The Residue of Veterinary Medicine and Leanness-enhancing Agents in Meat and Advance in Detection Technology
-
摘要: 肉与肉制品中的兽药和瘦肉精残留是影响食品安全的重要因素。因此,明确肉与肉制品中有害残留物,开发快速、准确检测肉中有害残留物的技术,对控制肉与肉制品中的有害残留物,保证肉类食品安全具有重要意义。本文总结了畜牧业中常用的抗菌类药物和瘦肉精的代表性有害残留物,对比分析了表面增强拉曼光谱技术(surface enhanced Raman spectroscopy,SERS)、液相色谱-质谱法(liquid chromatography-mass spectrometry,LC-MS)和免疫分析技术这三种最具代表性的技术在抗生素和瘦肉精检测中应用的范围、优缺点、关键影响因素等,以期为肉与肉制品安全控制、兽药和瘦肉精残留物质检测提供指导。Abstract: The residue of veterinary medicine and brown meat essence in meat and meat products is an important factor that affects food safety. Therefore, there is of great significance to review the harmful residues in meat and meat products and develop rapid and accurate detection technologies, which will favor control of these harmful residues and guarantee the safety of meat. This review summarizes antibacterial drugs and leanness-enhancing agents that are commonly used in animal husbandry and analyzed the application range, advantages, and disadvantages, key influencing factors of surface-enhanced Raman spectroscopy, liquid chromatography-mass spectrometry, and immunoassay in the detection of antibiotics and leanness-enhancing agents. This review is anticipated to provide guidance for the safety control and veterinary medicine and leanness-enhancing agents residues detection of meat and meat products.
-
Key words:
- antibacterial drugs /
- leanness-enhancing agents /
- detection technology
-
表 1 肉与肉制品中常见的抗生素残留
Table 1. The common antibiotic residues in meat and meat products
抗菌药物 结构特点 典型代表产品 作用及其机理 特点 国标限量
(单位,μg/kg)残留标志物 来源 四环素类 含有氢化骈四苯基本
骨架四环素 抑制细菌蛋白质的合成,对革兰氏阳性和阴性菌均具有良好的抗菌效果 广谱抗菌、成本低 200 四环素 [14] 土霉素 200 土霉素 金霉素 200 金霉素 多西环素 100 多西环素 β-内酰胺类 化学结构中含有β-内酰胺环 青霉素 抑制革兰氏阴性和阳性菌细胞壁的合成;与PBPs相互作用,阻断转肽反应,导致细胞溶解和死亡 广谱抗菌、杀菌活性强、毒性低、适应性广 50 青霉素 [15] 头孢菌素 50 头孢喹肟 大环内酯类 分子结构中具有一个14至16碳内酯环,上面附着着一个或多个脱氧糖或氨基糖残基 红霉素 与核糖体结合并干扰细菌蛋白质的合成,对支原体、革兰氏阳性菌和一些革兰氏阴性菌具有抗菌活性 吸收快,半衰期长,相对安全 鸡肌肉:100
其他动物肌肉:50红霉素A [16-17] 庆大霉素 100 庆大霉素 (氟)喹诺酮类 含有4-喹诺酮基本
结构恩诺沙星 治疗细菌性疾病和支原体感染,对革兰氏阳性和阴性菌具有广谱杀菌活性 广谱抗菌,效价高,无交叉感染,组织穿透性良好 100 恩诺沙星与环丙沙星之和 [18-19] 沙拉沙星 10 沙拉沙星 达氟沙星 猪肌肉:100
其他动物肌肉:100磺胺类 以对位氨基苯磺酰胺
为基本结构磺胺二甲嘧啶 通过与PABA竞争干扰叶酸的合成,阻止细菌的细胞复制,对革兰氏阳性菌、革兰氏阴性菌及球虫等原生生物均有效 广谱抗菌、性质稳定、效率高 100 磺胺二甲嘧啶 [20] 1000 兽药原型之和 磺胺类合成
抗菌药注:PBPs:青霉素结合蛋白;PABA:对氨基苯甲酸。 表 2 用于肉中有害残留物质检测的表面增强拉曼光谱技术
Table 2. The surface enhanced Raman spectroscopy for detection of harmful residues in meat
SERS活性基底 检测基质 有害残留物质 背景信号扣除方法 检测结果 来源 检测限(LOD) 回收率(%) Fe3O4@Au@Ag 猪肉 盐酸克伦特罗 0.003 ng/mL 90.7~108.0 [42] Au-Ag NPs 鸡翅 环丙沙星 2×10−7 mol/L 91~105 [43] OTR202 鸭肉 螺旋霉素 air-PLS 4 mg/L 73.38~105.25 [44] 纳米金胶和OTR103 鸭肉 土霉素 air-PLS 0.2 mg/L 74~102 [45] OTR202和OTR103 鸭肉 四环素 air-PLS 1.120 mg/L 101~108 [46] OTR202和OTR103 鸭肉 诺氟沙星 air-PLS 0.1 mg/L 93~111 [47] 氧氟沙星 0.05 mg/L 89~106 环丙沙星 0.2 mg/L 97~112 β-CD-Ag NPs 鸡、鸭肉 马博沙星 1.7 nmol/L 101.3~103.1 [48] GMA-EDMA粉末多孔材料 鸡肉 恩诺沙星 0.01 mg/kg - [49] Ag NPs 鸡、鸭肉 二硝托胺 0.915 nmol/L 95.67~105.39 [50] 托曲苏利 1.03 nmol/L 94.79~99.44 注:Ag NPs :银纳米粒子;OTR202:金纳米颗粒;OTR103:金胶体增强剂;Fe3O4@Au@Ag:Au@Ag复合磁性纳米材料;Au-Ag NPs:金银双金属纳米材料;β-CD-Ag NPs:β-环糊精修饰银纳米粒子;GMA-EDMA:氨基改性甲基丙烯酸缩水甘油酯-二甲基丙烯酸乙酯;air-PLS:迭代自适应加权惩罚最小二乘法;-:文献中未给出该数据。 表 3 用于肉中有害残留物质检测的色谱-质谱串联技术
