Effects of Acid Treatment on Formaldehyde, Cadmium and Volatile Flavor Compounds in Dried Lentinus edodes
-
摘要: 为降低香菇中甲醛和重金属镉的含量,本试验研究不同酸前处理对去除香菇甲醛和镉含量的影响,并对去除方法进行正交试验优化。结果表明,乳酸作为脱除剂,在pH4.5、料液比1:4 g/mL、振荡温度35 ℃条件下,香菇的甲醛和镉脱除率最大,分别是88.06%和79.57%。最后利用气相色谱-离子迁移质谱(gas chromatography-ion mobility spectroscopy,GC-IMS)测定乳酸前处理对香菇挥发性风味物质的影响,结果表明,香菇样品中共有28种挥发性物质,包括9种醛类、8种酮类、6种醇类、4种酯类以及1种酸类化合物。经过乳酸预处理干燥后的香菇,2-戊酮、环己酮、γ-丁内酯等含量增加,3-辛酮、丁醛等含量大幅降低。干燥香菇中洋葱味、辛辣味等刺激性味道减少,奶油香、果香增加,气味浓郁,层次丰富。Abstract: In order to reduce the content of formaldehyde and heavy metal cadmium in Lentinus edodes, the effect of different acid pretreatments on the removal of formaldehyde and cadmium content in Lentinus edodes was studied, and the removal method was optimized orthogonally. The results showed that the removal rate of formaldehyde and cadmium from Lentinus edodes was the highest under the conditions of pH4.5, solid-liquid ratio 1:4 g/mL, and shaking temperature 35 ℃, which were 88.06% and 79.57%, respectively. Finally, gas chromatography-ion mobility mass spectrometry (GC-IMS) was used to determine the effect of lactic acid pretreatment on volatile flavor compounds of Lentinus edodes. The results showed that there were 28 volatile substances in Lentinus edodes samples, including 9 kinds of aldehydes, 8 kinds of ketones, 6 kinds of alcohols, 4 kinds of esters and 1 kind of acid compounds. The lactic acid pretreatment dried Lentinus edodes showed an increase in 2-pentanone, cyclohexanone and gamma-butyrolactone and a significant reduction in 3-octanone and butyraldehyde. In dried Lentinus edodes, pungent flavours such as onion and pungency were reduced, and creamy and fruity aromas were increased, with a strong, richly layered odour.
-
Key words:
- Lentinus edodes /
- lactic acid /
- formaldehyde /
- cadmium /
- volatile components /
- fingerprint
-
图 2 pH(A)、料液比(B)、振荡时间(C)和振荡温度(D)对香菇甲醛脱除率的影响
Figure 2. Effects of pH (A), solid-liquid ratio (B), shaking time (C) and shaking temperature (D) on the removal rate of formaldehyde from Lentinus edodes
注:不同字母表示差异显著(P<0.05),图3同。
表 1 香菇干燥正交试验因素及水平设计
Table 1. Orthogonal experimental factors and levels of Lentinus edodes drying
水平 A pH B 料液比(g/mL) C 振荡温度(℃) 1 4 1:2 30 2 4.5 1:4 35 3 5 1:6 40 表 2 香菇干燥品质正交分析结果
Table 2. Orthogonal analysis results of dried quality of Lentinus edodes
实验
号因素 甲醛脱
除率(%)镉脱
除率
(%)A pH B 料液比 C 振荡温度 D 空列 1 1 1 1 73.18 67.34 2 1 2 2 79.59 78.49 3 1 3 3 78.28 70.55 4 2 1 2 86.24 75.28 5 2 2 3 85.83 77.91 6 2 3 1 82.33 68.42 7 3 1 3 81.12 61.17 8 3 2 1 79.82 64.76 9 3 3 2 83.55 61.52 对甲醛脱除率的影响 K1 77.017 80.180 78.443 K2 84.800 81.747 83.127 K3 81.497 81.387 81.763 R 7.783 1.567 4.684 主次因素 A>C>B 最优方案 A2B2C2 对镉脱除率的影响 K1 72.127 67.930 68.923 K2 73.870 73.720 69.360 K3 62.483 66.830 70.197 R 11.387 6.890 1.274 主次因素 A>B>C 最优方案 A2B2C3 表 3 香菇干燥品质甲醛脱除率方差分析结果
