• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020

酸处理对干燥香菇甲醛、镉及挥发性风味物质的影响

高婵 王文亮 李宁阳 王延圣 弓志青 李永生 贾凤娟

高婵,王文亮,李宁阳,等. 酸处理对干燥香菇甲醛、镉及挥发性风味物质的影响[J]. 食品工业科技,2023,44(5):258−266. doi:  10.13386/j.issn1002-0306.2022040188
引用本文: 高婵,王文亮,李宁阳,等. 酸处理对干燥香菇甲醛、镉及挥发性风味物质的影响[J]. 食品工业科技,2023,44(5):258−266. doi:  10.13386/j.issn1002-0306.2022040188
GAO Chan, WANG Wenliang, LI Ningyang, et al. Effects of Acid Treatment on Formaldehyde, Cadmium and Volatile Flavor Compounds in Dried Lentinus edodes[J]. Science and Technology of Food Industry, 2023, 44(5): 258−266. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022040188
Citation: GAO Chan, WANG Wenliang, LI Ningyang, et al. Effects of Acid Treatment on Formaldehyde, Cadmium and Volatile Flavor Compounds in Dried Lentinus edodes[J]. Science and Technology of Food Industry, 2023, 44(5): 258−266. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022040188

酸处理对干燥香菇甲醛、镉及挥发性风味物质的影响

doi: 10.13386/j.issn1002-0306.2022040188
基金项目: 山东省重点研发计划(重大科技创新工程)项目:小麦绿色生态关键技术创新与示范(2021TZXD010);山东省现代农业产业技术体系食用菌产后加工岗位专家项目(SDAIT-07-09)。
详细信息
    作者简介:

    高婵(1996−),女,硕士研究生,研究方向:果蔬加工与贮藏,E-mail:gaochan1018@163.com

    通讯作者:

    贾凤娟(1985−),女,博士,助理研究员,研究方向:食品加工与安全研究,E-mail:jfj.5566@163.com

  • 中图分类号: TS255

Effects of Acid Treatment on Formaldehyde, Cadmium and Volatile Flavor Compounds in Dried Lentinus edodes

  • 摘要: 为降低香菇中甲醛和重金属镉的含量,本试验研究不同酸前处理对去除香菇甲醛和镉含量的影响,并对去除方法进行正交试验优化。结果表明,乳酸作为脱除剂,在pH4.5、料液比1:4 g/mL、振荡温度35 ℃条件下,香菇的甲醛和镉脱除率最大,分别是88.06%和79.57%。最后利用气相色谱-离子迁移质谱(gas chromatography-ion mobility spectroscopy,GC-IMS)测定乳酸前处理对香菇挥发性风味物质的影响,结果表明,香菇样品中共有28种挥发性物质,包括9种醛类、8种酮类、6种醇类、4种酯类以及1种酸类化合物。经过乳酸预处理干燥后的香菇,2-戊酮、环己酮、γ-丁内酯等含量增加,3-辛酮、丁醛等含量大幅降低。干燥香菇中洋葱味、辛辣味等刺激性味道减少,奶油香、果香增加,气味浓郁,层次丰富。
  • 图  1  不同酸预处理对香菇甲醛、镉脱除率的影响

    Figure  1.  Effects of different acid pretreatments on the removal rate of formaldehyde and cadmium from Lentinus edodes

    注:X、Y右上不同字母表示差异显著(P<0.05)。

    图  2  pH(A)、料液比(B)、振荡时间(C)和振荡温度(D)对香菇甲醛脱除率的影响

    Figure  2.  Effects of pH (A), solid-liquid ratio (B), shaking time (C) and shaking temperature (D) on the removal rate of formaldehyde from Lentinus edodes

    注:不同字母表示差异显著(P<0.05),图3同。

    3  pH(A)、料液比(B)、振荡时间(C)和振荡温度(D)对香菇镉脱除率的影响

    3.  Effects of pH (A), solid-liquid ratio (B), shaking time (C) and shaking temperature (D) on the removal rate of cadmium from Lentinus edodes

    图  4  鲜香菇、未前处理、前处理样品挥发性物质成分谱图(俯视图)

    Figure  4.  Spectrum of volatile substances in fresh Lentinus edodes, unpretreated and pretreated samples (top view)

    图  5  鲜香菇、未前处理、前处理样品挥发性物质成分对比差异谱图

    Figure  5.  Comparison and difference spectra of volatile substances in fresh Lentinus edodes, unpretreated and pretreated samples

