• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020

谷氨酸棒状杆菌合成L-高丝氨酸的代谢改造与发酵条件探究

郭秋爽 包倩倩 许银彪 蔡帅 孙杨 李华 刘宇鹏

郭秋爽,包倩倩,许银彪,等. 谷氨酸棒状杆菌合成L-高丝氨酸的代谢改造与发酵条件探究[J]. 食品工业科技,2023,44(3):133−140. doi:  10.13386/j.issn1002-0306.2022030161
引用本文: 郭秋爽,包倩倩,许银彪,等. 谷氨酸棒状杆菌合成L-高丝氨酸的代谢改造与发酵条件探究[J]. 食品工业科技,2023,44(3):133−140. doi:  10.13386/j.issn1002-0306.2022030161
GUO Qiushuang, BAO Qianqian, XU Yinbiao, et al. Metabolic Transformation and Fermentation Condition of L-homoserine Synthesis by Corynebacterium glutamicum[J]. Science and Technology of Food Industry, 2023, 44(3): 133−140. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022030161
Citation: GUO Qiushuang, BAO Qianqian, XU Yinbiao, et al. Metabolic Transformation and Fermentation Condition of L-homoserine Synthesis by Corynebacterium glutamicum[J]. Science and Technology of Food Industry, 2023, 44(3): 133−140. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022030161

谷氨酸棒状杆菌合成L-高丝氨酸的代谢改造与发酵条件探究

doi: 10.13386/j.issn1002-0306.2022030161
基金项目: 河南省自然科学基金资助项目(202300410055);河南省重点研发与推广专项(No.192102110179)。
详细信息
    作者简介:

    郭秋爽(1995−),女,硕士研究生,研究方向:代谢工程改造,E-mail:1528693877@qq.com

    通讯作者:

    李华(1986−),男,博士,副教授,研究方向:工业微生物理性设计育种和发酵工程研究, E-mail: 10140152@vip.henu.edu.cn

    刘宇鹏(1977−),男,博士,教授,研究方向:发酵工程和生物催化研究, E-mail: liuyupenglw@126.com

  • 中图分类号: TS201.3

Metabolic Transformation and Fermentation Condition of L-homoserine Synthesis by Corynebacterium glutamicum

  • 摘要: 目的:本研究以谷氨酸棒状杆菌ATCC 13032为底盘细胞,构建1株L-高丝氨酸合成菌株并分析溶氧环境对其产物合成的影响。方法:首先通过外源添加0~40 g/L的L-高丝氨酸分析谷氨酸棒状杆菌的产物耐受性;随后,通过基因thrB敲除阻断L-高丝氨酸的降解途径,获得谷氨酸棒状杆菌重组菌H1;在此基础上利用挡板摇瓶进行细胞培养以增强发酵过程中氧气供给能力。结果:与大肠杆菌相比,谷氨酸棒状杆菌对L-高丝氨酸具有更强耐受性。研究中通过敲除基因thrB构建了L-苏氨酸缺陷型谷氨酸棒状杆菌重组菌H1,发现基础培养基中加入0.5 g/L的L-苏氨酸后,该重组菌生长恢复正常水平。挡板摇瓶条件下重组菌H1的L-高丝氨酸产量增加至836.7 mg/L,较普通摇瓶产量44.6 mg/L提高了17.76倍。结论:通过阻断L-苏氨酸的合成,成功构建L-高丝氨酸合成菌株谷氨酸棒状杆菌H1,并且发现利用挡板摇瓶增强发酵过程中供氧能力是促进谷氨酸棒状杆菌高效合成L-高丝氨酸的有效手段,为后续提高L-高丝氨酸发酵产量提供了参考。
  • 图  1  不同宿主菌对L-高丝氨酸的耐受性分析

    Figure  1.  Tolerance analysis of different host bacteria to L-homoserine

    注:A:大肠杆菌;B:谷氨酸棒状杆菌。

    图  2  基因thrB敲除及其对C. glutamicum ATCC 13032生长的影响

    Figure  2.  The deletion of gene thrB and its effect on the growth of C. glutamicum ATCC 13032

    注:A:基因thrB敲除质粒构建流程图;B:基因thrB敲除质粒琼脂糖凝胶电泳图,M:marker;1:上游同源臂(L);2:下游同源臂(D);3:L-D重叠 PCR产物;4:敲除质粒单酶切验证;5:敲除质粒双酶切验证;C:基因thrB敲除PCR验证,M:marker;1:野生菌C. glutamicum ATCC 13032;2:基因thrB敲除菌C. glutamicum H1;D:基因thrB敲除对C. glutamicum ATCC 13032生长的影响。