Table 3. The tandem technique of chromatography-mass spectrometry for the detection of harmful residues in meat
色谱-质谱串联方法 前处理方法 检测基质 有害残留物质 检测结果 来源 检测限
(LOD,μg/kg)定量限
(LOQ,μg/kg)回收率
(%)液相色谱-质谱 硼酸钠缓冲液与乙酸乙酯提取,分子印迹固相
萃取猪、牛、鸡肌肉 螺旋霉素、红霉素、替米考星、罗红霉素等 0.1~0.4 0.3~1.0 60.7~100.3 [55] 液相色谱-质谱 丙酮提取,均质离心 猪肌肉、脂肪、肝脏 阿维拉霉素 5 10 100~108 [56] 液相色谱-质谱 乙酸乙腈萃取,正己烷脱脂,高速离心 牛肉、猪肌肉 盐酸布比卡因 0.3 1 60~120 [57] 异氟丙酮乙酸酯 0.6 2 液相色谱-三重四极杆/
线性离子阱复合质谱甲酸乙腈提取,captiva EMR-Lipid柱净化 牛肌肉、脂肪、肝肾 吡利霉素 5 10 60.2~101.0 [58] 高效液相色谱-串联质谱 乙腈提取,正己烷除脂,低温离心 羊肉 红霉素 5 20 97.54~102.70 [59] 超高液相色谱-串联质谱 高氯酸除蛋白质,乙酸乙酯和叔丁基甲醚萃取 猪瘦肉 沙丁胺醇、特伦特罗、莱克多巴胺 − 0.1 >70 [60] 超高效液相色谱-四级杆/飞行时间质谱 甲酸乙腈提取,PRiME HLB固相萃取柱净化 猪肉、牛肉 兴奋剂药物 0.1~2.0 0.2~4.0 77.99~109.20 [61] 超高效液相色谱-四极杆-静电场轨道阱质谱 柠檬酸缓冲液与甲酸乙腈提取,磁性碳纳米管
净化羊肉 喹诺酮类、大环内酯类、磺胺类 0.09~5.29 − 71.37~94.65 [62] 注:−:文献中未给出该数据。 表 4 用于肉中有害残留物质检测的免疫分析技术
Table 4. The immunoassay for detection of harmful residues in meat
免疫分析技术 检测原理 检测基质 有害残留物质 检测结果 来源 检测限(LOD) 回收率(%) 荧光偏振免疫法 荧光物质经单一平面的蓝偏振光照射激发后,
恢复至基态是发出单一平面偏振荧光
荧光偏振程度与待测抗原浓度呈反比关系猪肉 莱克多巴胺 0.56 μg/kg 74.8~86.6 [64] 表面等离子体共振生物传感器免疫分析法 生物分子在识别并形成复合物过程中,引起界面折射率变化与一定波长的入射光在界
面形成的反射光衰减程度存在直接的相关性猪肉 莱克多巴胺 0.6 μg/kg >80 [65] 竞争性间接酶联
免疫法将高特异性的免疫反应和高灵敏度的化学发光
反应相结合用以检测抗原或者抗体猪肉 苯乙酰胺A 0.08 μg/kg 79.6~112.6 [66] 光谱单克隆抗体间接竞争酶联免疫 将可溶性的抗原或抗体结合到聚苯乙烯等固相
载体上,利用抗原抗体特异性结合进行免疫
反应的定性和定量检测方法猪肌肉、猪肝、猪肾、牛肌肉 阿维菌素 0.5~5.4 μg/L 78.1~110.5 [67] 直接竞争化学发光酶联免疫吸附法 将化学发光反应与免疫反应相结合,通过过氧
化物酶和化学发光底物作用,检测化学发光
信号,进而对待测物进行定量检测鸡肌肉 磺胺类 0.03~26 μg/kg 60.8~97.1 [68] 免疫传感器 直接将抗原抗体免疫反应转变为可检测的
连续信号鸡肌肉 金刚烷胺 0.3 μg/L 78.8~84.3 [69] 双功能介孔二氧化硅纳米球串联偶联免疫分析法 通过介孔二氧化硅包裹的正电荷纳米金和
阿维菌素抗体偶联得到提高检测性能鸡肉 氯霉素
阿维菌素
四环素
链霉素0.011 μg/L
0.134 μg/L
0.015 μg/L
0.106 μg/L[70] 量子点荧光免疫
分析法用量子点代替有机荧光试剂进行标记的荧光
免疫检测法猪、鸡 四环素 3.0 μg/kg 78.7~96.4 [71] 金霉素 2.0 μg/kg 81.8~94.5 土霉素 6.0 μg/kg 84.5~97.0 -
[1] SUMDLOF S F. Veterinary drugs residues: Veterinary drugs-general[J]. Encyclopedia of Food Safety,2014,3:35−38. [2] CHICOINE A, ERDELY H, FATTORI V, et al. Assessment of veterinary drug residues in food: Considerations when dealing with sub-optimal data[J]. Regulatory Toxicology and Pharmacology,2020,118:104806. doi: 10.1016/j.yrtph.2020.104806 [3] PLEADIN J, VULIĆ A, PERŠI N, et al. Clenbuterol residues in pig muscle after repeat administration in a growth-promoting dose[J]. Meat Science,2010,86(3):733−737. doi: 10.1016/j.meatsci.2010.06.013 [4] RUBIO LOZANO M S, HERNÁNDEZ CHÁVEZ J F, RUÍZ LÓPEZ F A, et al. Horse meat sold as beef and consequent clenbuterol residues in the unregulated Mexican marketplace[J]. Food Control,2019,110:107028. [5] KHALIL S, HAMED E, HASSANIN O. Residue withdrawal of florfenicol from the serum and edible tissues of broiler chickens[J]. The Journal of American Science,2012,8(12):514−524. [6] 张永新, 刘恬. 