Simultaneous Determination of 9 Biogenic Amines in Larimichthys polyactis by UHPLC-MS/MS
-
摘要: 为快速检测水产品中精胺、亚精胺、腐胺、尸胺、组胺、色胺、章鱼胺、酪胺、2-苯乙胺9种生物胺含量,本研究以小黄花鱼为基质,优化了流动相组成和样品提取溶剂,建立了超高效液相色谱-串联三重四极杆质谱同时检测方法。样品经0.1%三氯乙酸水溶液重复提取两遍,合并上清液过0.22 μm聚四氟乙烯滤膜。以HSS T3为色谱柱,流动相A为0.1%甲酸乙腈,流动相B为10 mmol/L甲酸铵水溶液含0.2%甲酸,在电喷雾正离子电离、多反应监测模式下,9种生物胺在4 min内得到分离。根据响应强度不同,9种生物胺分成酪胺、2-苯乙胺,腐胺、尸胺、组胺、色胺、章鱼胺,精胺、亚精胺三组,以1:5:25浓度比配制多浓度混合标准中间液。该方法对三组生物胺的线性范围分别为1~40 ng/mL、5~200 ng/mL和25~1000 ng/mL;方法定量限依次为0.01、0.05和0.25 mg/kg。低、中、高三个浓度水平加标回收率分别为81.7%~111.2%、80.0%~110.3%、80.0%~99.0%;精密度(n=6)依次为1.7%~7.3%、1.3%~9.1%、0.7%~4.6%。总体而言,该方法简便、快速,具有良好的灵敏度、回收率和精密度,适用于小黄花鱼中生物胺的测定。
-
关键词:
- 生物胺 /
- 超高效液相色谱-串联质谱 /
- 小黄花鱼
Abstract: To rapidly determine 9 biogenic amines including spermine, spermidine, putrescine, cadaverine, histamine, tryptamine, octopamine, tyramine and β-phenethylamine in aquatic products, the ultra high-performance liquid chromatography-tandem mass spectrometry method was established with Larimichthys polyactis using as matrix sample, and mobile phase and extract solvents were optimized. Matrix sample was extracted by 0.1% trichloroacetic acid (TCA) in duplicate, the supernatant was combined and filtered by 0.22 μm PTFE filters, and separated by HSS T3 column in 4 min. The mobile phase A was acetonitrile containing 0.1% formic acid, while mobile phase B was 10 mmol/L ammonium formate containing 0.2% formic acid. Nine biogenic amines were divided into three groups based on their different response intensity, with a concentration range of 1 to 40 ng/mL (tyramine and β-phenethylamine), 5 to 200 ng/mL (putrescine, cadaverine, histamine, tryptamine and octopamine), and 25 to 1000 ng/mL (spermine and spermidine). Their method quantification limits (LOQs) were 0.01, 0.05 and 0.25 mg/kg, respectively. The recovery rate of low, medium and high concentrations was 81.7%~111.2%, 80.0%~110.3% and 80.0%~99.0%, respectively, with the corresponding degree of precision (n=6) of 1.7%~7.3%, 1.3%~9.1% and 0.7%~4.6%. This method is simple, fast and with good sensitivity, recovery and precision, which is suitable for the determination of biogenic amines in Larimichthys polyactis. -
表 1 流动相梯度洗脱程序
Table 1. The linear gradient program of mobile phase
时间(min) 流动相A(%) 流动相B(%) 0 5 95 0.3 5 95 4.5 50 50 5.0 95 5 6.5 95 5 6.6 5 95 8.0 5 95 表 2 九种生物胺多反应监测扫描模式的质谱参数
Table 2. Parameters of MS/MS for 9 biogenic amines (BAs) MRM mode
化合物 质荷比(m/z) 去簇电压(V) 碰撞电压(V) 母离子 子离子 精胺 203.2 129.1*
112.155
12025
47亚精胺 146.0 129.1*
112.140
4016
19腐胺 89.0 72.0*
30.050
5015
15尸胺 103.2 86.0*
69.143
5014
21组胺 112.2 94.7*
68.171
7025
29色胺 161.1 144.1*
117.140
4116
35章鱼胺 154.0 136.2*
91.145
3111
29酪胺 138.0 77.0*
93.043
4243
242-苯乙胺 122.0 105.2*
79.141
4219
31注:*为定量离子。 表 3 不同提取溶剂中小黄花鱼生物胺加标回收率与精密度 (n=6)
