Metabolic Transformation and Fermentation Condition of L-homoserine Synthesis by Corynebacterium glutamicum
-
摘要: 目的:本研究以谷氨酸棒状杆菌ATCC 13032为底盘细胞,构建1株L-高丝氨酸合成菌株并分析溶氧环境对其产物合成的影响。方法:首先通过外源添加0~40 g/L的L-高丝氨酸分析谷氨酸棒状杆菌的产物耐受性;随后,通过基因thrB敲除阻断L-高丝氨酸的降解途径,获得谷氨酸棒状杆菌重组菌H1;在此基础上利用挡板摇瓶进行细胞培养以增强发酵过程中氧气供给能力。结果:与大肠杆菌相比,谷氨酸棒状杆菌对L-高丝氨酸具有更强耐受性。研究中通过敲除基因thrB构建了L-苏氨酸缺陷型谷氨酸棒状杆菌重组菌H1,发现基础培养基中加入0.5 g/L的L-苏氨酸后,该重组菌生长恢复正常水平。挡板摇瓶条件下重组菌H1的L-高丝氨酸产量增加至836.7 mg/L,较普通摇瓶产量44.6 mg/L提高了17.76倍。结论:通过阻断L-苏氨酸的合成,成功构建L-高丝氨酸合成菌株谷氨酸棒状杆菌H1,并且发现利用挡板摇瓶增强发酵过程中供氧能力是促进谷氨酸棒状杆菌高效合成L-高丝氨酸的有效手段,为后续提高L-高丝氨酸发酵产量提供了参考。
-
关键词:
- L-高丝氨酸 /
- 谷氨酸棒状杆菌重组菌 /
- 强耐受性 /
- 溶氧
Abstract: Objective: In this study, Corynebacterium glutamicum ATCC 13032 was used as the chassis cell for synthesizing L-homoserine and analyzing the effect of dissolved oxygen on product synthesis. Methods: First, the product tolerance of C. glutamicum was analyzed by exogenously adding 0~40 g/L L-homoserine. Second, the degradation pathway of L-homoserine was blocked by gene thrB knockout, namely C. glutamicum recombinant strain H1. On this basis, the shake flask with baffles was used for cell culture to enhance oxygen supply capacity in the fermentation process. Results: Compared with Escherichia coli, C. glutamicum had a stronger tolerance to L-homoserine. In the study, C. glutamicum recombinant strain H1 was constructed by deleting the gene thrB. It was found that the growth of recombinant strain H1 returned to normal after adding 0.5 g/L L-threonine in the basal medium. The L-homoserine production of recombinant strain H1 increased to 836.7 mg/L using shake flask with baffles, which was 17.76 times higher than that using ordinary shake flask, which was 44.6 mg/L. Conclusion: C. glutamicum recombinant strain H1 was successfully constructed for producing L-homoserine via blocking the synthesis of L-threonine. It was found that the using of shake flask with baffles to enhance the oxygen supply capacity during fermentation was an effective means to promote the production of L-homoserine by C. glutamicum. This study provides a reference for improving L-homoserine production subsequently. -
图 2 基因thrB敲除及其对C. glutamicum ATCC 13032生长的影响
Figure 2. The deletion of gene thrB and its effect on the growth of C. glutamicum ATCC 13032
注:A:基因thrB敲除质粒构建流程图;B:基因thrB敲除质粒琼脂糖凝胶电泳图,M:marker;1:上游同源臂(L);2:下游同源臂(D);3:L-D重叠 PCR产物;4:敲除质粒单酶切验证;5:敲除质粒双酶切验证;C:基因thrB敲除PCR验证,M:marker;1:野生菌C. glutamicum ATCC 13032;2:基因thrB敲除菌C. glutamicum H1;D:基因thrB敲除对C. glutamicum ATCC 13032生长的影响。
表 1 实验菌株与质粒
Table 1. Experimental strains and plasmids
菌株/质粒 特征 来源 E. coli DH5α 用于质粒的扩增与保存 本实验室保存 E. coli W3110 用于L-高丝氨酸生长抑制测定 本实验室保存 C. glutamicum ATCC 13032 野生型,生物素缺陷型 本实验室保存 C. glutamicum H1 13032 衍生菌,∆thrB 本研究 pK18mobsacB 自杀质粒,Kmr 本实验室保存 pK18-thrB 包含thrB同源臂的pK18mobsacB 本研究 表 2 实验引物