猪肉及其制品中兽药残留的分析与控[J]. 肉类工业,2020,475(11):36−39. [ZHANG Y X, LIU T. Analysis and control of veterinary drug residues in pork and its products[J]. Meat Industry,2020,475(11):36−39. doi: 10.3969/j.issn.1008-5467.2020.11.008 [7] 谢希杨, 孙万成, 罗毅皓. 核酸适配体技术在畜产品兽残检测中的应用[J]. 食品研究与开发,2020,41(14):218−224. [XIE X Y, SUN W C, LUO Y H. Application of nucleic acid aptamer technology in detection of animal products[J]. Food Research and Development,2020,41(14):218−224. doi: 10.12161/j.issn.1005-6521.2020.14.034 [8] PINHEIRO I, JESUINO B, BARBOSA J, et al. Clenbuterol storage stability in the bovine urine and liver samples used for European official control in the azores islands (Portugal)[J]. Journal of Agricultural and Food Chemistry,2009,57(3):910−914. doi: 10.1021/jf802995e [9] MORENO L, LANUSSE C. Veterinary drug residues in meat-related edible tissues. in book: New aspects of meat quality (Second edition)[M/OL]. Cambridge: Woodhead Publishing, 2022: 755-783 (2022-8-26) [2022-11-4].https://doi.org/10.1016/B978-0-323-85879-3.00007-6. [10] HERRANZ S, MORENOBONDI M C, MARAZUELA M D. Development of a new sample pretreatment procedure based on pressurized liquid extraction for the determination of fluoroquinolone residues in table eggs[J]. Journal of Chromatography A,2007,1140(1):63−70. [11] WANG M T, PENG B, ZHAO N, et al. Multiresidue analysis of tetracycline and β-receptor agonists in chicken by pressurized liquid extraction and liquid chromatography-tandem mass spectrometry: Comparison with QuEChERS extraction method and ultrasound assisted extraction[J]. Journal of Food Composition and Analysis,2020,85:103339. doi: 10.1016/j.jfca.2019.103339 [12] CÁMARA M, GALLEGO-PICÓ A, GARCINUÑO R M, et al. An HPLC-DAD method for the simultaneous determination of nine β-lactam antibiotics in ewe milk[J]. Food Chemistry,2013,141(2):829−834. doi: 10.1016/j.foodchem.2013.02.131 [13] GRAHAM F, PARADIS L, BÉGIN P, et al. Risk of allergic reaction and sensitization to antibiotics in foods[J]. Annals of Allergy, Asthma & Immunology,2014,113(3):329−330. [14] 董高领, 牛志强, 刘利晓. 高效液相色谱法检测饲料中四环素类药物含量研究进展[J]. 