    图  3  L-高丝氨酸激酶编码基因thrB敲除对L-高丝氨酸合成的影响

    Figure  3.  The effect of gene thrB deletion on the synthesis of L-homoserine

    注:A:野生菌C. glutamicum ATCC 13032与基因thrB敲除菌C. glutamicum H1 72 h发酵液高效液相色谱分析;B:野生菌C. glutamicum ATCC 13032与基因thrB敲除菌C. glutamicum H1的细胞生长以及L-高丝氨酸产量分析。

    图  4  不同培养环境下菌株的生长情况及溶氧变化

    Figure  4.  Growth and dissolved oxygen of strains in different culture environments

    表  1  实验菌株与质粒

    Table  1.   Experimental strains and plasmids

    菌株/质粒特征来源
    E. coli DH5α用于质粒的扩增与保存本实验室保存
    E. coli W3110用于L-高丝氨酸生长抑制测定本实验室保存
    C. glutamicum ATCC 13032野生型,生物素缺陷型本实验室保存
    C. glutamicum H113032 衍生菌,∆thrB本研究
    pK18mobsacB自杀质粒,Kmr本实验室保存
    pK18-thrB包含thrB同源臂的pK18mobsacB本研究
    下载: 导出CSV

    表  2  实验引物

    Table  2.   Primers for the experiments

    引物名称引物序列
    thrB-L-F-BamH ICATGGATCCCCCGACTCTATTACCTGTGT
    thrB-L-RCTTGTTGGGCGTCAGTAAAATTAGTCCCTTTCGAGGCG
    thrB-R-FTTTTACTGACGCCCAACAAGGAAGGCCCCCTTC
    thrB-R-R-Hind IIICCCAAGCTTCTTCCAAACACGCGTCCCCGACAAC
    thrB-YZ-FGCTATTTCTGCTCGCGTGCA
    thrB-YZ-RGATTCGAAGGGGGCCTTCCTTGTTG
    下载: 导出CSV

    表  3  L-高丝氨酸梯度洗脱程序

    Table  3.   Gradient elution procedure of L-homoserine

    时间(min)流动相A(%)流动相B(%)流速(mL/min)
    090.010.01.00
    5.0090.010.01.00
    11.0033.067.01.00
    14.500.0100.01.20
    15.000.0100.01.20
    17.0090.010.01.00
    25.0090.010.01.00
    下载: 导出CSV

    表  4  不同培养基下L-高丝氨酸的产量(mg/L)

    Table  4.   The production of L-homoserine in different media (mg/L)

    培养基 C. glutamicum ATCC 13032C. glutamicum H1
    发酵培养基Ⅰ022.4±0.35
    发酵培养基Ⅱ044.6±0.72
    下载: 导出CSV

    表  5  不同摇瓶方式对L-高丝氨酸合成的影响

    Table  5.   The effect of different shaking flasks on the synthesis of L-homoserine

    摇瓶种类菌株胞外L-高丝氨酸(mg/L)胞内L-高丝氨酸
    (mg/g-DCW)
    OD600残糖(g/L)
    普通摇瓶C. glutamicum H144.6±0.720.68±0.01516.03±0.5216.61±0.63
    挡板摇瓶C. glutamicum H1836.7±20.541.78±0.14340.2±2.124.24±0.25
    下载: 导出CSV
  • [1] HUANG J F, LIU Z Q, JIN L Q, et al. Metabolic engineering of Escherichia coli for microbial production of L-methionine[J]. Biotechnology and Bioengineering,2017,114(4):843−851. doi:  10.1002/bit.26198
    [2] AREZKI N R, WILLIAMS A C, COBB J A, et al. Design, synthesis and characterization of linear unnatural amino acids for skin moisturization[J]. International Journal of Cosmetic Science,2017,39(1):72−82. doi:  10.1111/ics.12351
    [3] MIN L A , JI A , JG B , et al. Increasing L-homoserine production inEscherichia coli by engineering the central metabolic pathways[J]. Journal of Biotechnology,2020,s314−315:1−7.
    [4] 曾凡亮, 王宇, 杜升华, 等. 高丝氨酸的合成研究[J]. 精细化工中间体,2016,46(2):17−18, 21. [ZENG F L, WANG Y, DU S H, et al. Synthesis of homoserine[J]. Fine Chemical Intermediates,2016,46(2):17−18, 21. doi:  10.19342/j.cnki.issn.1009-9212.2016.02.004
    [5] ARMSTRONG M D. The preparation of D- and L-homoserine[J]. Journal of the American Chemical Society,1948,70(5):1756−1759. doi:  10.1021/ja01185a025
    [6] 张博, 姚臻豪, 柳志强, 等. 代谢工程改造大肠杆菌生产L-高丝氨酸[J]. 生物工程学报,2021,37(4):1287−1297. [ZHANG B, YAO Z H, LIU Z Q, et al. Metabolic engineering of Escherichia coli for L-homoserine production[J]. Chinese Journal of Biotechnology,2021,37(4):1287−1297. doi:  10.13345/j.cjb.200434
    [7] 李华. 系统代谢工程改造大肠杆菌生产L-蛋氨酸[D]. 无锡: 江南大学, 2017

