Research Progress on Antihypertensive Effect of Polysaccharide and Its Mechanism
-
摘要: 高血压是全球范围内导致残疾和过早死亡的主要风险因素之一,我国高血压及其相关并发症呈逐年升高的趋势,并逐渐年轻化。口服降压药虽能暂时将血压控制在一个正常范围内,但是可能会对机体多个系统产生严重的不良反应。随着多糖与高血压的关系研究逐渐深入,越来越多的研究表明多糖作为天然活性物质,对高血压具有安全、副作用小的优势。本文从多糖类别、来源、剂量、动物模型等方面介绍了多糖的降血压作用效果,阐述了多糖调节肾素-血管紧张素-醛固酮系统、改善内皮功能、调控多因子等降血压机制,简述了多糖与降血压作用的构效关系,对多糖应用于高血压的治疗前景进行了展望,为多糖降压药的研发提供了科学参考,也为高血压患者的疾病防治提供了更多的选择性。
-
关键词:
- 多糖 /
- 高血压 /
- 降血压 /
- 作用机制 /
- 肾素-血管紧张素-醛固酮系统
Abstract: Hypertension is one of the major risk factors leading to premature death and disability worldwide. Hypertension and its related complications are increasing year by year in China, and tend to be younger nowdays. Blood pressure can be temporarily controlled within a normal range by oral antihypertensive drugs, but the serious adverse reactions maybe done to multiple systems of the body. With the in-depth research on the relationship between polysaccharides and hypertension, more and more results have shown that polysaccharides, as natural active substances, as safe for hypertension and have less side effects. This paper introduces the antihypertensive effect of polysaccharides from the aspects of type, source, dose and animal model of polysaccharides, and expounds the hypotensive mechanisms of polysaccharides, such as regulating renin-angiotensin-aldosterone system, improving endothelial function and regulating multi-factors. This paper briefly describes the structure-activity relationship between polysaccharides and antihypertensive effect, and looks forward to the prospect of polysaccharide application in the treatment of hypertension, which provides a scientific reference for the research and development of antihypertensive drugs of polysaccharides. It also provides more options for disease prevention and treatment of patients with hypertension. -
图 1 多糖降血压机制图
Figure 1. Diagram of the hypotensive mechanism of polysaccharides
注:Ang-Ⅰ:血管紧张素-Ⅰ(angiotensin-Ⅰ);Ang-Ⅱ:血管紧张素-Ⅱ(angiotensin-Ⅱ);ACE:血管紧张素转化酶(angiotensin converting enzyme);RI:肾素抑制剂;ACEI:血管紧张素转化酶抑制剂(angiotensin converting enzyme inhibitior);ARBs:血管紧张素受体阻滞剂(angiotensin receptor blockers);RAS:肾素-血管紧张素系统(renin-angiotensin system);AT1R:Ang-Ⅱ一型受体(angiotensin-Ⅱ type 1 receptor);ET-1:内皮素-1(endothelin-1);ETA:内皮素受体A(endothelin receptor A);ETB:内皮素受体B(endothelin receptor B);NOS;一氧化氮合酶(nitric oxide synthase)。
血压分级 收缩压(mmHg) 舒张压(mmHg) 正常 <120 <80 高血压前期 120~139 80~90 1期高血压 140~159 90~99 2期高血压 ≥160 ≥100 3期高血压 ≥180 ≥110 注:当收缩压与舒张压处于不同级别时,取较高的为准。 表 2 部分具有降血压作用的多糖及其作用效果
Table 2. Some polysaccharides with hypotensive effect and its effect
多糖
类别多糖来源 实验模型 多糖给药方式与剂量(mg/kg·d) 降压效果 参考文献 植物多糖 中草药 仙人掌果 A 灌胃:760、1580、2370 剂量依赖性降低血压,其中中、高剂量组降压
效果与卡托普利接近,无药物耐受现象且对
心率无影响[26-27] 中草药 天麻 B 灌胃:50、100、200 剂量依赖性降低血压,效果与卡托普利类似 [28] 中草药 黄芪 C 灌胃:400 显著降低血压并减缓高血压引发的血管和
肾脏损伤[29] 中草药 枸杞 B;D 灌胃:5、10、20、25 降低肾血管性高血压大鼠与妊娠期小鼠的血压,改善胎鼠发育 [30-31] 海洋植物 胶球藻 B 自由采食:50、100
(饲料中)可预防2K1C大鼠高血压的发生,显著降低血压 [32] 海洋植物 海带 B 灌胃:12.5、25、50 剂量依赖性降低血压,高剂量组与卡托普利效果相当,且作用平稳,对血管刺激小 [33] 海洋植物 海藻 G 口服(液体):250、500 呈剂量依赖性降低血压,增加了钠排泄、
血清钠含量、血浆心钠素含量[34] 中草药配方 心肌尔康 B;E 细胞处理:0.15、0.3、0.6、1.2 mg/mL;灌胃:2470 剂量依赖性降低血压并减少高血压的损害 [35] 微生物多糖 真菌 白灵菇 A 灌胃:150 显著降低血压,可预防并改善高血压 [36] 细菌 开菲尔乳杆菌 F 灌胃:100、300 剂量依赖性显著降低血压 [37-38] 动物多糖 海洋动物 鱿鱼皮(硫酸化) H 体外试验:0.2~1.0 mg/mL 剂量依赖性抑制ACE活性 [39] 海洋动物 牡蛎多糖 H 体外试验:2.06 mg/mL 剂量依赖性抑制ACE活性 [40] 注:A:自发性高血压大鼠;B:两肾一夹(2K1C)诱导模型;C:血管紧张素-Ⅱ(angiotensin-Ⅱ,Ang-Ⅱ)诱导模型;D:冷刺激诱导模型;E:N-硝基-L-精氨酸甲酯(N-nitro-L-arginine methyl ester,L-NAME)诱导模型;F:易卒中自发性高血压大鼠;G:Sprague Dawley大鼠;H:体外试验;ACE:血管紧张素转换酶(angiotensin converting enzyme)。 表 3 多糖对ACE活性的抑制效果
Table 3. Inhibitory effect of polysaccharide on ACE activity