Table 3. Recoveries and precision of 9 BAs spiked in Larimichthys polyactis by different extract solvents (n=6)
化合物 添加量
(mg/kg)0.05% TCA水溶液 0.1% TCA水溶液 0.1% TCA水溶液:乙腈(9:1,v/v) 本底值(mg/kg) 回收率(%) RSD(%) 本底值(mg/kg) 回收率(%) RSD(%) 本底值(mg/kg) 回收率(%) RSD(%) 精胺 8
15
400.23±0.03a 85.6
87.8
79.73.5
3.2
1.81.77±0.05c 106.2
103.8
94.31.7
9.1
1.11.52±0.05b 74.6
82.5
99.81.8
1.6
1.4亚精胺 8
15
400.35±0.01a 62.8
79.7
91.02.8
2.5
2.00.74±0.03c 111.2
110.3
99.03.6
3.8
1.30.68±0.03b 89.5
113.1
90.26.7
1.7
1.2腐胺 1.6
3.0
8.01.15±0.03b 107.4
91.9
73.31.3
1.4
0.91.38±0.08c 103.2
98.9
80.76.6
1.3
2.91.02±0.04a 102.7
92.4
75.23.1
3.3
0.8尸胺 1.6
3.0
8.078.8
72.0
72.95.3
1.1
1.190.3
83.7
80.47.3
5.7
1.680.7
73.3
72.36.0
4.1
1.9组胺 1.6
3.0
8.079.0
62.8
60.22.3
5.2
1.487.6
88.0
87.43.3
4.7
1.385.6
73.3
72.32.8
4.1
0.7色胺 1.6
3.0
8.085.4
80.2
64.55.3
4.8
2.588.1
80.5
80.25.7
7.7
4.689.2
78.8
75.23.6
1.4
1.7章鱼胺 1.6
3.0
8.057.5
56.1
59.98.6
4.5
1.185.3
80.5
80.45.6
7.0
1.670.0
70.2
70.25.9
1.1
1.2酪胺 0.32
0.60
1.6066.8
67.2
64.25.4
4.2
2.281.7
80.0
80.05.9
2.4
0.775.2
62.5
70.12.9
4.4
1.02-苯乙胺 0.32
0.60
1.6091.3
86.4
90.36.4
5.4
0.992.4
90.4
91.34.3
4.1
2.289.7
91.2
89.95.2
2.5
0.7注:不同提取溶剂对小黄花鱼中同种生物胺本底的检测结果采用Duncan’s 多重比较;同行不同小写字母表示分析结果差异显著(P<0.05)。 表 4 九种生物胺的线性范围、回归方程、相关系数(r)、检出限和定量限
Table 4. Linear range, calibration curves, correlation coefficient (r), limit of detection (LOD) and limit of quantitation (LOQ) of 9 BAs
化合物 线性范围(ng/mL) 回归方程 相关系数r 检出限(mg/kg) 定量限(mg/kg) 精胺 25~1000 y=3317.9x−25504 0.9992 0.05 0.25 亚精胺 25~1000 y=2396.4x+45234 0.9988 0.05 0.25 腐胺 5~200 y=4902.3x+265395 0.9956 0.01 0.05 尸胺 5~200 y=8235x+116707 0.9954 0.01 0.05 组胺 5~200 y=67903x+530114 0.9974 0.01 0.05 色胺 5~200 y=56051x+234899 0.9987 0.01 0.05 章鱼胺 5~200 y=5197.7x+22794 0.9988 0.01 0.05 酪胺 1~40 y=22708x+1850.3 0.9999 0.003 0.01 2-苯乙胺 1~40 y=219501x+5405.5 0.9999 0.003 0.01 表 5 不同水产品中9种生物胺含量的测定结果(mg/kg, n=6)
Table 5. The detection results of 9 BAs in different aquatic products (mg/kg, n=6)
样品 精胺 亚精胺 腐胺 尸胺 组胺 色胺 章鱼胺 酪胺 2-苯乙胺 小黄花鱼I 1.64±0.14 0.67±0.04 1.26±0.05 / / / / / / 小黄花鱼II 1.79±0.05 0.63±0.11 1.38±0.21 / / / / / / 小黄花鱼III 1.54±0.19 0.52±0.03 1.42±0.16 / / / / / / 小黄花鱼IV 1.92±0.31 0.72±0.15 1.55±0.19 / / / / / / 小黄花鱼V 1.47±0.22 0.65±0.02 1.48±0.09 / / / / / / 水潺 2.02±0.21 3.21±0.24 3.69±0.12 / / / / / / 鲳鱼 1.18±0.05 0.85±0.03 3.27±0.02 0.20±0.03 / / / 0.15±0.14 / 带鱼 1.06±0.08 0.48±0.05 0.84±0.05 / / / / / / 墨鱼 7.64±0.19 1.81±0.14 1.90±0.16 3.07±0.14 / / / / / 鱿鱼 21.3±3.07 4.06±0.30 1.49±0.17 1.58±0.10 / / / / / 红虾 0.73±0.03 0.64±0.00 / 0.34±0.01 / / / 0.65±0.00 0.26±0.01 南美白对虾 0.69±0.02 0.76±0.00 / 0.57±0.01 / / / 0.75±0.04 / 死后3~5 h南美白对虾 0.71±0.01 3.16±0.36 2.34±0.17 9.80±0.16 / / / 1.01±0.03 / 注:“/”表示未检出。 -