    LI H. Systematic metabolic engineering of Escherichia coli for L-methionine production[D]. Wuxi: Jiangnan University, 2017.
    [8] LI H, WANG B, ZHU L, et al. Metabolic engineering of Escherichia coli W3110 for the production of L-methionine[J]. Journal of Industrial Microbiology & Biotechnology,2017,44(1):1975−1988.
    [9] LIU P, ZHANG B, YAO Z H, et al. Multiplex design of metabolic network for production of L-homoserine in Escherichia coli[J]. Applied and Environmental Microbiology,2020,86(20):e01477.
    [10] 张宇, 夏利, 林蓓蓓, 等. 高效合成L-高丝氨酸大肠杆菌基因工程菌株的构建[J]. 食品科学,2022,43(6):81−88. [ZHANG Y, XIA L, LIN P P, et al. Construction of Escherichia coli chassis for efficient production of L-homoserine[J]. Food Science,2022,43(6):81−88. doi:  10.7506/spkx1002-6630-20210220-219
    [11] 李宁. 谷氨酸棒状杆菌合成O-乙酰-L-高丝氨酸关键代谢过程调控[D]. 无锡: 江南大学, 2020

    LI N. Regulation of key metabolic processes to biosynthesize O-acetyL-L-homoserine in Corynebacterium glutamicum[D]. Wuxi: Jiangnan University, 2020.
    [12] DELE-OSIBANJO T, LI Q, ZHANG X, et al. Growth-coupled evolution of phosphoketolase to improve L-glutamate production by Corynebacterium glutamicum[J]. Applied Microbiology and Biotechnology,2019,103(20):8413−8425. doi:  10.1007/s00253-019-10043-6
    [13] VASSILEV I, GIEELMANN G, SCHWECHHEIMER S K, et al. Anodic electro-fermentation: Anaerobic production of L-lysine by recombinant Corynebacterium glutamicum[J]. Biotechnology and Bioengineering,2018,115(6):1499−1508. doi:  10.1002/bit.26562
    [14] PLACHY J, ULBERT S, PELECHOVA J, et al. Fermentation production of L-homoserine by Corynebacterium sp. and its possible use in the preparation of threonine and lysine[J]. Folia Microbiologica,1985,30(6):485−492. doi:  10.1007/BF02927611
    [15] LI N, XU S, DU G, et al. Efficient production of L-homoserine in Corynebacterium glutamicum ATCC 13032 by redistribution of metabolic flux[J]. Biochemical Engineering Journal,2020,161:107665. doi:  10.1016/j.bej.2020.107665
    [16] 刘剑. 溶氧影响谷氨酸发酵代谢的机制及代谢通量分析[D]. 上海: 华东理工大学, 2012

    LIU J. Metabolic mechanism of glutamic acid biosynthesis under different dissolved oxygen concentrations and its metabolic flux analysis[D]. Shanghai: East China University of Science and Technology, 2012.
    [17] ZIMMERMANN H F, ANDERLEI T, JOCHEN B, et al. Oxygen limitation is a pitfall during screening for industrial strains[J]. Applied Microbiology and Biotechnology,2006,72(6):1157−1160. doi:  10.1007/s00253-006-0414-6
    [18] 张夙夙. 溶氧对氨基酸发酵的影响及其控制[J]. 安徽农学通报,2014,20(12):25−30. [ZHANG S S. Influence and control of dissolved oxygen on amino acid fermentation[J]. Anhui Agricultural Science Bulletin,2014,20(12):25−30. doi:  10.16377/j.cnki.issn1007-7731.2014.12.006
    [19] 李刚, 程度, 李宝健, 等. 利用高效CaCl2转化法实现质粒的共转化[J]. 生物技术,2003,13(6):31−33. [LI G, CHENG D, LI B J, et al. Co-transformation of plasmids by efficient CaCl2 transformation method[J]. Biotechnology,2003,13(6):31−33. doi:  10.3969/j.issn.1004-311X.2003.06.015
    [20] 孙杨. 谷氨酸棒状杆菌表达系统能量利用相关基因的挖掘和应用[D]. 无锡: 江南大学, 2018