多糖类别 多糖来源 剂量(mg/mL) ACE活性抑制率(%) IC50(mg/mL) 参考文献 植物多糖 杏仁副产品 5 79.5 2.81 [48] 植物多糖 开心果副产品 5 81.78 2.59 [48] 植物多糖 西瓜皮 1 93.93 0.21 [49] 植物多糖 海神草(硫酸化) 0.8 91.79 0.43 [50] 动物多糖 鱿鱼皮(硫酸化) 1 86.3 0.14 [39] 植物多糖 咖啡渣 0.6 H:86.95
U:98.17H:0.20
U:0.15[51] 植物多糖 鹰嘴豆多糖 1 87.83 / [52] 微生物
多糖乳酸菌胞外多糖 30 µL 15.82 3.66 [53] 动物多糖 牡蛎多糖 / / 2.06 [40] 植物多糖 红毛藻多糖 0~1000 / 0.34 [54] 注:IC50:半抑制浓度,即抑制一半ACE活性所需要多糖的浓度;H:热水处理法(hot water treatment);U:超声波辅助法(ultrasound-assisted extraction)。 表 4 多糖通过调控多因子降血压
Table 4. Polysaccharides lower blood pressure by regulating multiple factors
多糖
类别多糖
来源实验
模型多糖给药方式与剂量
(mg/kg·d)作用效果 作用机制 参考文献 植物多糖 中草药 仙人掌果 A 灌胃:760、1580、2370;灌胃:790、1580、3060 降压效果呈量效与
时效关系显著降低收缩压,降低血浆Ang-Ⅱ、ET水平,提升NO含量,保护主动脉内皮细胞,逆转血管平滑肌细胞增殖 [85-86] 中草药 黄芪 H 细胞处理:80、160、320 μg/mL 显著改善高血压血瘀症
患者症状可减轻高血压病患者内皮细胞的损伤,增强细胞活性和维持细胞形态结构 [22] 中草药 丹参 A 灌胃:40 显著降低收缩压与舒张压,降压效果与卡托普利相当 通过下调COX-2基因的表达,
显著降低血压,且降压效果与
卡托普利相近[89] 中草药 车前子(粗多糖) I 胶囊口服给药:1.6 g,每天2次 显著降低高血压患者血压 促进肠道双歧杆菌与多形拟杆菌的生长,改善肠道微生态 [23-24] 中草药 白桑果 A 细胞处理:0.5 mg/mL 显著下调自发性高血压大鼠与SD大鼠的血压 刺激内皮细胞产生NO,抑制ACE活性,诱导内皮依赖性舒张 [58, 90] 海洋植物 褐藻
(硫酸化)E 灌胃:1.6、3.1、6.2、12.5、25 降血压效果呈剂量依赖性 可能与促进体内NO生成或释放,降低ET-1和Ang-Ⅱ的水平有关 [87] 海洋植物 红藻
(硫酸化)J 自由采食:5% 显著降低血压,逆转大鼠
代谢综合征可通过减少炎性细胞对器官浸润以及发挥肠道益生功能改善代谢综合征 [91] 海洋植物 褐藻
(硫酸化)B 灌胃:12.5、25、50 呈剂量依赖性降低心率、动脉压、收缩压和舒张压 可能与促进体内NO生成,降低ET和Ang-Ⅱ释放有关 [88] 微生物
多糖真菌、
中草药冬虫夏草 A 灌胃:50、100、200 降血压效果呈时间与剂量依赖性,中剂量多糖可使肾Ang-Ⅱ恢复至正常水平 促进NO的分泌,降低血浆ET-1
与Ang-Ⅱ的水平,降低C反应
蛋白表达[84] 注:A:自发性高血压大鼠模型;B:两肾一夹(2K1C)诱导模型;E:左侧肾动脉缩窄诱导模型;H:自发性高血压患者;I:老年高血压患者;J:高碳水化合物、高脂肪诱导模型;ACE:血管紧张素转换酶(angiotensin converting enzyme);Ang-II:血管紧张素-Ⅱ(angiotensin-Ⅱ);ET:内皮素(endothelin);NO:一氧化氮(nitric oxide);ET-1;内皮素-1(endothelin-1)。 -
[1] 中国高血压防治指南修订委员会. 中国高血压防治指南(2018年修订版)[J]. 中国心血管杂志,2019,24(1):24−56. [The Revision Committee of Chinese Guidelines for Prevention and Treatment of Hypertension. 2018 Chinese guidelines for prevention and treatment of hypertension[J]. Chinese Journal of Cardiovascular Medicine,2019,24(1):24−56. doi: 10.3969/j.issn.1007-5410.2019.01.002 [2] GROENLAND E H, BOTS M L, ASSELBERGS F W, et al. Apparent treatment resistant hypertension and the risk of recurrent cardiovascular events and mortality in patients with established vascular disease[J]. International Journal of Cardiology,2021,334:135−141. doi: 10.1016/j.ijcard.2021.04.047 [3] NGUYEN T N, CHOW C K. Global and national high blood pressure burden and control[J]. The Lancet (British Edition),2021,398(10304):932−933. [4] POULTER N R, BORGHI C, DAMASCENO A, et al. May measurement month 2019: Results of blood pressure screening from 47 countries[J]. European Heart Journal Supplements,2021,23:1−5. [5] FAN W G, XIE F, WAN Y R, et al. The impact of changes in population blood pressure on hypertension prevalence and control in China[J]. The Journal of Clinical Hypertension,2020,22(2):150−156. doi: 10.1111/jch.13820 [6] ERNAWATI I, LUBADA E I, LUSIYANI R, et al. Association of adherence measured by self-reported pill count with achieved blood pressure level in hypertension patients: A cross-sectional study[J]. Clinical Hypertension,2022,28(1):12. doi: 10.1186/s40885-022-00195-5 [7] KAVANAGH R. Chapter 18-antihypertensive drugs[M]. RAY S D. Side Effects of Drugs Annual. Elsevier, 2020: 215−226. [8] 刘玉峰, 马海燕, 李鲁盼, 等. 天然活性多糖提取工艺及结构解析研究进展[J]. 