Table 2. Primers for the experiments
引物名称 引物序列 thrB-L-F-BamH I CATGGATCCCCCGACTCTATTACCTGTGT thrB-L-R CTTGTTGGGCGTCAGTAAAATTAGTCCCTTTCGAGGCG thrB-R-F TTTTACTGACGCCCAACAAGGAAGGCCCCCTTC thrB-R-R-Hind III CCCAAGCTTCTTCCAAACACGCGTCCCCGACAAC thrB-YZ-F GCTATTTCTGCTCGCGTGCA thrB-YZ-R GATTCGAAGGGGGCCTTCCTTGTTG 表 3 L-高丝氨酸梯度洗脱程序
Table 3. Gradient elution procedure of L-homoserine
时间(min) 流动相A(%) 流动相B(%) 流速(mL/min) 0 90.0 10.0 1.00 5.00 90.0 10.0 1.00 11.00 33.0 67.0 1.00 14.50 0.0 100.0 1.20 15.00 0.0 100.0 1.20 17.00 90.0 10.0 1.00 25.00 90.0 10.0 1.00 表 4 不同培养基下L-高丝氨酸的产量(mg/L)
Table 4. The production of L-homoserine in different media (mg/L)
培养基 C. glutamicum ATCC 13032 C. glutamicum H1 发酵培养基Ⅰ 0 22.4±0.35 发酵培养基Ⅱ 0 44.6±0.72 表 5 不同摇瓶方式对L-高丝氨酸合成的影响
Table 5. The effect of different shaking flasks on the synthesis of L-homoserine
摇瓶种类 菌株 胞外L-高丝氨酸(mg/L) 胞内L-高丝氨酸
(mg/g-DCW)OD600 残糖(g/L) 普通摇瓶 C. glutamicum H1 44.6±0.72 0.68±0.015 16.03±0.52 16.61±0.63 挡板摇瓶 C. glutamicum H1 836.7±20.54 1.78±0.143 40.2±2.12 4.24±0.25 -
[1] HUANG J F, LIU Z Q, JIN L Q, et al. Metabolic engineering of Escherichia coli for microbial production of L-methionine[J]. Biotechnology and Bioengineering,2017,114(4):843−851. doi: 10.1002/bit.26198 [2] AREZKI N R, WILLIAMS A C, COBB J A, et al. Design, synthesis and characterization of linear unnatural amino acids for skin moisturization[J]. International Journal of Cosmetic Science,2017,39(1):72−82. doi: 10.1111/ics.12351 [3] MIN L A , JI A , JG B , et al. Increasing L-homoserine production inEscherichia coli by engineering the central metabolic pathways[J]. Journal of Biotechnology,2020,s314−315:1−7. [4] 曾凡亮, 王宇, 杜升华, 等. 高丝氨酸的合成研究[J]. 精细化工中间体,2016,46(2):17−18, 21. [ZENG F L, WANG Y, DU S H, et al. Synthesis of homoserine[J]. Fine Chemical Intermediates,2016,46(2):17−18, 21. doi: 10.19342/j.cnki.issn.1009-9212.2016.02.004 [5] ARMSTRONG M D. The preparation of D- and L-homoserine[J]. Journal of the American Chemical Society,1948,70(5):1756−1759. doi: 10.1021/ja01185a025 [6] 张博, 姚臻豪, 柳志强, 等. 代谢工程改造大肠杆菌生产L-高丝氨酸[J]. 生物工程学报,2021,37(4):1287−1297. [ZHANG B, YAO Z H, LIU Z Q, et al. Metabolic engineering of Escherichia coli for L-homoserine production[J]. Chinese Journal of Biotechnology,2021,37(4):1287−1297. doi: 10.13345/j.cjb.200434 [7] 李华. 系统代谢工程改造大肠杆菌生产L-蛋氨酸[D]. 无锡: 江南大学, 2017LI H. Systematic metabolic engineering of Escherichia coli for L-methionine production[D]. Wuxi: Jiangnan University, 2017. [8] LI H, WANG B, ZHU L, et al. Metabolic engineering of Escherichia coli W3110 for the production of L-methionine[J]. Journal of Industrial Microbiology & Biotechnology,2017,44(1):1975−1988. [9] LIU P, ZHANG B, YAO Z H, et al. Multiplex design of metabolic network for production of L-homoserine in Escherichia coli[J]. Applied and Environmental Microbiology,2020,86(20):e01477. [10] 张宇, 夏利, 林蓓蓓, 等. 