    图  6  鲜香菇、未处理、乳酸处理干制香菇样品的Gallery Plot指纹图谱

    Figure  6.  Gallery plot fingerprints of fresh Lentinus edodes, untreated and lactic acid-treated dried shiitake mushroom samples

    注:1为鲜香菇;2为未处理干制香菇;3为乳酸处理干制香菇;图7图8同。

    图  7  样品PCA分析

    Figure  7.  PCA analysis of samples

    图  8  样品间欧式距离图

    Figure  8.  Euclidean distance diagram between samples

    注:黑色方框为鲜香菇样品;蓝色方框为未脱毒前处理干香菇样品;红色方框为脱毒后干香菇样品。

    表  1  香菇干燥正交试验因素及水平设计

    Table  1.   Orthogonal experimental factors and levels of Lentinus edodes drying

    水平A pHB 料液比(g/mL)C 振荡温度(℃)
    141:230
    24.51:435
    351:640
    下载: 导出CSV

    表  2  香菇干燥品质正交分析结果

    Table  2.   Orthogonal analysis results of dried quality of Lentinus edodes

    实验
    因素甲醛脱
    除率(%)
    镉脱
    除率
    (%)
    A pHB 料液比C 振荡温度D 空列
    111173.1867.34
    212279.5978.49
    313378.2870.55
    421286.2475.28
    522385.8377.91
    623182.3368.42
    731381.1261.17
    832179.8264.76
    933283.5561.52
    对甲醛脱除率的影响
    K177.01780.18078.443
    K284.80081.74783.127
    K381.49781.38781.763
    R7.7831.5674.684
    主次因素A>C>B
    最优方案A2B2C2
    对镉脱除率的影响
    K172.12767.93068.923
    K273.87073.72069.360
    K362.48366.83070.197
    R11.3876.8901.274
    主次因素A>B>C
    最优方案A2B2C3
    下载: 导出CSV

    表  3  香菇干燥品质甲醛脱除率方差分析结果

    Table  3.   Analysis of variance of formaldehyde removal rate of dry quality of Lentinus edodes

    因素偏差平方和自由度FF临界值显著性
    A91.5632162.05819.000*
    B4.04027.15019.000
    C34.737261.48119.000*
    误差0.562
    注:*表示差异达显著水平(P<0.05);**表示差异达极显著水平(P<0.01),表4同。
    下载: 导出CSV

    表  4  香菇干燥品质镉脱除率方差分析结果

    Table  4.   Analysis of variance of cadmium removal rate of dry quality of Lentinus edodes

    因素偏差平方和自由度FF临界值显著性
    A225.689289.84419.000**
    B82.206232.72519.000*
    C37.020214.73719.000
    误差2.512
    下载: 导出CSV

    表  5  样品挥发性风味物质的鉴定结果及分析

    Table  5.   Identification results and analysis of volatile flavor compounds in samples