辽宁大学学报(自然科学版),2018,45(2):154−161. [LIU Y F, MA H Y, LI L P, et al. Research progress on extraction and structural elucidation of natural active polysaccharides[J]. Journal of Liaoning University (Natural Sciences Edition),2018,45(2):154−161. doi: 10.16197/j.cnki.lnunse.2018.02.010 [9] MAJI B. 1-Introduction to natural polysaccharides[M]. MAITI S, JANA S. Functional Polysaccharides for Biomedical Applications. Woodhead Publishing, 2019: 1−31. [10] ZHAO R, JI Y, CHEN X, et al. Effects of a β-type glycosidic polysaccharide from Flammulina velutipes on anti-inflammation and gut microbiota modulation in colitis mice[J]. Food & Function,2020,11(5):4259−4274. [11] GUO T, AKAN O D, LUO F, et al. Dietary polysaccharides exert biological functions via epigenetic regulations: Advance and prospectives[J]. Critical Reviews in Food Science and Nutrition,2021:1−11. [12] HUANG R, XIE J, YU Y, et al. Recent progress in the research of yam mucilage polysaccharides: Isolation, structure and bioactivities[J]. International Journal of Biological Macromolecules,2020,155:1262−1269. doi: 10.1016/j.ijbiomac.2019.11.095 [13] 吴雅清, 许瑞安. 降血脂多糖的研究进展[J]. 中国中药杂志,2018,43(17):3451−3459. [WU Y Q, XU R A. Research advances on hypolipidemic effect of polysaccharides[J]. China Journal of Chinese Materia Medica,2018,43(17):3451−3459. doi: 10.19540/j.cnki.cjcmm.20180419.008 [14] 肖瑞希, 陈华国, 周欣. 植物多糖降血糖作用及机制研究进展[J]. 食品科学,2019,40(11):254−260. [XIAO R X, CHEN H G, ZHOU X. Recent progress in understanding of hypoglycemic effect and underlying mechanism of plant polysaccharides[J]. Food Science,2019,40(11):254−260. doi: 10.7506/spkx1002-6630-20180429-385 [15] TAIR Z, BENSALAH F, BOUKORTT F. Effect of green alga Ulva lactuca polysaccharides supplementation on blood pressure and on atherogenic risk factors, in rats fed a high fat diet[J]. Annales De Cardiologie Et d'Angeiologie,2018,67(3):133−140. doi: 10.1016/j.ancard.2018.04.016 [16] 颜美秋, 苏洁, 俞静静, 等. 铁皮石斛醇提取物对复合饮食因素所致代谢性高血压大鼠的作用及物质基础研究[J]. 中国中药杂志,2019,44(22):4896−4904. [YAN M Q, SU J, YU J J, et al. Effects and active substances of ethanol extract from Dendrobium officinale on metabolic hypertensive rats induced by comprehensive dietary[J]. China Journal of Chinese Materia Medica,2019,44(22):4896−4904. doi: 10.19540/j.cnki.cjcmm.20190610.401 [17] 王再花, 叶庆生, 李杰, 等. 4种石斛的多糖对高血压大鼠降血压的影响[J]. 热带作物学报,2017,38(9):1764−1767. [WANG Z H, YE Q S, LI J, et al. Antihypertensive effects of polysaccharides from four Dendrobium species on hypertensive rats[J]. Journal of Tropical Crops,2017,38(9):1764−1767. doi: 10.3969/j.issn.1000-2561.2017.09.030 [18] WANG T, DING J, LI H, et al. Antihypertensive activity of polysaccharide from Crassostrea gigas[J]. International Journal of Biological Macromolecules,2016,83:195−197. doi: 10.1016/j.ijbiomac.2015.11.078 [19] 张立霞, 杨静, 倪艳波, 等. 灰树花多糖对高血压大鼠的血压及心脏、肾脏超微结构的影响[J]. 中国老年学杂志,2013,33(19):4764−4766. [ZHANG L X, YANG J, NI Y B, et al. Effects of polysaccharide from Grifola officinalis on blood pressure and ultrastructure of heart and kidney in hypertensive rats[J]. Chinese Journal of Gerontology,2013,33(19):4764−4766. doi: 10.3969/j.issn.1005-9202.2013.19.048 [20] 龚受基, 苏小建, 阮俊, 等. 大田基黄多糖降血压作用的动物实验研究[J]. 时珍国医国药,2009,20(3):579−580. [GONG S J, SU X J, RUAN J, et al. Effect of polysaecharides from Lysimachia fortunei maxim on blood pressure in SD animals[J]. Lishizhen Medicine and Materia Medica Research,2009,20(3):579−580. doi: 10.3969/j.issn.1008-0805.2009.03.035 [21] 龚受基. 大田基黄多糖的分离及其抗高血压活性研究[D]. 桂林: 广西师范大学, 2006.GONG S J. Study on the purificatoin and antihypertension of polysaccharides from Lysimachia fortunei maxim[D]. Guilin: Guangxi Normal University, 2006. [22] 张竞之. 黄芪多糖、丹皮酚对高血压病血瘀证内皮细胞损伤模型TLR4、NF-κB表达的影响[D]. 深圳: 暨南大学, 2009.ZHANG J Z. The effects of APS and Pae on TLR4, NF-κB expression in vascular endothelial cell(VEC) injury model of blood stasis syndrome(BSS) associated with hypertension disease[D]. Shenzhen: Jinan University, 2009. [23] 齐容. 