Table 3. Analysis of variance of formaldehyde removal rate of dry quality of Lentinus edodes
因素 偏差平方和 自由度 F比 F临界值 显著性 A 91.563 2 162.058 19.000 * B 4.040 2 7.150 19.000 C 34.737 2 61.481 19.000 * 误差 0.56 2 注:*表示差异达显著水平(P<0.05);**表示差异达极显著水平(P<0.01),表4同。 表 4 香菇干燥品质镉脱除率方差分析结果
Table 4. Analysis of variance of cadmium removal rate of dry quality of Lentinus edodes
因素 偏差平方和 自由度 F比 F临界值 显著性 A 225.689 2 89.844 19.000 ** B 82.206 2 32.725 19.000 * C 37.020 2 14.737 19.000 误差 2.51 2 表 5 样品挥发性风味物质的鉴定结果及分析
Table 5. Identification results and analysis of volatile flavor compounds in samples
序号 名称 分子式 保留时间(s) 迁移时间(ms) 鲜香菇峰体积 未处理香菇峰体积 前处理香菇峰体积 气味描述 1 壬醛 C9H180 511.011 1.47389 95.57 221.82 204.09 玫瑰味、油脂味 2 3-辛酮 C8H16O 345.843 1.30605 34010.58 1056.72 774.88 果香味 3 1-辛烯-3-醇 C8H16O 332.629 1.15781 281.03 610.49 637.83 蘑菇香、玫瑰香、干草香 4 γ-戊内酯 C5H8O2 315.452 1.12841 263.81 651.65 524.09 椰子味 5 苯甲醛 C7H6O 314.791 1.15046 3351.63 604.68 623.17 杏仁味、坚果味 6 γ-丁内酯 C4H6O2 283.079 1.08186 261.90 1654.53 2234.97 奶油味 7 环己酮 C6H10O 265.241 1.15659 280.19 3427.42 3895.86 泥土味 8 正己醛 C6H12O 207.102 1.25705 1443.71 2327.55 1731.61 青草、葡萄酒味 9 苯乙醛 C8H8O 408.656 1.25746 1359.51 141.33 145.69 鲜花味、水果香 10 1-辛烯-3-酮 C8H14O 330.388 1.27101 1531.27 61.19 67.21 蘑菇香、金属味 11 甲基庚烯酮 C8H14O 325.563 1.17523 167.91 11.74 13.21 柑橘、柠檬草香 12 庚醛 C7H14O 265.322 1.32519 157.71 99.88 79.03 果香、坚果香 13 正己醇 C6H14O 246.934 1.32027 218.28 106.71 160.49 特殊香气 14 异戊醇 C5H12O 181.397 1.24515 6975.79 1672.99 1330.33 香蕉香、辣味 15 异戊酸 C5H10O2 246.934 1.22175 45.89 86.15 108.66 酸败味、奶香 16 异丁酸甲酯 C5H10O2 158.349 1.44494 1072.76 100.59 99.62 甜果香 17 2-甲基丁醛 C5H10O 153.765 1.38772 2599.84 2169.73 2252.14 可可香味、果香 18 丙硫醇 C3H8S 143.497 1.35731 1358.32 165.99 108.64 洋葱味 19 2-丁醇 C4H10O 126.261 1.32689 570.82 34.78 27.21 葡萄酒味 20 2-丁酮 C4H8O 133.962 1.24215 1891.12 871.66 732.36 果香、青香 21 丁醛 C4H8O 123.511 1.28488 4703.31 2753.61 1943.76 刺激性气味 22 异戊醛 C5H10O 148.997 1.41525 2490.14 2402.52 2483.19 苹果味 23 2-戊酮 C5H10O 160.366 1.12192 77.31 363.61 290.22 丙酮味、香蕉香 24 乙酸乙酯 C4H8O2 140.563 1.33413 249.58 194.63 312.92 甜味、果香 25 丙酮 C3H6O 109.575 1.11613 4285.30 5194.14 4434.31 辛辣甜味 26 2-甲基丙烯醛 C4H6O 125.894 1.2168 533.49 1730.53 2226.91 刺激性臭味 27 3-羟基-2-丁酮 C4H8O2 168.067 1.33196 61.93 99.71 101.14 奶制品、脂肪味 28 乙醇 C2H6O 98.574 1.12916 236.95 37.17 89.13 酒香、辛辣味 -