畜牧与饲料科学,2019,40(1):33−35. [DONG G L, NIU Z Q, LIU L X. Research progress on detection methods of tetracyclines in feed stuff by high-performance liquid chromatography[J]. Animal Husbandry and Feed Science,2019,40(1):33−35. doi: 10.12160/j.issn.1672-5190.2019.01.008 [15] BALSALOBRE L, BLANCO A, ALARCÓN T. Beta‐lactams. In book: Antibiotic drug resistance[M/OL]. New York: John Wiley & Sons, 2019: 57-72 (2019-8-23) [2022-11-4]. https://doi.org/10.1002/9781119282549.ch3. [16] ZHANG M Q, CHEN B, ZHANG J P, et al. Liver toxicity of macrolide antibiotics in zebrafish[J]. Toxicology,2020,441:152501. doi: 10.1016/j.tox.2020.152501 [17] CLOTHIER K, KINYON J, GRIFFITH R. Antimicrobial susceptibility patterns and sensitivity to tulathromycin in goat respiratory bacterial isolates[J]. Veterinary Microbiology,2011,156(1−2):178−182. [18] KERGARAVAT S V, GAGNETEN A M, HERNANDEZ S R. Development of an electrochemical method for the detection of quinolones: Application to cladoceran ecotoxicity studies[J]. Microchemical Journal,2018,141:279−286. doi: 10.1016/j.microc.2018.05.039 [19] MAJDINASAB M, MITSUBAYASHI K, MARTY J L. Optical and electrochemical sensors and biosensors for the detection of quinolones[J]. Trends in Biotechnology,2019,37(8):898−915. doi: 10.1016/j.tibtech.2019.01.004 [20] LEBKOWSKA-WIERUSZEWSKA B, KOWALSKI C. Sulfachlorpyrazine residues depletion in turkey edible tissues[J]. Journal of Veterinary Pharmacology and Therapeutics,2010,33(4):389−395. [21] XU L Y, ZHANG H, XIONG P, et al. Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: A review[J]. Science of The Total Environment,2020,753:141975. [22] PÉREZ RODRÍGUEZ M, PELLERANO R, PEZZA L, et al. An overview of the main foodstuff sample preparation technologies for tetracycline residue determination[J]. Talanta,2018,182:1−21. doi: 10.1016/j.talanta.2018.01.058 [23] 谢会玲, 陈伟, 彭池方, 等. 动物源食品中β-内酰胺类抗生素多残留免疫分析方法研究进展[J]. 食品科学,2008(7):465−469. [XIE H L, CHEN W, PENG C F, et al. Research progress of multi-residues immunoassay of β-lactam antibiotic in food of animal origin[J]. Food Science,2008(7):465−469. [24] LI X Z, MEHROTRA M, GHIMIRE S, et al. β-Lactam resistance and β-lactamases in bacteria of animal origin[J]. Veterinary Microbiology,2007,121(3-4):197−214. doi: 10.1016/j.vetmic.2007.01.015 [25] BAYNES R E, DEDONDER K, KISSELL L, et al. Health concerns and management of select veterinary drug residues[J]. Food and Chemical Toxicology,2016,88:112−122. doi: 10.1016/j.fct.2015.12.020 [26] ER B, ONURDAĞ F K, DEMIRHAN B, et al. Screening of quinolone antibiotic residues in chicken meat and beef sold in the markets of Ankara, Turkey[J]. Poultry Science,2013,92(8):2212−2215. doi: 10.3382/ps.2013-03072 [27] BEARDEN D T, RODVOLD K A. Penetration of macrolides into pulmonary sites of infection[J]. Infections in Medicine,1999,16(7):480−484. [28] ZUCKERMAN J, QAMAR F, BONO B. Review of macrolides (azithromycin, clarithromycin), ketolids (telithromycin) and glycylcyclines (tigecycline)[J]. The Medical Clinics of North America,2011,95(4):761−791. doi: 10.1016/j.mcna.2011.03.012 [29] LIU Y H, YANG Q X, CHEN X T, et al. Sensitive analysis of trace macrolide antibiotics in complex food samples by ambient mass spectrometry with molecularly imprinted polymer-coated wooden tips[J]. Talanta,2019,204:238−247. doi: 10.1016/j.talanta.2019.05.102 [30] 程江闯, 胡启立, 吴海平. QuEChERS-超高效液相色谱-串联质谱法测定牛羊肉中36种瘦肉精残留量[J]. 