车前子粗多糖胶囊对老年高血压患者肠道微生态环境的影响[D]. 兰州: 甘肃中医药大学, 2017.QI R. Effect of Plantago polysaccharide on intestinal micro ecology of elderly patients with hypertension[D]. Lanzhou: Gansu University of Traditional Chinese Medicine, 2017. [24] 李红, 谢海彬, 齐容, 等. 车前子粗多糖胶囊调节肠道菌对老年高血压病患者血压影响的临床研究[J]. 中医临床研究,2019,11(11):15−19. [LI H, XIE H B, QI R, et al. Efficacy of regulation of intestinal flora with the Cheqianzi Cuduotang capsules on blood pressure in elderly patients with hypertension[J]. Clinical Journal of Chinese Medicine,2019,11(11):15−19. doi: 10.3969/j.issn.1674-7860.2019.11.005 [25] PEZESHKI Z, NEMATBAKHSH M. Sex differences in the renal vascular responses of AT1 and mas receptors in two-kidney-one-clip hypertension[J]. International Journal of Hypertension,2021,2021(6):1−8. [26] 梁秋云, 黄慧学, 曹俊涛, 等. 仙人掌果多糖提取物对自发性高血压大鼠血管内皮功能的保护作用[J]. 中药材,2011,34(7):1104−1107. [LIANG Q Y, HUANG H X, CAO J T, et al. Protective effect of cacti fruit polysaccharide extract on vascular endothelial function in spontaneously hypertensive rats[J]. Journal of Chinese Medicinal Materials,2011,34(7):1104−1107. doi: 10.13863/j.issn1001-4454.2011.07.036 [27] 刘华钢, 梁秋云, 黄慧学, 等. 仙人掌果多糖的药效研究[J]. 中国实验方剂学杂志,2011,17(19):170−173. [LIU H G, LIANG Q Y, HUANG H X, et al. Pharmacodynamic study on cactus fruit polysaccharide extract[J]. Chinese Journal of Experimental Traditional Medical Formulae,2011,17(19):170−173. doi: 10.3969/j.issn.1005-9903.2011.19.048 [28] 缪化春, 沈业寿. 天麻多糖的降血压作用[J]. 高血压杂志,2006,14(7):531−534. [LIAO H C, SHEN Y S. Antihypertensive effect of polysaccharides substracted from Gastrodia elata blume[J]. Chinese Journal of Hypertension,2006,14(7):531−534. [29] 吴帆. 黄芪多糖对血管紧张素ⅱ诱导小鼠高血压及血管、肾脏损伤的影响[D]. 长春: 吉林农业大学, 2018.WU F. Effects of Astragalus polysaccharides on angiotensin Ⅱ-induced hypertension, vascular and kidney injury in mice[D]. Changchun: Jilin Agricultural University, 2018. [30] 潘正军, 张晓蕾, 周建武, 等. 枸杞多糖对实验性高血压妊娠小鼠血压和胎鼠发育的影响[J]. 生殖与避孕,2009,29(2):70−72. [PAN Z J, ZHANG X L, ZHOU J W, et al. Effects of Lycium barbarum polysaccharides on blood pressures and fetus development of hypertensive pregnant mice[J]. Reproduction & Contraception,2009,29(2):70−72. [31] 詹银珠, 郑惠珍, 倪锡胜, 等. 枸杞多糖对肾血管性高血压大鼠肾功能不全的作用[J]. 中国中医基础医学杂志,2008,14(8):605−607. [ZHAN Y Z, ZHENG H Z, NI X S, et al. Effect of Lycium barbarum polysaccharide on renal dysfunction in rats with renovascular hypertension[J]. Chinese Journal of Basic Medicine in Traditional Chinese Medicine,2008,14(8):605−607. doi: 10.3969/j.issn.1006-3250.2008.08.018 [32] 董理鸣. 胶球藻多糖抑制老龄大鼠良性前列腺增生及其改善肾性高血压作用的研究[D]. 沈阳: 中国医科大学, 2018.DONG L M. The inhibitory effects of benign prostate hyperplasia in the aged rats and the improvement of renal hypertension by cocoomyxa gloeobotrydifomic[D]. Shenyang: China Medical University, 2018. [33] 付雪艳, 薛长湖, 宁岩, 等. 岩藻聚糖硫酸酯低聚糖降压作用的初步研究[J]. 中国海洋大学学报(自然科学版),2004,34(4):560−564. [FU X Y, XUE C H, NING Y, et al. Acute Antihypertensive effects of fucoidan oligosaccharides prepared from laminaria japonica on renovascular hypertensive rats[J]. Journal of Ocean University of China (Natural Science edition),2004,34(4):560−564. doi: 10.16441/j.cnki.hdxb.2004.04.008 [34] CHEN Y, JI W, DU J, et al. Preventive effects of low molecular mass potassium alginate extracted from brown algae on DOCA salt-induced hypertension in rats[J]. Biomedicine & Pharmacotherapy,2010,64(4):291−295. [35] DING L, CHENG P, WANG L, et al. The protective effects of polysaccharide extract from Xin-Ji-Er-Kang formula on Ang Ⅱ-induced HUVECs injury, L-NAME-induced hypertension and cardiovascular remodeling in mice[J]. BMC Complementary and Alternative