[1] 贾乐, 韩延超, 房祥军, 等. 褪黑素处理对香菇采后品质及活性氧代谢的影响[J]. 食品科学,2021,42(23):229−236. [JIA Le, HAN Yanchao, FANG Xiangjun, et al. Effects of melatonin treatment on postharvest quality and reactive oxygen species metabolism of shiitake mushrooms[J]. Food Science,2021,42(23):229−236. doi: 10.7506/spkx1002-6630-20210316-201 [2] 卢晓烁, 刘常园, 赵立艳. 香菇风味及其分析技术研究进展[J]. 食品研究与开发,2019,40(22):197−203. [LU Xiaoshuo, LIU Changyuan, ZHAO Liyan. Research progress of mushroom flavor and its analysis technology[J]. Food Research and Development,2019,40(22):197−203. [3] 杨伊琳, 丁俊雄, 吴小华, 等. 香菇热风干燥特性及动力学模型[J]. 中国农业大学学报,2022,27(4):135−144. [YANG Yilin, DING Junxiong, WU Xiaohua, et al. Hot air drying characteristics and kinetic model of shiitake mushrooms[J]. Journal of China Agricultural University,2022,27(4):135−144. doi: 10.11841/j.issn.1007-4333.2022.04.12 [4] LU Xiaoshuo, HOU Hui, FANG Donglu, et al. Identification and characterization of volatile compounds in Lentinula edodes during vacuum freeze-drying[J]. Journal of Food Biochemistry,2021,46(6):e13814. [5] YANG Wenjian, YU Jie, PEI Fei, et al. Effect of hot air drying on volatile compounds of Flammulina velutipes detected by HS-SPME-GC-MS and electronic nose[J]. Food Chemistry,2015,196(1):860−866. [6] 李文, 杨焱, 陈万超, 等. 不同干燥方式对香菇含硫风味化合物的影响[J]. 食用菌学报,2018,25(4):71−79. [LI Wen, YANG Yan, CHEN Wanchao, et al. Effects of different drying methods on the sulfur-containing flavor compounds of shiitake mushrooms[J]. Journal of Edible Fungi,2018,25(4):71−79. doi: 10.16488/j.cnki.1005-9873.2018.04.012 [7] 侯会, 陈鑫, 方东路, 等. 干燥方式对食用菌风味物质影响研究进展[J]. 食品安全质量检测学报,2019,10(15):4877−4883. [HOU Hui, CHEN Xin, FANG Donglu, et al. Research progress on the effect of drying methods on flavor substances in edible fungi[J]. Journal of Food Safety and Quality Inspection,2019,10(15):4877−4883. doi: 10.3969/j.issn.2095-0381.2019.15.008 [8] 楚文靖, 张瑞, 周娜, 等. 香菇风味物质研究进展[J]. 安徽农学通报,2019,25(20):39−41. [CHU Wenjing, ZHANG Rui, ZHOU Na, et al. Research progress of mushroom flavor compounds[J]. Anhui Agricultural Science Bulletin,2019,25(20):39−41. doi: 10.3969/j.issn.1007-7731.2019.20.014 [9] LEI Xiaoyu, GAO Shuangshuang, FENG Xi, et al. Effects of GGT and C-S lyase on the generation of endogenous formaldehyde in Lentinula edodes at different growth stages[J]. Molecules,2019,24(23):4203. doi: 10.3390/molecules24234203 [10] XU Lei, FANG Xiangjun, WU Weijie, et al. Effects of high-temperature pre-drying on the quality of air-dried shiitake mushrooms (Lentinula edodes)[J]. Food Chemistry,2019,285(1):406−413. [11] 刁恩杰. 香菇中甲醛影响因素及在加工中控制措施研究[D]. 重庆: 西南农业大学, 2005DIAO Enjie. Study on influencing factors of formaldehyde in shiitake mushrooms and control measures in processing [D]. Chongqing: Southwest Agricultural University, 2005. [12] 黄菊, 吴宁, 宋君, 等. γ-谷氨酰转肽酶和半胱氨酰亚砜裂解酶对香菇内源性甲醛形成的作用[J]. 