食品安全质量检测学报,2020,11(23):200−210. [CHENG J C, HU Q L, WU H P. Determination of 36 clenbuterol residues in beef and mutton samples by QuEChERS-ultra performance liquid chromatography-tandem mass spectrometry[J]. Journal of Food Safety and Quality Inspection,2020,11(23):200−210. [31] 曹金博, 王耀, 李燕虹, 等. 食品中“新型瘦肉精”的检测方法研究进展[J]. 安徽农业科学,2019,47(8):1−4. [CAO J B, WANG Y, LI Y H, et al. Research progress of new type lean meat powder detection methods in food[J]. Anhui Agricultural Science,2019,47(8):1−4. doi: 10.3969/j.issn.0517-6611.2019.08.001 [32] 杨金众. 食品中瘦肉精残留危害及其常用检测方法探讨[J]. 食品安全导刊,2020,264(3):116. [YANG J Z. Discussion on the harm of clenbuterol residues in food and its common detection method[J]. Food Safety Guide.,2020,264(3):116. doi: 10.16043/j.cnki.cfs.2020.03.089 [33] STELLA R, BOVO D, MASTRORILLI E, et al. A novel tool to screen for treatments with clenbuterol in bovine: Identification of two hepatic markers by metabolomics Investigation[J]. Food Chemistry,2021,353(9):129366. [34] SILLENCE M N. Technologies for the control of fat and lean deposition in livestock[J]. Veterinary Journal,2004,167(3):242−257. doi: 10.1016/j.tvjl.2003.10.020 [35] BARBOSA J, CRUZ C, MARTINS J, et al. Food poisoning by clenbuterol in Portugal[J]. Food Additives and Contaminants,2005,22:563−566. doi: 10.1080/02652030500135102 [36] ZHU C J, ZHAO G Y, DOU W C. Immunochromatographic assay using brightly colored silica nanoparticles as visible label for point-of-care detection of clenbuterol[J]. Sensors and Actuators B: Chemical,2018,266:392−399. doi: 10.1016/j.snb.2018.03.085 [37] KUIPER H, NOORDAM M Y, DOOREN-FLIPSEN M M H, et al. Illegal use of β-adrenergic agonists: European community[J]. Journal of Animal Science,1998,76(1):195−207. doi: 10.2527/1998.761195x [38] ZHANG W, WANG P L, SU X O. Current advancement in analysis of β-agonists[J]. TrAC Trends in Analytical Chemistry,2016,85:1−16. [39] LI G L, ZHANG X L, ZHENG F P, et al. Emerging nanosensing technologies for the detection of β-agonists[J]. Food Chemistry,2020,332:127431. doi: 10.1016/j.foodchem.2020.127431 [40] LE RU E, BLACKIE E J, MEYER M, et al. Surface enhanced Raman scattering enhancement factors: A comprehensive study[J]. Journal of Physical Chemistry C,2007,111(37):13794−13803. doi: 10.1021/jp0687908 [41] 丁松园, 吴德印, 杨志林, 等. 表面增强拉曼散射增强机理的部分研究进展[J]. 