    序号名称分子式保留时间(s)迁移时间(ms)鲜香菇峰体积未处理香菇峰体积前处理香菇峰体积气味描述
    1壬醛C9H180511.0111.4738995.57221.82204.09玫瑰味、油脂味
    23-辛酮C8H16O345.8431.3060534010.581056.72774.88果香味
    31-辛烯-3-醇C8H16O332.6291.15781281.03610.49637.83蘑菇香、玫瑰香、干草香
    4γ-戊内酯C5H8O2315.4521.12841263.81651.65524.09椰子味
    5苯甲醛C7H6O314.7911.150463351.63604.68623.17杏仁味、坚果味
    6γ-丁内酯C4H6O2283.0791.08186261.901654.532234.97奶油味
    7环己酮C6H10O265.2411.15659280.193427.423895.86泥土味
    8正己醛C6H12O207.1021.257051443.712327.551731.61青草、葡萄酒味
    9苯乙醛C8H8O408.6561.257461359.51141.33145.69鲜花味、水果香
    101-辛烯-3-酮C8H14O330.3881.271011531.2761.1967.21蘑菇香、金属味
    11甲基庚烯酮C8H14O325.5631.17523167.9111.7413.21柑橘、柠檬草香
    12庚醛C7H14O265.3221.32519157.7199.8879.03果香、坚果香
    13正己醇C6H14O246.9341.32027218.28106.71160.49特殊香气
    14异戊醇C5H12O181.3971.245156975.791672.991330.33香蕉香、辣味
    15异戊酸C5H10O2246.9341.2217545.8986.15108.66酸败味、奶香
    16异丁酸甲酯C5H10O2158.3491.444941072.76100.5999.62甜果香
    172-甲基丁醛C5H10O153.7651.387722599.842169.732252.14可可香味、果香
    18丙硫醇C3H8S143.4971.357311358.32165.99108.64洋葱味
    192-丁醇C4H10O126.2611.32689570.8234.7827.21葡萄酒味
    202-丁酮C4H8O133.9621.242151891.12871.66732.36果香、青香
    21丁醛C4H8O123.5111.284884703.312753.611943.76刺激性气味
    22异戊醛C5H10O148.9971.415252490.142402.522483.19苹果味
    232-戊酮C5H10O160.3661.1219277.31363.61290.22丙酮味、香蕉香
    24乙酸乙酯C4H8O2140.5631.33413249.58194.63312.92甜味、果香
    25丙酮C3H6O109.5751.116134285.305194.144434.31辛辣甜味
    262-甲基丙烯醛C4H6O125.8941.2168533.491730.532226.91刺激性臭味
    273-羟基-2-丁酮C4H8O2168.0671.3319661.9399.71101.14奶制品、脂肪味
    28乙醇C2H6O98.5741.12916236.9537.1789.13酒香、辛辣味
    下载: 导出CSV
  • [1] 贾乐, 韩延超, 房祥军, 等. 褪黑素处理对香菇采后品质及活性氧代谢的影响[J]. 食品科学,2021,42(23):229−236. [JIA Le, HAN Yanchao, FANG Xiangjun, et al. Effects of melatonin treatment on postharvest quality and reactive oxygen species metabolism of shiitake mushrooms[J]. Food Science,2021,42(23):229−236. doi:  10.7506/spkx1002-6630-20210316-201
    [2] 卢晓烁, 刘常园, 赵立艳. 香菇风味及其分析技术研究进展[J]. 食品研究与开发,2019,40(22):197−203. [LU Xiaoshuo, LIU Changyuan, ZHAO Liyan. Research progress of mushroom flavor and its analysis technology[J]. Food Research and Development,2019,40(22):197−203.
    [3] 杨伊琳, 丁俊雄, 吴小华, 等. 香菇热风干燥特性及动力学模型[J]. 中国农业大学学报,2022,27(4):135−144. [YANG Yilin, DING Junxiong, WU Xiaohua, et al. Hot air drying characteristics and kinetic model of shiitake mushrooms[J]. Journal of China Agricultural University,2022,27(4):135−144. doi:  10.11841/j.issn.1007-4333.2022.04.12
    [4] LU Xiaoshuo, HOU Hui, FANG Donglu, et al. Identification and characterization of volatile compounds in Lentinula edodes during vacuum freeze-drying[J]. Journal of Food Biochemistry,2021,46(6):e13814.
    [5] YANG Wenjian, YU Jie, PEI Fei, et al. Effect of hot air drying on volatile compounds of Flammulina velutipes detected by HS-SPME-GC-MS and electronic nose[J]. Food Chemistry,2015,196(1):860−866.
    [6] 李文, 杨焱, 陈万超, 等. 不同干燥方式对香菇含硫风味化合物的影响[J]. 食用菌学报,2018,25(4):71−79. [LI Wen, YANG Yan, CHEN Wanchao, et al. Effects of different drying methods on the sulfur-containing flavor compounds of shiitake mushrooms[J]. Journal of Edible Fungi,2018,25(4):71−79. doi:  10.16488/j.cnki.1005-9873.2018.04.012
    [7] 侯会, 陈鑫, 方东路, 等. 干燥方式对食用菌风味物质影响研究进展[J]. 食品安全质量检测学报,2019,10(15):4877−4883. [HOU Hui, CHEN Xin, FANG Donglu, et al. Research progress on the effect of drying methods on flavor substances in edible fungi[J]. Journal of Food Safety and Quality Inspection,2019,10(15):4877−4883. doi:  10.3969/j.issn.2095-0381.2019.15.008
    [8] 楚文靖, 张瑞, 周娜, 等. 香菇风味物质研究进展[J]. 安徽农学通报,2019,25(20):39−41. [CHU Wenjing, ZHANG Rui, ZHOU Na, et al. Research progress of mushroom flavor compounds[J]. Anhui Agricultural Science Bulletin,2019,25(20):39−41. doi:  10.3969/j.issn.1007-7731.2019.20.014
    [9] LEI Xiaoyu, GAO Shuangshuang, FENG Xi, et al. Effects of GGT and C-S lyase on the generation of endogenous formaldehyde in Lentinula edodes at different growth stages[J]. Molecules,2019,24(23):4203. doi:  10.3390/molecules24234203
    [10] XU Lei, FANG Xiangjun, WU Weijie, et al. Effects of high-temperature pre-drying on the quality of air-dried shiitake mushrooms (Lentinula edodes)[J]. Food Chemistry,2019,285(1):406−413.
    [11] 刁恩杰. 香菇中甲醛影响因素及在加工中控制措施研究[D]. 重庆: 西南农业大学, 2005