高效合成L-高丝氨酸大肠杆菌基因工程菌株的构建[J]. 食品科学,2022,43(6):81−88. [ZHANG Y, XIA L, LIN P P, et al. Construction of Escherichia coli chassis for efficient production of L-homoserine[J]. Food Science,2022,43(6):81−88. doi: 10.7506/spkx1002-6630-20210220-219 [11] 李宁. 谷氨酸棒状杆菌合成O-乙酰-L-高丝氨酸关键代谢过程调控[D]. 无锡: 江南大学, 2020LI N. Regulation of key metabolic processes to biosynthesize O-acetyL-L-homoserine in Corynebacterium glutamicum[D]. Wuxi: Jiangnan University, 2020. [12] DELE-OSIBANJO T, LI Q, ZHANG X, et al. Growth-coupled evolution of phosphoketolase to improve L-glutamate production by Corynebacterium glutamicum[J]. Applied Microbiology and Biotechnology,2019,103(20):8413−8425. doi: 10.1007/s00253-019-10043-6 [13] VASSILEV I, GIEELMANN G, SCHWECHHEIMER S K, et al. Anodic electro-fermentation: Anaerobic production of L-lysine by recombinant Corynebacterium glutamicum[J]. Biotechnology and Bioengineering,2018,115(6):1499−1508. doi: 10.1002/bit.26562 [14] PLACHY J, ULBERT S, PELECHOVA J, et al. Fermentation production of L-homoserine by Corynebacterium sp. and its possible use in the preparation of threonine and lysine[J]. Folia Microbiologica,1985,30(6):485−492. doi: 10.1007/BF02927611 [15] LI N, XU S, DU G, et al. Efficient production of L-homoserine in Corynebacterium glutamicum ATCC 13032 by redistribution of metabolic flux[J]. Biochemical Engineering Journal,2020,161:107665. doi: 10.1016/j.bej.2020.107665 [16] 刘剑. 溶氧影响谷氨酸发酵代谢的机制及代谢通量分析[D]. 上海: 华东理工大学, 2012LIU J. Metabolic mechanism of glutamic acid biosynthesis under different dissolved oxygen concentrations and its metabolic flux analysis[D]. Shanghai: East China University of Science and Technology, 2012. [17] ZIMMERMANN H F, ANDERLEI T, JOCHEN B, et al. Oxygen limitation is a pitfall during screening for industrial strains[J]. Applied Microbiology and Biotechnology,2006,72(6):1157−1160. doi: 10.1007/s00253-006-0414-6 [18] 张夙夙. 溶氧对氨基酸发酵的影响及其控制[J]. 安徽农学通报,2014,20(12):25−30. [ZHANG S S. Influence and control of dissolved oxygen on amino acid fermentation[J]. Anhui Agricultural Science Bulletin,2014,20(12):25−30. doi: 10.16377/j.cnki.issn1007-7731.2014.12.006 [19] 李刚, 程度, 李宝健, 等. 利用高效CaCl2转化法实现质粒的共转化[J]. 生物技术,2003,13(6):31−33. [LI G, CHENG D, LI B J, et al. Co-transformation of plasmids by efficient CaCl2 transformation method[J]. Biotechnology,2003,13(6):31−33. doi: 10.3969/j.issn.1004-311X.2003.06.015 [20] 孙杨. 谷氨酸棒状杆菌表达系统能量利用相关基因的挖掘和应用[D]. 无锡: 江南大学, 2018SUN Y. Mining and application of energy utilizing related genes in favour of heterologous expression system of Corynebacterium glutamicum[D]. Wuxi: Jiangnan University, 2018. [21] 谭延振. 谷氨酸棒状杆菌基因敲除系统的构建[D]. 