高等学校化学学报,2008,29(12):2569−2581. [DING Y S, WU D Y, YANG Z L, et al. Some progresses in mechanistic studies on surface-enhanced Raman scattering[J]. Journal of College Chemistry,2008,29(12):2569−2581. doi: 10.3321/j.issn:0251-0790.2008.12.048 [42] DUAN N, QI S, GUO Y C, et al. Fe3O4@Au@Ag nanoparticles as surface-enhanced Raman spectroscopy substrates for sensitive detection of clenbuterol hydrochloride in pork with the use of aptamer binding[J]. LWT,2020,134:110017. doi: 10.1016/j.lwt.2020.110017 [43] LI M H, WU H, WU Y P, et al. Heterostructured cube Au-Ag composites for rapid Raman detection of antibiotic ciprofloxacin: Rapid Raman detection of antibiotic ciprofloxacin[J]. Journal of Raman Spectroscopy,2017,48(4):525−529. doi: 10.1002/jrs.5071 [44] 洪茜, 刘木华, 袁海超, 等. 基于表面增强拉曼光谱的鸭肉中螺旋霉素残留检测[J]. 发光学报,2015,36(12):1464−1468. [HONG Q, LIU M H, YUAN H C, et al. Detection of spiramycin residue in duck meat based on SERS[J]. Journal of luminescence,2015,36(12):1464−1468. doi: 10.3788/fgxb20153612.1464 [45] 郭红青, 刘木华, 袁海超, 等. 表面增强拉曼光谱技术快速检测鸭肉中的土霉素[J]. 食品安全质量检测学报,2017,8(1):169−176. [GUO H Q, LIU M H, YUAN H C, et al. Rapid detection of oxytetracycline in duck meat by surface-enhanced Raman spectroscopy[J]. Journal of Food Safety and Quality Inspection.,2017,8(1):169−176. doi: 10.19812/j.cnki.jfsq11-5956/ts.2017.01.030 [46] ZHAO J H, LIU P, YUAN H C, et al. Rapid detection of tetracycline residues in duck meat using surface enhanced Raman spectroscopy[J]. Journal of Spectroscopy,2016:1−6. [47] 李耀. 基于表面增强拉曼光谱技术对鸭肉中喹诺酮类抗生素残留检测研究[D]. 南昌: 江西农业大学, 2016.LI Y. Study on detection of quinolone antibiotics residues in duck meat based on SERS[D]. Nanchang: Jiangxi Agricultural University, 2016. [48] ZHAO R, BI S Y, SHAO D, et al. Rapid determination of marbofloxacin by surface-enhanced Raman spectroscopy of silver nanoparticles modified by β-cyclodextrin[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2020,229:118009. doi: 10.1016/j.saa.2019.118009 [49] XU Y, DU Y P, LI Q Q, et al. Ultrasensitive detection of enrofloxacin in chicken muscles by surface-enhanced Raman spectroscopy using amino-modified glycidyl methacrylate-ethylene dimethacrylate (GMA-EDMA) powdered porous material[J]. Food Analytical Methods,2013,7:1219−1228. [50] SHAO D, BI S Y, ZHAO R R, et al. Selective determination of dinitolmide and toltrazuril by surface-enhanced Raman spectroscopy (SERS) using AgNPs as substrate[J]. Sensors and Actuators B:Chemical,2020,307:127644. doi: 10.1016/j.snb.2019.127644 [51] CHEN H Z, LIU X K, CHEN A, et al. Parametric-scaling optimization of pretreatment methods for the determination of trace/quasi-trace elements based on near infrared spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2019,229:117959. [52] 王甜. 液相色谱-质谱联用技术在水产品兽药残留检测中的应用探究[J]. 