Medicine,2019,19(1):127. doi: 10.1186/s12906-019-2539-z [36] MIYAZAWA N, OKAZAKI M, OHGA S. Antihypertensive effect of Pleurotus nebrodensis in spontaneously hypertensive rats[J]. Journal of Oleo Science,2008,57(12):675−681. doi: 10.5650/jos.57.675 [37] MAEDA H, ZHU X, SUZUKI S, et al. Structural characterization and biological activities of an exopolysaccharide kefiran produced by Lactobacillus kefiranofaciens WT-2BT[J]. Journal of Agricultural and Food Chemistry,2004,52(17):5533−5538. doi: 10.1021/jf049617g [38] MAEDA H, ZHU X, OMURA K, et al. Effects of an exopolysaccharide (kefiran) on lipids, blood pressure, blood glucose, and constipation[J]. Biofactors,2004,22(1-4):197−200. doi: 10.1002/biof.5520220141 [39] ABDELMALEK B E, SILA A, KRICHEN F, et al. Sulfated polysaccharides from Loligo vulgaris skin: Potential biological activities and partial purification[J]. International Journal of Biological Macromolecules,2015,72:1143−1151. doi: 10.1016/j.ijbiomac.2014.09.041 [40] GETACHEW A, LEE H, CHO Y J, et al. Optimization of polysaccharides extraction from Pacific oyster (Crassostrea gigas) using subcritical water: Structural characterization and biological activities[J]. International Journal of Biological Macromolecules,2018,121:852−861. [41] OPARIL S, ACELAJADO M C, BAKRIS G L, et al. Hypertension[J]. Nature Reviews Disease Primers,2018,4(1):18014. doi: 10.1038/nrdp.2018.14 [42] LAZARIDIS A, GAVRIILAKI E, DOUMA S, et al. Toll-like receptors in the pathogenesis of essential hypertension. A forthcoming Immune-Driven theory in full effect[J]. International Journal of Molecular Sciences,2021,22(7):3451. doi: 10.3390/ijms22073451 [43] BAVISHI C, BANGALORE S, MESSERLI F H. Renin angiotensin aldosterone system inhibitors in hypertension: Is there evidence for benefit independent of blood pressure reduction?[J]. Progress in Cardiovascular Diseases,2016,59(3):253−261. doi: 10.1016/j.pcad.2016.10.002 [44] BABAJANI F, KAKAVAND A, MOHAMMADI H, et al. COVID-19 and renin angiotensin aldosterone system: Pathogenesis and therapy[J]. Health Science Reports,2021,4(4):e440. [45] CHEN L, WANG L, SHU G, et al. Antihypertensive potential of plant foods: Research progress and prospect of plant-derived angiotensin-converting enzyme inhibition compounds[J]. Journal of Agricultural and Food Chemistry,2021,69(18):5297−5305. doi: 10.1021/acs.jafc.1c02117 [46] AYYASH M, JOHNSON S K, LIU S, et al. Cytotoxicity, antihypertensive, antidiabetic and antioxidant activities of solid-state fermented lupin, quinoa and wheat by Bifidobacterium species: In vitro investigations[J]. LWT-Food Science and Technology,2018,95:295−302. doi: 10.1016/j.lwt.2018.04.099 [47] CHEN J, YU X, CHEN Q, et al. Screening and mechanisms of novel angiotensin-I-converting enzyme inhibitory peptides from rabbit meat proteins: A combined in silico and in vitro study[J]. Food chemistry,2022,370:131070. doi: 10.1016/j.foodchem.2021.131070 [48] SILA A, BAYAR N, GHAZALA I, et al. Water-soluble polysaccharides from agro-industrial by-products: Functional and biological properties[J]. International Journal of Biological Macromolecules,2014,69:236−243. doi: 10.1016/j.ijbiomac.2014.05.052 [49] ROMDHANE M B, HADDAR A, GHAZALA I, et al. Optimization of polysaccharides extraction from watermelon rinds: Structure, functional and biological activities[J]. Food Chemistry,2017,216:355−364. doi: 10.1016/j.foodchem.2016.08.056 [50] KOLSI R B A, FAKHFAKH J, KRICHEN F, et al. Structural characterization and functional properties of antihypertensive Cymodocea nodosa sulfated polysaccharide[J]. Carbohydrate Polymers,2016,151:511−522. doi: 