    DIAO Enjie. Study on influencing factors of formaldehyde in shiitake mushrooms and control measures in processing [D]. Chongqing: Southwest Agricultural University, 2005.
    [12] 黄菊, 吴宁, 宋君, 等. γ-谷氨酰转肽酶和半胱氨酰亚砜裂解酶对香菇内源性甲醛形成的作用[J]. 中国食品学报,2013,13(3):55−58. [HUANG Ju, WU Ning, SONG Jun, et al. Effects of γ-glutamyl transpeptidase and cysteinyl sulfoxide lyase on the formation of endogenous formaldehyde in Lentinus edodes[J]. Chinese Journal of Foodstuffs,2013,13(3):55−58.
    [13] 沈霞, 余胜光. 广东省6种常见食用菌的重金属含量调查与评价[J]. 西北农业学报,2008(6):294−297. [SHEN Xia, YU Shengguang. Investigation and evaluation of heavy metal content of six common edible fungi in Guangdong Province[J]. Northwest Agricultural Journal,2008(6):294−297. doi:  10.3969/j.issn.1004-1389.2008.06.063
    [14] WANG Yi, WANG Chen, CHENG Wei, et al. Removal of cadmium from contaminated Lentinula edodes by optimized complexation and coagulation[J]. Food Science & Nutrition,2017,5(2):215−222.
    [15] 乔鑫, 李昭敏, 裴亚琼, 等. Zn~(2+)抑制香菇吸附重金属镉工艺优化研究[J]. 食品科技,2021,46(8):71−75. [QIAO Xin, LI Zhaomin, PEI Yaqiong, et al. Research on optimization of Zn~(2+) inhibition of shiitake mushroom adsorption of heavy metal cadmium[J]. Food Science and Technology,2021,46(8):71−75. doi:  10.13684/j.cnki.spkj.2021.08.012
    [16] 王辉, 田寒友, 李文采, 等. 基于顶空气相色谱-离子迁移谱技术的冷冻猪肉贮藏时间快速判别方法[J]. 食品科学,2019,40(2):269−274. [WANG Hui, TIAN Hanyou, LI Wencai, et al. A rapid method for determining the storage time of frozen pork based on headspace gas chromatography-ion mobility spectrometry[J]. Food Science,2019,40(2):269−274. doi:  10.7506/spkx1002-6630-20180531-443
    [17] 徐玉雪, 李婷, 李利君, 等. SDE-GC-MS结合GC-O分析速溶滇红茶的挥发性风味物质[J]. 现代食品科技,2019,35(11):277−284, 276. [XU Yuxue, LI Ting, LI Lijun, et al. Analysis of volatile flavor compounds in instant Dianhong tea by SDE-GC-MS combined with GC-O[J]. Modern Food Science and Technology,2019,35(11):277−284, 276. doi:  10.13982/j.mfst.1673-9078.2019.11.038
    [18] 赵慧君, 王玉荣, 李昕沂, 等. 基于电子鼻和GC-MS技术分析大头菜的挥发性风味物质[J]. 中国调味品,2018,43(11):17−22. [ZHAO Huijun, WANG Yurong, LI Xinyi, et al. Analysis of volatile flavor compounds in kohlrabi based on electronic nose and GC-MS technology[J]. China Seasoning,2018,43(11):17−22. doi:  10.3969/j.issn.1000-9973.2018.11.004
    [19] CHEN Dong, QIN Lei, GENG Yue, et al. The aroma fingerprints and discrimination analysis of shiitake mushrooms from three different drying conditions by GC-IMS, GC-MS and DSA[J]. Foods,2021,10(12):2991. doi:  10.3390/foods10122991
    [20] 胡静, 孙君社, 谭晓妍, 等. 响应面法优化柠檬酸去除香菇中镉工艺[J]. 食品科学,2017,38(14):181−186. [HU Jing, SUN Junshe, TAN Xiaoyan, et al. Optimization of citric acid removal process for cadmium from shiitake mushrooms by response surface methodology[J]. Food Science,2017,38(14):181−186. doi:  10.7506/spkx1002-6630-201714028
    [21] 农业农村部. NY/T 3292-2018 蔬菜中甲醛含量的测定 高效液相色谱法[S]. 2018. Ministry of Agriculture and Rural Affairs. NY/T 3292-2018Determination of formaldehyde in vegetables by high performance—Liquid chromatography[S]. 2018.
    [22] 张锋, 金杰, 刘春芬, 等. 不同保鲜剂对鲜香菇中甲醛的影响研究[J]. 食用菌,2013,35(5):59−61. [ZHANG Feng, JIN Jie, LIU Chunfen, et al. Effects of different preservatives on formaldehyde in fresh mushrooms[J]. Edible Fungi,2013,35(5):59−61. doi:  10.3969/j.issn.1000-8357.2013.05.036
    [23] FUJIMOTO K, TSURUMI T, WATARI M, et al. The mechanism of formaldehyde formation in Shiitake mushroom[J]. Mushroom Science,1976,9(1):385−390.
    [24] 聂林林. 香菇热泵除湿干燥技术的研究[D]. 郑州: 河南工业大学, 2015