中国食品学报,2013,13(3):55−58. [HUANG Ju, WU Ning, SONG Jun, et al. Effects of γ-glutamyl transpeptidase and cysteinyl sulfoxide lyase on the formation of endogenous formaldehyde in Lentinus edodes[J]. Chinese Journal of Foodstuffs,2013,13(3):55−58. [13] 沈霞, 余胜光. 广东省6种常见食用菌的重金属含量调查与评价[J]. 西北农业学报,2008(6):294−297. [SHEN Xia, YU Shengguang. Investigation and evaluation of heavy metal content of six common edible fungi in Guangdong Province[J]. Northwest Agricultural Journal,2008(6):294−297. doi: 10.3969/j.issn.1004-1389.2008.06.063 [14] WANG Yi, WANG Chen, CHENG Wei, et al. Removal of cadmium from contaminated Lentinula edodes by optimized complexation and coagulation[J]. Food Science & Nutrition,2017,5(2):215−222. [15] 乔鑫, 李昭敏, 裴亚琼, 等. Zn~(2+)抑制香菇吸附重金属镉工艺优化研究[J]. 食品科技,2021,46(8):71−75. [QIAO Xin, LI Zhaomin, PEI Yaqiong, et al. Research on optimization of Zn~(2+) inhibition of shiitake mushroom adsorption of heavy metal cadmium[J]. Food Science and Technology,2021,46(8):71−75. doi: 10.13684/j.cnki.spkj.2021.08.012 [16] 王辉, 田寒友, 李文采, 等. 基于顶空气相色谱-离子迁移谱技术的冷冻猪肉贮藏时间快速判别方法[J]. 食品科学,2019,40(2):269−274. [WANG Hui, TIAN Hanyou, LI Wencai, et al. A rapid method for determining the storage time of frozen pork based on headspace gas chromatography-ion mobility spectrometry[J]. Food Science,2019,40(2):269−274. doi: 10.7506/spkx1002-6630-20180531-443 [17] 徐玉雪, 李婷, 李利君, 等. SDE-GC-MS结合GC-O分析速溶滇红茶的挥发性风味物质[J]. 现代食品科技,2019,35(11):277−284, 276. [XU Yuxue, LI Ting, LI Lijun, et al. Analysis of volatile flavor compounds in instant Dianhong tea by SDE-GC-MS combined with GC-O[J]. Modern Food Science and Technology,2019,35(11):277−284, 276. doi: 10.13982/j.mfst.1673-9078.2019.11.038 [18] 赵慧君, 王玉荣, 李昕沂, 等. 基于电子鼻和GC-MS技术分析大头菜的挥发性风味物质[J]. 中国调味品,2018,43(11):17−22. [ZHAO Huijun, WANG Yurong, LI Xinyi, et al. Analysis of volatile flavor compounds in kohlrabi based on electronic nose and GC-MS technology[J]. China Seasoning,2018,43(11):17−22. doi: 10.3969/j.issn.1000-9973.2018.11.004 [19] CHEN Dong, QIN Lei, GENG Yue, et al. The aroma fingerprints and discrimination analysis of shiitake mushrooms from three different drying conditions by GC-IMS, GC-MS and DSA[J]. Foods,2021,10(12):2991. doi: 10.3390/foods10122991 [20] 胡静, 孙君社, 谭晓妍, 等. 响应面法优化柠檬酸去除香菇中镉工艺[J]. 食品科学,2017,38(14):181−186. [HU Jing, SUN Junshe, TAN Xiaoyan, et al. Optimization of citric acid removal process for cadmium from shiitake mushrooms by response surface methodology[J]. Food Science,2017,38(14):181−186. doi: 10.7506/spkx1002-6630-201714028 [21] 农业农村部. NY/T 3292-2018 蔬菜中甲醛含量的测定 高效液相色谱法[S]. 