[1] 李文凤, 王标诗, 余石坚, 等. 响应面法优化黄花鱼鱼鳞脱钙工艺[J]. 食品工业科技,2021,42(4):155−160. [LI W F, WANG B S, YU S J, et al. Optimization of decalcification process of yellow croaker scales by response surface methodology[J]. Science and Technology of Food Industry,2021,42(4):155−160. doi: 10.13386/j.issn1002-0306.2019100209 [2] 何淑华, 张钦发, 肖少军. 鲜黄花鱼在不同包装方式下的品质变化研究[J]. 食品工业,2014,35(5):151−153. [HE S H, ZHANG Q F, XIAO S J. Research on changes of the quality of fresh yellow croakers packed in different methods[J]. Food Industry,2014,35(5):151−153. [3] 刘丽. 小黄花鱼鱼糜制品品质的研究[J]. 农产品加工,2015,3:23−24. [LIU L. Quality of yellow croakers surimi products[J]. Farm Products Processing,2015,3:23−24. [4] 何晓萌, 黄卉, 李来好, 等. 罗非鱼与海水鱼制备混合鱼糜的凝胶特性研究[J]. 食品工业科技,2018,39(2):5−9. [HE X M, HUANG H, LI L H, et al. Research on gel properties of tilapia and sea fish mixed surimi[J]. Science and Technology of Food Industry,2018,39(2):5−9. doi: 10.13386/j.issn1002-0306.2018.02.002 [5] 杨梦奇, 刘玲玲, 李冰宁, 等. 植物油基鱼罐头中矿物油污染物高灵敏检测方法的建立[J/OL]. 食品工业科技, 2022. https://doi.org/10.13386/j.issn1002-0306.2021100291.YANG M Q, LIU L L, LI B N, et al. Establishment of highly sensitive determination method for mineral oil contaminants in vegetable oil-based canned fish products[J]. Science and Technology of Food Industry, 2022. https://doi.org/10.13386/j.issn1002-0306.2021100291. [6] 窦少华, 赵长新, 祖国仁, 等. 黄花鱼露生产工艺的研究[J]. 食品科技,2003,10:53−55,59. [DOU S H, ZHAO C X, ZU G R, et al. Study on producing technology of yellow croaker sauce[J]. Food Science and Technology,2003,10:53−55,59. doi: 10.3969/j.issn.1005-9989.2003.06.020 [7] 陶耀宏, 汤海青, 欧昌荣, 等. 市售东海鱼鲞生物胺及相关质量指标分析[J]. 食品工业科技,2021,42(24):263−270. [TAO Y H, TANG H Q, OU C R, et al. Analysis of biogenic amines and related quality indexes of commercial dry salted fish in the east China sea[J]. Science and Technology of Food Industry,2021,42(24):263−270. doi: 10.13386/j.issn1002-0306.2021040092 [8] 丁海燕, 孙晓杰, 宁劲松, 等. 储藏温度对3种海水鱼产生生物胺的规律影响研究[J]. 食品科技,2018,43(9):177−182. [DING H Y, SUN X J, NING J S, et al. Study on the regular of biogenic amines from three marine fish stored at different temperature[J]. Food Science and Technology,2018,43(9):177−182. doi: 10.13684/j.cnki.spkj.2018.09.030 [9] 常娅妮, 马俪珍, 杨梅, 等. 不同冷冻方式对调味鱼贮藏品质的影响[J]. 食品科技,2020,45(2):137−143. [CHANG Y N, MA L Z, YANG M, et al. Effects of different freezing methods on the storage quality of seasoned channel catfish[J]. Food Science and Technology,2020,45(2):137−143. doi: 10.13684/j.cnki.spkj.2020.02.024 [10] 蒋林蓉, 徐志伟, 黄杰英, 等. 基于QuEChERS净化的液相色谱-串联质谱法分析食品中的6种生物胺[J]. 中国调味品,2017,42(8):127−132. [JIANG L R, XU Z W, HUANG J Y, et al. Determination of biogenic amines in food by modified QuEChERS method and liquid chromatography-mass spectrometry[J]. China Condiment,2017,42(8):127−132. doi: 10.3969/j.issn.1000-9973.2017.08.028 [11] 戴莹, 宋海勇, 吴曦, 等. 