46. [ZHAO B, ZHANG S L, LI S, et al. Effects of lipid oxidation on myofibrin oxidation and its structure and functional properties[J]. Food Science,2018,39(5):40−46. [28] 侯晓荣, 米红波, 茅林春. 解冻方式对中国对虾物理性质和化学性质的影响[J]. 食品科学,2014,35(4):243−247. [HOU X R, MI H B, MAO L C. Effects of thawing methods on physical and chemical properties of Penaeus chinensis[J]. Food Science,2014,35(4):243−247. [29] 杜清普, 赵英, 王瑞红, 等. 不同解冻方法对冰蛋黄功能特性、理化特性及蛋白质结构的影响[J]. 食品科学,2021,42(11):8−16. [DU Q P, ZHAO Y, WANG R H, et al. Effects of different thawing methods on functional properties, physicochemical properties and protein structure of ice yolk[J]. Food Science,2021,42(11):8−16. [30] LI X, MA Y, SUN P, et al. Effect of ultrasonic thawing on protein properties and muscle quality of bonito[J]. Journal of Food Processing and Preservation,2020,45(1):e14930. [31] ZALP ZEN B, SOYER A. Effect of plant extracts on lipid and protein oxidation of mackerel (Scomber scombrus) mince during frozen storage[J]. Journal of Food Science and Technology,2018,55(22):120−127. [32] LI F, WANG B, LIU Q, et al. Changes in myofibrillar protein gel quality of porcine longissimus muscle induced by its structural modification under different thawing methods[J]. Meat Science,2019,147:108−115. doi: 10.1016/j.meatsci.2018.09.003 [33] 李升升. 基于蛋白质组学的牦牛平滑肌嫩度形成机制研究[D]. 兰州: 甘肃农业大学, 2019.LI S S. Study on the formation mechanism of yak smooth muscle tenderness based on proteomics[D]. Lanzhou: Gansu Agricultural University, 2019. [34] 王雪松, 谢晶. 不同解冻方式对冷冻竹荚鱼品质的影响[J]. 食品科学,2020,41(23):137−143. [WANG X S, XIE J. Effects of different thawing methods on quality of frozen horse mackerel[J]. Food Science,2020,41(23):137−143. doi: 10.7506/spkx1002-6630-20191105-050 [35] 程述震, 王晓拓, 张洁, 等. 电子束剂量率对牛肉蛋白结构和理化性质的影响[J]. 食品科学,2017,39(3):150−156. [CHENG S Z, WANG X T, ZHAGN J, et al. Effects of electron beam dose rate on protein structure and physicochemical properties of beef[J]. Food Science,2017,39(3):150−156. [36] XIA M, CHEN Y, GUO J, et al. Effects of oxidative modification on textural properties and gel structure of pork myofibrillar proteins[J]. Food Research International,2019,121(JUL.):678−683. [37] HELLWIG M. The chemistry of protein oxidation in food[J]. Angewandte Chemie International Edition,2019,58(47):16742−16763. doi: 10.1002/anie.201814144 [38] DLA B, LZ B, RL A, et al. Effect of plant protein mixtures on the microstructure and rheological properties of myofibrillar protein gel derived from red sea bream (Pagrosomus major)[J]. Food Hydrocolloids,2019,96:537−545. doi: 10.1016/j.foodhyd.2019.05.043 [39] HERRERO A M. Raman spectroscopy for monitoring protein structure in muscle food systems[J]. Critical Reviews in Food Science and Nutrition,2008,48(6):512−523. doi: 10.1080/10408390701537385 [40] 刘磊, 夏强, 曹锦轩, 等. 不同解冻方法对鹅腿肉理化特性和品质的影响[J]. 食品科学,2020,41(15):256−261. [LIU L, XIA Q, CAO J X, et al. Effects of different thawing methods on physicochemical properties and quality of goose leg meat[J]. Food Science,2020,41(15):256−261. doi: 10.7506/spkx1002-6630-20191018-196 [41] 吴永祥, 王玉, 袁德现, 等. 超高压处理对臭鳜鱼细菌群落结构和品质的影响[J]. 食品科学,2021:1−14. [WU Y X, WANG Y, YUAN D X, et al. Effects of ultra-high pressure treatment on bacterial community structure and quality of smelly Mandarin fish[J]. Food Science,2021:1−14. [42] 张玉林. 宰后活性氧簇(ROS)的形成对鹅肉品质影响机制的研究[D]. 宁波: 宁波大学, 2014.ZHANG Y L. Study on the mechanism of postmortem reactive oxygen species (ROS) formation on goose meat quality[D]. Ningbo: Ningbo University, 2014. [43] ALIX A, PEDANOU G, BERJOT M. Fast determination of the quantitative secondary structure of proteins by using some parameters of the Raman amide I band[J]. Journal of Molecular Structure,1988,174(none):159−164. [44] 杨玉玲, 游远, 彭晓蓓, 等. 加热对鸡胸肉肌原纤维蛋白结构与凝胶特性的影响[J]. 中国农业科学,2014,47(10):2013−2020. [YANG Y L, YOU Y, PENG X P, et al. Effects of heating on the structure and gel properties of chicken breast myofibrillar proteins[J]. China Agricultural Science,2014,47(10):2013−2020. doi: 10.3864/j.issn.0578-1752.2014.10.015 [45] BAO Y, ERTBJERG P. Effects of protein oxidation on the texture and water-holding of meat: A review[J]. Critical Reviews in Food Science and Nutrition,2019,59(22):3564−3578. doi: 10.1080/10408398.2018.1498444 [46] BAO Y, ERTBJERG P, ESTÉVEZ M, et al. Freezing of meat and aquatic food: Underlying mechanisms and implications on protein oxidation[J]. Comprehensive Reviews in Food Science and Food Safety,2021,20(6):5548−5569. doi: 10.1111/1541-4337.12841 -