2018. Ministry of Agriculture and Rural Affairs. NY/T 3292-2018Determination of formaldehyde in vegetables by high performance—Liquid chromatography[S]. 2018. [22] 张锋, 金杰, 刘春芬, 等. 不同保鲜剂对鲜香菇中甲醛的影响研究[J]. 食用菌,2013,35(5):59−61. [ZHANG Feng, JIN Jie, LIU Chunfen, et al. Effects of different preservatives on formaldehyde in fresh mushrooms[J]. Edible Fungi,2013,35(5):59−61. doi: 10.3969/j.issn.1000-8357.2013.05.036 [23] FUJIMOTO K, TSURUMI T, WATARI M, et al. The mechanism of formaldehyde formation in Shiitake mushroom[J]. Mushroom Science,1976,9(1):385−390. [24] 聂林林. 香菇热泵除湿干燥技术的研究[D]. 郑州: 河南工业大学, 2015NIE Linlin. Research on heat pump dehumidification and drying technology for mushrooms[D]. Zhengzhou: Henan University of Technology, 2015. [25] 黄翠红, 孙道华, 李清彪, 等. 利用柠檬酸去除污泥中镉、铅的研究[J]. 环境污染与防治,2005(1):73−75, 1. [HUANG Cuihong, SUN Daohua, LI Qingbiao, et al. Study on the removal of cadmium and lead in sludge by citric acid[J]. Environmental Pollution and Prevention,2005(1):73−75, 1. doi: 10.3969/j.issn.1001-3865.2005.01.022 [26] POLITOWICZ J, LECH K, LIPAN L, et al. Volatile composition and sensory profile of shiitake mushrooms as affected by drying method[J]. Journal of the Science of Food and Agriculture,2018,98(4):1151−1521. [27] SABIL E, VIDAL-ARAGON M C, BERNALTE M J, et al. Volatile compounds present in six types of dry-cured ham from south European countries[J]. Food Chemistry,1998,61(4):493−503. doi: 10.1016/S0308-8146(97)00079-4 [28] 唐秋实, 陈智毅, 刘学铭, 等. 几种干燥方式对金针菇子实体挥发性风味成分的影响[J]. 食品工业科技,2015,36(10):119−124. [TANG Qiushi, CHEN Zhiyi, LIU Xueming, et al. Effects of several drying methods on volatile flavor components of Flammulina velutipes fruiting bodies[J]. Food Industry Science and Technology,2015,36(10):119−124. doi: 10.13386/j.issn1002-0306.2015.10.016 [29] 吴方宁. 干燥方法对白玉蕈(white Hypsizygus marmoreus)风味物质的影响[D]. 南京: 南京农业大学, 2014WU Fangning. Effects of drying methods on flavor compounds of white Hypsizygus marmoreus[D]. Nanjing: Nanjing Agricultural University, 2014. [30] 张艳荣, 吕呈蔚, 刘通, 等. 不同干燥方式对姬松茸挥发性风味成分分析[J]. 食品科学,2016,37(10):116−121. [ZHANG Yanrong, LÜ Chengwei, LIU Tong, et al. Analysis of volatile flavor components of Agaricus blazei by different drying methods[J]. Food Science,2016,37(10):116−121. doi: 10.7506/spkx1002-6630-201610020 [31] TIAN Yuting, ZHAO Yingting, HUANG Jijun, et al. Effects of different drying methods on the product quality and volatile compounds of whole shiitake mushrooms[J]. Food Chemistry,2016,197:714−722. doi: 10.1016/j.foodchem.2015.11.029 -