检验检疫学刊,2020,30(3):99−101. [WANG T. The application of liquid chromatography-mass spectrometry in the detection of veterinary drug residue in aquatic products[J]. Journal of Inspection and Quarantine,2020,30(3):99−101. [53] LOPES R, AUGUSTI D, SANTOS F, et al. Development and validation of an efficient and innovative method for the quantification of multiclass veterinary drugs in milk by using LC-MS/MS analysis[J]. Analytical Methods,2013,5:5121−5127. doi: 10.1039/c3ay40567b [54] CEPURNIEKS G, RJABOVA J, ZACS D, et al. The development and validation of a rapid method for the determination of antimicrobial agent residues in milk and meat using ultra performance liquid chromatography coupled to quadrupole-Orbitrap mass spectrometry[J]. Journal of Pharmaceutical and Biomedical Analysis,2015,102:184−192. doi: 10.1016/j.jpba.2014.09.005 [55] SONG X Q, ZHOU T, LIU Q Y, et al. Molecularly imprinted solid-phase extraction for the determination of ten macrolide drugs residues in animal muscles by liquid chromatography-tandem mass spectrometry[J]. Food Chemistry,2016,208:169−176. doi: 10.1016/j.foodchem.2016.03.070 [56] SAITOSHIDA S, HAYASHI T, NEMOTO S, et al. Determination of total avilamycin residues as dichloroisoeverninic acid in porcine muscle, fat, and liver by LC-MS/MS[J]. Food Chemistry,2018,249:84−90. doi: 10.1016/j.foodchem.2018.01.003 [57] CHO S H, PARK J A, ZHENG W J, et al. Quantification of bupivacaine hydrochloride and isoflupredone acetate residues in porcine muscle, beef, milk, egg, shrimp, flatfish, and eel using a simplified extraction method coupled with liquid chromatography-triple quadrupole tandem mass spectrometry[J]. Journal of Chromatography B,2017,1065:29−34. [58] 王亦琳, 尹晖, 叶妮, 等. 液相色谱-三重四极杆/线性离子阱复合质谱技术检测牛可食性组织中吡利霉素的残留[J]. 中国兽药杂志,2020,54(9):41−48. [WANG Y L, YIN H, YE N. The research of pirlimycin residues in cattle edible tissues by liquid chromatography-quadruple/Linear Ion Trap Mass Spectrometry[J]. Chinese Journal of Veterinary Medicine,2020,54(9):41−48. [59] 何秀玲, 张晓云, 白玉廷, 等. 液相色谱-串联质谱法测定羊肉中红霉素残留量[J]. 动物医学进展,2020,41(4):58−63. [HE X L, ZHANG X Y, BAI Y Y, et al. Determination of erythromycin residue in mutton by high performance liquid chromatography tandem mass spectrometry[J]. Advances in Animal Medicine,2020,41(4):58−63. doi: 10.16437/j.cnki.1007-5038.2020.04.012 [60] 王爱卿, 马丽, 马爱平. 超高效液相色谱质谱联用法测定动物源性食品中瘦肉精方法的探讨[J]. 饲料广角,2012(13):35−36,38. [WANG A Q, MA L, MA A P. Determination of clenbuterol in animal derived foods by ultra high performance liquid chromatography mass spectrometry[J]. Feed China,2012(13):35−36,38. [61] 马俊美, 范素芳, 李强, 等. 超高效液相色谱-四极杆/飞行时间质谱检测猪肉和牛肉中30种食源性兴奋剂类药物残留[J]. 食品科学,2020:1−15. [MA J M, FAN S F, LI Q, et al. Determination of 30 foodborne stimulant drug residues in pork and beef using ultra-high performance liquid chromatography coupled with quadrupole-time of flight mass spectrometry[J]. Food Science,2020:1−15. [62] 贾玮, 徐曦, 石琳, 等. 