10.1016/j.carbpol.2016.05.098 [51] BEN ROMDHANE M, KRICHEN F, GHAZALA I, et al. Effect of extraction methods on chemical composition, angiotensin Ⅰ‐converting enzyme inhibitory and antioxidant activity of coffee residue[J]. Journal of Food Processing & Preservation,2017,41(2):1−10. [52] MOKNI A, SILA A, MAKHLOUF-GAFSI I, et al. Structural, functional and ACE inhibitory properties of water-soluble polysaccharides from Chickpea flours[J]. International Journal of Biological Macromolecules,2015,75:276−282. doi: 10.1016/j.ijbiomac.2015.01.037 [53] RAMCHANDRAN L, SHAH N. Effect of exopolysacchrides and inulin on the proteolytic, angiotensin-I-converting enzyme- and α-glucosidase-inhibitory activities as well as on textural and rheological properties of low-fat yogurt during refrigerated storage[J]. Dairy Science and Technology,2009,89(6):583−600. doi: 10.1051/dst/2009039 [54] 宋田源, 陈艳红, 倪辉, 等. 红毛藻多糖对血管紧张素转换酶活性的抑制作用[J]. 集美大学学报(自然科学版),2017,22(5):24−30. [SONG T Y, CHEN Y H, NI H, et al. Inhibitory effect of a polysaccharide fraction prepared from red seaweed Bangia fusco-purpurea on angiotensin converting enzyme[J]. Journal of Jimei University (Natural Science),2017,22(5):24−30. doi: 10.19715/j.jmuzr.2017.05.004 [55] PENG Y, YANG X, LI H, et al. Salt-contaminated water inducing pulmonary hypertension and kidney damage by increasing Ang Ⅱ concentration in broilers[J]. Environmental Science and Pollution Research,2022,29(1):1134−1143. doi: 10.1007/s11356-021-13358-y [56] KIMURA D C, NAGAOKA M R, BORGES D R, et al. Angiotensin Ⅱ or epinephrine hemodynamic and metabolic responses in the liver of L-NAME induced hypertension and spontaneous hypertensive rats[J]. World Journal of Hepatology,2017,9(17):781−790. doi: 10.4254/wjh.v9.i17.781 [57] CHEN W, LI Y, YU M. Effects of Astragalus polysaccharides on chymase, angiotensin-converting enzyme and angiotensin Ⅱ in diabetic cardiomyopathy in hamsters[J]. Journal of International Medical Research,2007,35(6):873−877. doi: 10.1177/147323000703500615 [58] WANG C, CHENG W, BAI S, et al. White mulberry fruit polysaccharides enhance endothelial nitric oxide production to relax arteries in vitro and reduce blood pressure in vivo[J]. Biomedicine & Pharmacotherapy,2019,116:109022. [59] VANHOUTTE P M, SHIMOKAWA H, FELETOU M, et al. Endothelial dysfunction and vascular disease - a 30th anniversary update[J]. Acta Physiologica (Oxford, England),2017,219(1):22−96. doi: 10.1111/apha.12646 [60] KRÓL M, KEPINSKA M . Human nitric oxide synthase-its functions, polymorphisms, and inhibitors in the context of inflammation, diabetes and cardiovascular diseases[J]. International Journal of Molecular Sciences,2020,22(1):56. doi: 10.3390/ijms22010056 [61] CHEN W, ZHANG W, SHEN W, et al. Effects of the acid polysaccharide fraction isolated from a cultivated Cordyceps sinensis on macrophages in vitro[J]. Cellular Immunology,2010,262(1):69−74. doi: 10.1016/j.cellimm.2010.01.001 [62] KIM G Y, CHOI G S, LEE S H, et al. Acidic polysaccharide isolated from Phellinus linteus enhances through the up-regulation of nitric oxide and tumor necrosis factor-alpha from peritoneal macrophages[J]. Journal of Ethnopharmacology,2004,95(1):69−76. doi: 10.1016/j.jep.2004.06.024 [63] CHENG A, WAN F, JIN Z, et al. Nitrite oxide and inducible nitric oxide synthase were regulated by polysaccharides isolated from Glycyrrhiza uralensis Fisch[J]. Journal of Ethnopharmacology,2008,118(1):59−64. doi: 10.1016/j.jep.2008.03.002 [64] DIWAKAR L, GOWAIKAR R, CHITHANATHAN K, et al. Endothelin-1 mediated vasoconstriction leads to memory impairment and synaptic