肉制品中生物胺的形成, 检测和控制研究进展[J]. 肉类研究,2020,34(11):89−97. [DAI Y, SONG H Y, WU X, et al. Recent progress in the formation, detection and control of biogenic amines in meat products[J]. Meat Research,2020,34(11):89−97. doi: 10.7506/rlyj1001-8123-20201005-236 [12] SANTOS M H S. Biogenic amines: Their importance in foods[J]. International Journal of Food Microbiology,1996,29:213−231. doi: 10.1016/0168-1605(95)00032-1 [13] 王光强, 俞剑燊, 胡健, 等. 食品中生物胺的研究进展[J]. 食品科学,2016,37(1):269−278. [WANG G Q, YU J C, HU J, et al. Progress in research on biogenic amines in foods[J]. Food Science,2016,37(1):269−278. doi: 10.7506/spkx1002-6630-201601046 [14] MYRSINI P, DIMITRA L, CALUM M, et al. Literature update of analytical methods for biogenic amines determination in food and beverages[J]. Trends in Analytical Chemistry,2018,98(1):128−142. [15] 赵中辉. 水产品贮藏中生物胺的变化及组胺形成机制研究[D]. 青岛: 中国海洋大学, 2011ZHAO Z H. Studies on changes of biogenic amines during the storage and mechanism of histamine formation in seafood[D]. Qingdao: Ocean University of China, 2011. [16] RIO B D, REDRUELLO B, LINARES D M, et al. The biogenic amines putrescine and cadaverine show in vitro cytotoxicity at concentrations that can be found in foods[J]. Scientific Reports,2019,9(1):1−7. doi: 10.1038/s41598-018-37186-2 [17] ANAL A K, PERPETUINI G, PETCHKONGKAEW A, et al. Food safety risks in traditional fermented food from South-East Asia[J]. Food Control,2019,109:106922. [18] BULUSHI I A, POOLE S, DEETH H C, et al. Biogenic amines in fish: Roles in intoxication, spoilage, and nitrosamine formation-A review[J]. Critical Reviews in Food Science and Nutriton,2009,49(4):369−377. doi: 10.1080/10408390802067514 [19] 白妞妞, 白锴凯, 何建林, 等. 鱼露生物胺研究进展[J]. 食品与发酵工业,2020,46(24):271−277. [BAI N N, BAI K K, HE J L, et al. Research progress of biogenic amines in fish sauce[J]. Food and Fermentation Industries,2020,46(24):271−277. doi: 10.13995/j.cnki.11-1802/ts.024673 [20] LALY S J, ANUPAMA T K, KUMAR K A, et al. Quality and freshness of fish available in supermarkets of Cochin, India based on biogenic amine content[J]. Fishery Technology,2019,56(1):212−220. [21] COSTA C, GRAZHDAN D, FIUTOWSKI J, et al. Meat and fish freshness evaluation by functionalized cantilever-based biosensors[J]. Microsystem Technologies,2020,26(4):1−5. [22] 赵庆志, 邓建朝, 杨贤庆, 等. 不同贮藏温度下鲐鱼生物胺变化的研究[J]. 食品工业科技,2018,39(4):260−267, 279. [ZHAO Q Z, DENG J C, YANG X Q, et al. Study on the changes of biogenic amines in mackerel under different temperatures during storage[J]. Science and Technology of Food Industry,2018,39(4):260−267, 279. doi: 10.13386/j.issn1002-0306.2018.04.048 [23] 刘洋帆, 李绪鹏, 冯阳, 等. 超高效液相色谱-串联质谱法测定鲣鱼中的生物胺[J/OL]. 