液相色谱-高分辨质谱法同时测定羊肉中12种兽药残留[J]. 陕西科技大学学报,2020,38(3):54−59. [JIA W, XU X, SHI L, et al. Simultaneous determination of 12 veterinary drug residues in mutton by liquid chromatography-high resolution mass spectrometry[J]. Journal of Shaanxi University of Science and Technology,2020,38(3):54−59. doi: 10.3969/j.issn.1000-5811.2020.03.009 [63] 赵晓丽, 谢书越, 陈炎, 等. 免疫分析技术在农产品农兽药残留检测中的应用[J]. 中国检验检测,2020,28(3):18−20. [ZHAO X L, XIE S Y, CHEN Y, et al. Application of immunoassay technology in the residue detection of pesticides and veterinary drugs of agricultural products[J]. China Inspection Body & Laboratory,2020,28(3):18−20. doi: 10.16428/j.cnki.cn10-1469/tb.2020.03.005 [64] DONG B L, ZHAO S J, LI H F, et al. Design, synthesis and characterization of tracers and development of a fluorescence polarization immunoassay for the rapid detection of ractopamine in pork[J]. Food Chemistry,2019,271:9−17. doi: 10.1016/j.foodchem.2018.07.147 [65] LU X, ZHENG H, LI X Q, et al. Detection of ractopamine residues in pork by surface plasmon resonance-based biosensor inhibition immunoassay[J]. Food Chemistry,2012,130(4):1061−1065. doi: 10.1016/j.foodchem.2011.07.133 [66] WANG X M, LIUFU T, BELOGLAZOVA N, et al. Development of a competitive indirect enzyme-linked immunosorbent assay for screening phenylethanolamine a residues in pork samples[J]. Food Analytical Methods,2016,9(11):3099−3106. doi: 10.1007/s12161-016-0500-z [67] NI T T, PENG D P, WANG Y X, et al. Development of a broad-spectrum monoclonal antibody-based indirect competitive enzyme-linked immunosorbent assay for the multi-residue detection of avermectins in edible animal tissues and milk[J]. Food Chemistry,2019,286:234−240. doi: 10.1016/j.foodchem.2019.02.011 [68] LI Z B, CUI P L, LIU J, et al. Production of generic monoclonal antibody and development of chemiluminescence immunoassay for determination of 32 sulfonamides in chicken muscle[J]. Food Chemistry,2020,311:125966.1−125966.9. [69] YU W B, ZHANG T T, MA M F, et al. Highly sensitive visual detection of amantadine residues in poultry at the ppb level: A colorimetric immunoassay based on a Fenton reaction and gold nanoparticles aggregation[J]. Analytica Chimica Acta,2018,1027:130−136. doi: 10.1016/j.aca.2018.04.035 [70] JI H X, XIA C X, XU J J, et al. A highly sensitive immunoassay of pesticide and veterinary drug residues in food using by tandem conjugation of bi-functional mesoporous silica nanospheres[J]. The Analyst,2020,145(6):2226−2232. doi: 10.1039/C9AN02430A [71] 李研东, 韩雪, 吴雨洋, 等. 动物性食品中四环素类药物残留量子点荧光免疫技术研究[J]. 农产品质量与安全,2017(5):83−86,91. [LI Y D, HAN X, WU Y Y, et al. Study on fluorescence immunoassay of tetracycline residues in animal food by quantum dots[J]. Quality and Safety of Agricultural Products,2017(5):83−86,91. -