dysfunction[J]. Scientific Reports,2021,11(1):4868. doi: 10.1038/s41598-021-84258-x [65] PRASANNA G, NARAYAN S, KRISHNAMOORTHY R R, et al. Eyeing endothelins: A cellular perspective[J]. Molecular & Cellular Biochemistry,2003,253(1-2):71−88. [66] GENOVESI S, GIUSSANI M, ORLANDO A, et al. Relationship between endothelin and nitric oxide pathways in the onset and maintenance of hypertension in children and adolescents[J]. Pediatric Nephrology,2021,36(10):2971−2985. doi: 10.1007/s00467-021-05135-3 [67] MI X S, CHIU K, VAN G, et al. Effect of Lycium barbarum polysaccharides on the expression of endothelin-1 and its receptors in an ocular hypertension model of rat glaucoma[J]. Neural Regeneration Research,2012,7(9):645−651. [68] LI J, WANG S, YANG X, et al. Effect of sulfated polysaccharides from Laminaria japonica on vascular endothelial cells in psychological stress rats[J]. Journal of Ethnopharmacology,2014,151(1):601−608. doi: 10.1016/j.jep.2013.11.014 [69] FULTON D, LI X, BORDAN Z, et al. Reactive oxygen and nitrogen species in the development of pulmonary hypertension[J]. Antioxidants,2017,6(3):54. doi: 10.3390/antiox6030054 [70] TANG R, LI Q Q, WANG D, et al. The protective effect of Dendrobium officinale polysaccharides on photoaging fibroblasts by scavenging reactive oxygen species and promoting the expression of TGF-β1[J]. Traditional Medicine Research,2018,3(3):131−139. [71] 张红玲, 韦豪华, 李兴太. 刺参多糖清除活性氧保护线粒体的研究[J]. 现代食品科技,2018,34(5):81−86. [ZHANG H L, WEI H H, LI X T. Study on the mitochondrial protection of Stichopus japonicus polysaccharides by scavenging reactive oxygen species[J]. Modern Food Science and Technology,2018,34(5):81−86. doi: 10.13982/j.mfst.1673-9078.2018.05.012 [72] ZHU Y, MAHANEY J, JELLISON J, et al. Fungal variegatic acid and extracellular polysaccharides promote the site-specific generation of reactive oxygen species[J]. Journal of Industrial Microbiology and Biotechnology,2017,44(3):329−338. doi: 10.1007/s10295-016-1889-5 [73] SHEN X, TANG Z, BAI Y, et al. Astragalus polysaccharide protects against Cadmium-Induced autophagy injury through reactive oxygen species (ROS) pathway in chicken embryo fibroblast[J]. Biological Trace Element Research,2022,200(1):318−329. doi: 10.1007/s12011-021-02628-y [74] LECHARTIER B, BERREBEH N, HUERTAS A, et al. Phenotypic diversity of vascular smooth muscle cells in pulmonary arterial hypertension[J]. Chest,2021,161(1):219−231. [75] BAUTISTA L E, VERA L M, ARENAS I A, et al. Independent association between inflammatory markers (C-reactive protein, interleukin-6, and TNF-α) and essential hypertension[J]. Journal of Human Hypertension,2005,19(2):149−154. doi: 10.1038/sj.jhh.1001785 [76] PAN M M, ZHANG M H, NI H F, et al. Inhibition of TGF-β1/Smad signal pathway is involved in the effect of Cordyceps sinensis against renal fibrosis in 5/6 nephrectomy rats[J]. Food & Chemical Toxicology,2013,58:487−494. [77] PENG J, LI X, FENG Q, et al. Anti-fibrotic effect of Cordyceps sinensis polysaccharide: Inhibiting HSC activation, TGF-β1/Smad signalling, MMPs and TIMPs[J]. Experimental Biology & Medicine,2013,238(6):668−677. [78] WANG Y, LIU D, ZHAO H, et al. Cordyceps sinensis polysaccharide CPS-2 protects human mesangial cells from PDGF-BB-induced proliferation through the PDGF/ERK and TGF-β1/Smad pathways[J]. Molecular & Cellular Endocrinology,2014,382(2):979−988. [79] GLUBA A, BANACH M, MIKHAILIDIS D P, et al. Genetic determinants of cardiovascular disease: The Renin-Angiotensin-Aldosterone system, paraoxonases, endothelin-1, nitric oxide synthase and adrenergic receptors[J]. In Vivo (Athens),2009,23(5):797−812. [80] RAJAGOPALAN S, LAURSEN J B, BORTHAYRE A, et al. Role for endothelin-1 in angiotensin Ⅱ-mediated hypertension[J]. Hypertension,1997,30(1 Pt 1):29−34. [81] KURLAND L, MELHUS H, SARABI M, et al. Polymorphisms in the renin-angiotensin system and endothelium-dependent vasodilation in normotensive subjects[J]. Clinical Physiology & Functional Imaging,2010,21(3):343−349. [82] I. ANITA J, STELLA S D, DIMITRI P M. Endothelin-1 and human platelets[J]. Current Vascular Pharmacology,2005,3(4):393−399. doi: 10.2174/157016105774329453 [83] MONTANARI A, CARRA N, PERINOTTO P, et al. Renal hemodynamic control by endothelin and nitric oxide under angiotensin Ⅱ blockade in man[J]. Hypertension (Dallas, Tex. 1979), 2002, 39(2): 715-720. [84] XIANG F, LIN L, HU M, et al. Therapeutic efficacy of a polysaccharide isolated from Cordyceps sinensis on hypertensive rats[J]. International Journal of Biological Macromolecules,2016,82:308−314. doi: 10.1016/j.ijbiomac.2015.09.060 [85] 梁秋云, 刘华钢, 黄慧学, 等. 仙人掌果多糖对自发性高血压大鼠血压的调节及机制[J]. 中国实验方剂学杂志,2010,16(6):167−170. [LIANG Q Y, LIU H G, HUANG H X. The regulating effect and its mechanism of polysaccharides of cactus pear fruit for blood pressure in spontaneous hypertension rat[J]. Chinese Journal of Experimental Traditional Medical Formulae,2010,16(6):167−170. [86] 梁秋云. 仙人掌果多糖抗高血压、高血脂和糖尿病及其机制的研究[D]. 南宁: 广西医科大学, 2008.LIANG Q Y. Studies on the anti-hypertension, anti-hyperlipidemia and anti-hyperglycaemia, and the action mechanisms of cactus pear fruit plysaccharide[D]. Nanning: Guangxi Medical University, 2008. [87] ZHU H, GENG M, GUAN H. Antihypertensive effects of D-polymannuronic sulfate and its related mechanisms in renovascular hypertensive rats[J]. Acta Pharmacologica Sinica,2000,21(8):727−732. [88] 王礼春, 耿美玉, 曲新颜, 等. 海洋硫酸多糖AHD的降压作用及其机制的初步探讨[J]. 中国海洋药物,2001,20(2):23−26. [WANG L C, GENG M Y, QU X Y, et al. The antihypertensive effect of marine sulfated polysaccharide AHD and its related mechanisms of action[J]. Chinese Journal of Marine Drugs,2001,20(2):23−26. doi: 10.3969/j.issn.1002-3461.2001.02.007 [89] 李晓红, 宋福印. 丹参多糖对SHR高血压模型大鼠血压和COX-2基因表达的影响[J]. 北京中医药,2017,36(8):706−709. [LI X H, SONG F Y. Effects of Salvia miltiorrhiza polysaccharides on blood pressure and COX-2 gene's expression in SHR hypertensive rats[J]. Beijing Journal of Traditional Chinese Medicine,2017,36(8):706−709. [90] WANG C Y, CHENG J W, ZHANG X H, et al. The compositional analysis and antihypertensive activity of polysaccharides from white mulberry fruit[J]. Current Topics in Nutraceutical Research,2018,17(1):105−110. doi: 10.37290/ctnr2641-452X.17:105-110 [91] PREEZ R D, PAUL N, MOUATT P, et al. Carrageenans from the red seaweed sarconema filiforme attenuate symptoms of diet-induced metabolic syndrome in rats[J]. Marine Drugs,2020,18(2):97. doi: 10.3390/md18020097 [92] RAKUGI H, ITO S, ITOH H, et al. Long-term phase 3 study of esaxerenone as mono or combination therapy with other antihypertensive drugs in patients with essential hypertension[J]. Hypertension Research,2019,42(12):1932−1941. doi: 10.1038/s41440-019-0314-7 [93] LEE O, KIM K, HAN C, et al. Effects of acidic polysaccharides from Gastrodia rhizome on systolic blood pressure and serum lipid concentrations in spontaneously hypertensive rats fed a high-fat diet[J]. International Journal of Molecular Sciences,2012,13(1):698−709. doi: 10.3390/ijms13010698 [94] YUAN Q, XIE F, TAN J, et al. Extraction, structure and pharmacological effects of the polysaccharides from Cordyceps sinensis: A review[J]. Journal of Functional Foods,2022,89:104909. doi: 10.1016/j.jff.2021.104909 -