食品与发酵工业. https://doi.org/10.13995/j.cnki.11-1802/ts.029408.LIU Y F, LI X P, FENG Y, et al. UPLC-MS/MS method for detection of biogenic amines in shipjack tuna[J]. Food and Fermentation Industries. https://doi.org/10.13995/j.cnki.11-1802/ts.029408. [24] 赵冬寒, 赵楠, 梁美佳, 等. 不同贮藏温度下三文鱼鱼片生物胺和品质的变化[J]. 食品工业科技,2022,43(11):350−355. [ZHAO D H, ZHAO N, LIANG M J, et al. Change of biogenic amines and quality of salmon fillets during different storage temperature[J]. Science and Technology of Food Industry,2022,43(11):350−355. doi: 10.13386/j.issn1002-0306.2021090147 [25] 赵中辉, 林洪, 李振兴. 不同温度储藏条件下鲅鱼生物胺变化的研究[J]. 食品工业科技,2011(6):358−363. [ZHAO Z H, LIN H, LI Z X. Changes of biogenic amines in Spanish mackerel under different temperatures during the storage[J]. Science and Technology of Food Industry,2011(6):358−363. doi: 10.13386/j.issn1002-0306.2011.06.093 [26] 吴燕燕, 陈玉峰. 腌制水产品中生物胺的形成及控制技术研究进展[J]. 食品工业科技,2014,35(14):396−400. [WU Y Y, CHEN Y F. Research progress in formation and control of the biogenic amine in salted aquatic product[J]. Science and Technology of Food Industry,2014,35(14):396−400. doi: 10.13386/j.issn1002-0306.2014.14.078 [27] 陈玉峰, 吴燕燕, 邓建朝, 等. 腌制和干燥工艺对咸金线鱼中生物胺的影响[J]. 食品工业科技,2015,36(20):83−91. [CHEN Y F, WU Y Y, DENG J C, et al. Effect of pocking and drying process on biogenic amines formation in salted threadfin bream (Nemipterus hexodon)[J]. Science and Technology of Food Industry,2015,36(20):83−91. doi: 10.13386/j.issn1002-0306.2015.20.009 [28] 谢诚, 刘忠义, 周宇峰, 等. 鳙鱼糜发酵过程中生物胺的测定[J]. 食品工业科技,2010,31(7):349−351. [XIE C, LIU Z Y, ZHOU Y F, et al. Determination of biogenic amine during the fermentation of bighead carp (Aristichthys nobilis) surimi[J]. Science and Technology of Food Industry,2010,31(7):349−351. doi: 10.13386/j.issn1002-0306.2010.07.074 [29] 吴海军, 程海燕, 李立军, 等. 非衍生化LC-MS-MS法分析食品中9种生物胺[OL]. (2018-11-09).https://sciex.com/content/ dam/SCIEX/pdf/tech-notes/cn/RUO-MKT-02-8460-ZH-A.pdfWU H J, CHENG H Y, LI L J, et al. Non-derivation LC-MS/MS method for the analysis of nine biogenic amines in food[OL]. (2018-11-09).https://sciex.com/content/dam/SCIEX/pdf/tech-notes/cn/ RUO-MKT-02-8460-ZH-A.pdf. [30] ZHANG X, FANG C, HUANG D, et al. Determination of 8 biogenic amines in aquatic products and their derived products by high-performance liquid chromatography-tandem mass spectrometry without derivatization[J]. Food Chemistry,2021,361:130044. doi: 10.1016/j.foodchem.2021.130044 [31] HUANG Y, SONG Y, CHEN F, et al. Simultaneous determination of eight biogenic amines in the traditional Chinese condiment Pixian Douban using UHPLC-MS/MS[J]. Food Chemistry,2021,353:129423. doi: 10.1016/j.foodchem.2021.129423 [32] 孙亚军, 廖建萌, 雷晓凌, 等. 液相色谱-串联质谱法同时测定虾仁中八种生物胺[J]. 食品工业,2015,36(3):273−277. [SUN Y J, LIAO J M, LEI X L, et al. Simultaneous determination of eight biogenic amines in shrimp by LC-MS/MS[J]. Food Industry,2015,36(3):273−277. -