    SUN Y. Mining and application of energy utilizing related genes in favour of heterologous expression system of Corynebacterium glutamicum[D]. Wuxi: Jiangnan University, 2018.
    [21] 谭延振. 谷氨酸棒状杆菌基因敲除系统的构建[D]. 无锡: 江南大学, 2012

    TAN Y Z. Construction of gene deletion system in Corynebacterium glutamicum[D]. Wuxi: Jiangnan University, 2012.
    [22] 朱凯杰, 陆国权, 张迟. 响应面优化DNS测定还原糖方法[J]. 中国粮油学报,2019(6):2−113. [ZHU K J, LU G Q, ZHANG C. Optimization of the determination method of reducing sugar using response surface analysis[J]. Journal of the Chinese Cereals and Oils Association,2019(6):2−113.
    [23] KINGSBURY J M, MCCUSKER J H. Homoserine toxicity in Saccharomyces cerevisiae and Candida albicans homoserine kinase (thr1) mutants[J]. Eukaryotic Cell,2010,9(5):717−728. doi:  10.1128/EC.00044-10
    [24] KARKHANIS V A, MASCARENHAS A P, MARTINIS S A. Amino acid toxicities of Escherichia coli that are prevented by leucyl-tRNA synthetase amino acid editing[J]. Journal of Bacteriology,2007,189(23):8765−8768. doi:  10.1128/JB.01215-07
    [25] 李昶志, 潘忠成, 翁婧, 等. 微生物发酵中溶氧浓度的控制研究[J]. 绿色科技,2019(6):2. [LI X Z, PAN Z C. WENG J, et al. Study on the control of dissolved oxygen concentration in microbial fermentation[J]. Journal of Green Science and Technol,2019(6):2. doi:  10.16663/j.cnki.lskj.2019.06.080
    [26] 王震. 谷氨酸棒状杆菌发酵生产L-精氨酸的溶氧条件优化[J]. 安徽农业科学,2019,47(7):120−123. [WANG Z. Optimization of dissolved oxygen conditions for Corynebacterium glutamicum producting L-arginine[J]. Journal of Anhui Agricultural Sciences,2019,47(7):120−123. doi:  10.3969/j.issn.0517-6611.2019.07.038
    [27] 杨艳坤, 王芬, 孙杨, 等. 不同溶氧对谷氨酸棒状杆菌代谢的影响[J]. 微生物学通报,2016,43(11):2540−2549. [YANG Y K, WANG F, SUN Y, et al. Effect of different dissolved oxygen concentrations on metabolism in Corynebacterium glutamicum[J]. Microbiology China,2016,43(11):2540−2549.
    [28] 郝健, 王昌禄, 顾晓波, 等. 挡板三角瓶在好气微生物培养中的应用[J]. 无锡轻工大学学报,1999(5):177−179. [HAO J, WANG C L, GU X B, et al. Application of triangular flask in aerobic microorganism culture[J]. Journal of Wuxi University of Light Industry,1999(5):177−179.
    [29] YAMAMOTO S, SAKAI M, INUI M, et al. Diversity of metabolic shift in response to oxygen deprivation in Corynebacterium glutamicum and its close relatives[J]. Applied Microbiology and Biotechnology,2011,90(3):1051−1061. doi:  10.1007/s00253-011-3144-3
    [30] TANG R, WENG C, PENG X, et al. Metabolic engineering of Cupriavidus necator H16 for improved chemoautotrophic growth and PHB production under oxygen-limiting conditions[J]. Metabolic Engineering,2020,61:11−23. doi:  10.1016/j.ymben.2020.04.009
    [31] XU Y, LI Y, WU Z, et al. Combining precursor-directed engineering with modular designing: An effective strategy for de novo biosynthesis of l-DOPA in Bacillus licheniformis[J]. ACS Synthetic Biology,2022,11:700−712. doi:  10.1021/acssynbio.1c00411
    [32] OKOROKOV A L, BUKANOV N O, BESKROVNAIA O I, et al. Development of the vector-host system in Corynebacterium. Cloning and expression of homoserine dehydrogenase and homoserine kinase genes in Corynebacterium cells[J]. Genetika,1990,26(4):648−656.
  • 加载中
图(4) / 表(5)
计量
  • 文章访问数:  55
  • HTML全文浏览量:  22
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-15
  • 网络出版日期:  2022-12-15
  • 刊出日期:  2023-01-17

目录

    /

    返回文章
    返回

    重要通知

    喜报:《食品工业科技》入选《食品科学与工程领域高质量科技期刊分级目录》第一方阵T1区
          会议通知:第六届食品科技创新论坛4月与您相约上海