    NIE Linlin. Research on heat pump dehumidification and drying technology for mushrooms[D]. Zhengzhou: Henan University of Technology, 2015.
    [25] 黄翠红, 孙道华, 李清彪, 等. 利用柠檬酸去除污泥中镉、铅的研究[J]. 环境污染与防治,2005(1):73−75, 1. [HUANG Cuihong, SUN Daohua, LI Qingbiao, et al. Study on the removal of cadmium and lead in sludge by citric acid[J]. Environmental Pollution and Prevention,2005(1):73−75, 1. doi:  10.3969/j.issn.1001-3865.2005.01.022
    [26] POLITOWICZ J, LECH K, LIPAN L, et al. Volatile composition and sensory profile of shiitake mushrooms as affected by drying method[J]. Journal of the Science of Food and Agriculture,2018,98(4):1151−1521.
    [27] SABIL E, VIDAL-ARAGON M C, BERNALTE M J, et al. Volatile compounds present in six types of dry-cured ham from south European countries[J]. Food Chemistry,1998,61(4):493−503. doi:  10.1016/S0308-8146(97)00079-4
    [28] 唐秋实, 陈智毅, 刘学铭, 等. 几种干燥方式对金针菇子实体挥发性风味成分的影响[J]. 食品工业科技,2015,36(10):119−124. [TANG Qiushi, CHEN Zhiyi, LIU Xueming, et al. Effects of several drying methods on volatile flavor components of Flammulina velutipes fruiting bodies[J]. Food Industry Science and Technology,2015,36(10):119−124. doi:  10.13386/j.issn1002-0306.2015.10.016
    [29] 吴方宁. 干燥方法对白玉蕈(white Hypsizygus marmoreus)风味物质的影响[D]. 南京: 南京农业大学, 2014

    WU Fangning. Effects of drying methods on flavor compounds of white Hypsizygus marmoreus[D]. Nanjing: Nanjing Agricultural University, 2014.
    [30] 张艳荣, 吕呈蔚, 刘通, 等. 不同干燥方式对姬松茸挥发性风味成分分析[J]. 食品科学,2016,37(10):116−121. [ZHANG Yanrong, LÜ Chengwei, LIU Tong, et al. Analysis of volatile flavor components of Agaricus blazei by different drying methods[J]. Food Science,2016,37(10):116−121. doi:  10.7506/spkx1002-6630-201610020
    [31] TIAN Yuting, ZHAO Yingting, HUANG Jijun, et al. Effects of different drying methods on the product quality and volatile compounds of whole shiitake mushrooms[J]. Food Chemistry,2016,197:714−722. doi:  10.1016/j.foodchem.2015.11.029
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  78
  • HTML全文浏览量:  36
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-18
  • 网络出版日期:  2023-01-12
  • 刊出日期:  2023-03-01

目录

    /

    返回文章
    返回

    重要通知

    喜报:《食品工业科技》入选《食品科学与工程领域高质量科技期刊分级目录》第一方阵T1区
          会议通知:第六届食品科技创新论坛4月与您相约上海