无锡: 江南大学, 2012TAN Y Z. Construction of gene deletion system in Corynebacterium glutamicum[D]. Wuxi: Jiangnan University, 2012. [22] 朱凯杰, 陆国权, 张迟. 响应面优化DNS测定还原糖方法[J]. 中国粮油学报,2019(6):2−113. [ZHU K J, LU G Q, ZHANG C. Optimization of the determination method of reducing sugar using response surface analysis[J]. Journal of the Chinese Cereals and Oils Association,2019(6):2−113. [23] KINGSBURY J M, MCCUSKER J H. Homoserine toxicity in Saccharomyces cerevisiae and Candida albicans homoserine kinase (thr1) mutants[J]. Eukaryotic Cell,2010,9(5):717−728. doi: 10.1128/EC.00044-10 [24] KARKHANIS V A, MASCARENHAS A P, MARTINIS S A. Amino acid toxicities of Escherichia coli that are prevented by leucyl-tRNA synthetase amino acid editing[J]. Journal of Bacteriology,2007,189(23):8765−8768. doi: 10.1128/JB.01215-07 [25] 李昶志, 潘忠成, 翁婧, 等. 微生物发酵中溶氧浓度的控制研究[J]. 绿色科技,2019(6):2. [LI X Z, PAN Z C. WENG J, et al. Study on the control of dissolved oxygen concentration in microbial fermentation[J]. Journal of Green Science and Technol,2019(6):2. doi: 10.16663/j.cnki.lskj.2019.06.080 [26] 王震. 谷氨酸棒状杆菌发酵生产L-精氨酸的溶氧条件优化[J]. 安徽农业科学,2019,47(7):120−123. [WANG Z. Optimization of dissolved oxygen conditions for Corynebacterium glutamicum producting L-arginine[J]. Journal of Anhui Agricultural Sciences,2019,47(7):120−123. doi: 10.3969/j.issn.0517-6611.2019.07.038 [27] 杨艳坤, 王芬, 孙杨, 等. 不同溶氧对谷氨酸棒状杆菌代谢的影响[J]. 微生物学通报,2016,43(11):2540−2549. [YANG Y K, WANG F, SUN Y, et al. Effect of different dissolved oxygen concentrations on metabolism in Corynebacterium glutamicum[J]. Microbiology China,2016,43(11):2540−2549. [28] 郝健, 王昌禄, 顾晓波, 等. 挡板三角瓶在好气微生物培养中的应用[J]. 无锡轻工大学学报,1999(5):177−179. [HAO J, WANG C L, GU X B, et al. Application of triangular flask in aerobic microorganism culture[J]. Journal of Wuxi University of Light Industry,1999(5):177−179. [29] YAMAMOTO S, SAKAI M, INUI M, et al. Diversity of metabolic shift in response to oxygen deprivation in Corynebacterium glutamicum and its close relatives[J]. Applied Microbiology and Biotechnology,2011,90(3):1051−1061. doi: 10.1007/s00253-011-3144-3 [30] TANG R, WENG C, PENG X, et al. Metabolic engineering of Cupriavidus necator H16 for improved chemoautotrophic growth and PHB production under oxygen-limiting conditions[J]. Metabolic Engineering,2020,61:11−23. doi: 10.1016/j.ymben.2020.04.009 [31] XU Y, LI Y, WU Z, et al. Combining precursor-directed engineering with modular designing: An effective strategy for de novo biosynthesis of l-DOPA in Bacillus licheniformis[J]. ACS Synthetic Biology,2022,11:700−712. doi: 10.1021/acssynbio.1c00411 [32] OKOROKOV A L, BUKANOV N O, BESKROVNAIA O I, et al. Development of the vector-host system in Corynebacterium. Cloning and expression of homoserine dehydrogenase and homoserine kinase genes in Corynebacterium cells[J]. Genetika,1990,26(4):648−656. -