Comprehensive Evaluation of Quality Characteristics of Different Mango Varieties Based on Principal Component Analysis and HS-SPME-GC-MS Technology
-
摘要: 为表征台农、象牙和金煌三种芒果的品质特性,本文通过测定其主要品质指标,利用主成分分析法(PCA),构建芒果主要品质综合评分模型,并采用HS-SPME-GC-MS技术对其挥发性风味物质进行分析,综合评价其品质。结果表明,金煌的可溶性固形物、总糖含量和糖酸比最高,分别为19%、24.18 mg/g和10.86;台农的VC和总酚含量最高,分别达9.52 mg/100 g和1.03 mg/g;主成分分析结果表明,台农的综合得分最高,其次为金煌,象牙的综合得分最低。HS-SPME-GC-MS技术从三种芒果中共检测出116种挥发性风味物质,主要包括烯烃类、酚类和醛类等8类物质。台农和象牙的挥发性化合物以烯烃类为主,相对含量分别为45.52%和58.12%,金煌中以酚类物质为主,相对含量为56.88%。通过ROAV分析法共确定了15种关键风味化合物,其中台农和象牙香气贡献最大的物质为(E,Z)-2,6-壬二烯醛,金煌香气贡献最大的是3-己烯醛。台农呈柑橘香、甜香等芳香气味,象牙具有黄瓜香特征风味,而金煌含有特殊的木香气味,该风味主要由2,4-二叔丁基苯酚所贡献。综合分析认为,台农和象牙适用于深加工,金煌则更适合于鲜食。
-
关键词:
- 芒果 /
- 品质 /
- 风味 /
- 主成分分析 /
- 顶空固相微萃取-气相色谱-质谱联用
Abstract: In order to characterize the quality characteristics of three varieties of mango (Tainong, Xiangya and Jinhuang), the main quality indexes of mango was determined and a comprehensive scoring model of main quality of mango was established by principal component analysis (PCA). The volatile flavor compounds of mango were analyzed by HS-SPME-GC-MS technology, and its quality and processing characteristics were evaluated comprehensively. The results showed that the content of soluble solids, total sugar and sugar acid ratio of Jinhuang were the highest, which were 19%, 24.18 mg/g and 10.86 respectively; The contents of VC and total phenol in Tainong were the highest, which were 9.52 mg/100 g and 1.03 mg/g respectively; The results of PCA analysis showed that the comprehensive score of Tainong was the highest, indicating that its comprehensive quality was the best, followed by Jinhuang, and the comprehensive score of Xiangya was the lowest. A total of 116 volatile compounds were detected from three mangoes by HS-SPME-GC-MS, mainly including olefins, phenols and aldehydes. The volatile compounds of Tainong and Xiangya were mainly olefins, with relative contents of 45.52% and 58.12% respectively. The volatile compounds of Jinhuang were mainly phenols, with relative contents of 56.88%. Fifteen key flavor compounds were identified from three mango varieties by the analysis of relative activity value (ROAV). Among them, (E,Z)-2,6-nonadienal contributed the most to the aroma in Tainong and Xiangya, 3-hexenal contributed the most to the aroma in Jinhuang; Tainong had citrus and sweet aroma, Xiangya had cucumber flavor, and Jinhuang had special wood flavor, which was mainly contributed by 2,4-di-tert-butylphenol. Comprehensive analysis showed that Tainong and Xiangya were suitable for deep processing, while Jinhuang was more suitable for fresh food. -
表 1 三种品种芒果主要品质指标分析
Table 1. Analysis on main quality indexes of three varieties of mango
主要品质指标 芒果品种 台农 象牙 金煌 pH 4.06±0.09c 4.45±0.07b 4.58±0.04a 可溶性固形物(%) 18.75±0.11a 11.50±0.00b 19.00±0.00a 可滴定酸(g/L) 5.24±0.04a 1.81±0.01b 1.75±0.03b 糖酸比 3.58±0.03c 6.35±0.02b 10.86±0.20a 总糖(mg/g) 22.24±0.33a 17.68±2.12b 24.18±0.34a VC(mg/100 g) 9.52±0.42a 4.45±0.4c 8.13±0.36b 总酚(mg/g) 1.03±0.06a 0.57±0.01c 0.86±0.02b 注:表中不同字母表示同一指标下不同样品差异性显著(P<0.05)。 表 2 主成分特征值及方差贡献率
Table 2. Eigenvalue and variance contribution rate of principal component
主成分 特征值 方差贡献率(%) 累计方差贡献率(%) 1 3.936 56.233 56.233 2 2.631 37.580 93.813 3 0.241 3.440 97.253 4 0.118 1.681 98.934 5 0.046 0.661 99.595 6 0.028 0.404 100.000 表 3 主成分荷载矩阵
Table 3. Principal component loading matrix
理化指标 主成分1 主成分2 pH(X1) −0.748 −0.647 可溶性固形物(X2) 0.019 0.978 可滴定酸(X3) 0.890 0.438 糖酸比(X4) −0.965 0.178 总糖(X5) −0.224 0.890 VC(X6) 0.263 0.930 总酚(X7) 0.949 −0.119 表 4 三种品种芒果主成分分析综合得分
Table 4. Comprehensive score of principal component analysis of three varieties of mango
品种 F1 F2 F综 排名 台农 1.644 28.589 11.668 1 象牙 −1.715 18.242 5.891 3 金煌 −3.321 28.682 8.911 2 表 5 不同品种芒果挥发性风味成分SPME-GC-MS分析结果
Table 5. SPME-GC-MS analysis results of volatile flavor components in different mango varieties
类别 序号 保留时间(min) CAS号 名称 相对含量(%) 台农 象牙 金煌 醇类 1 3.012 64-17-5 乙醇 2.63±1.32a 0.40±0.04a — 2 7.249 71-36-3 正丁醇 0.80±1.01a — — 3 8.795 123-51-3 异戊醇 0.19±0.16a — — 4 11.78 556-82-1 异戊烯醇 — 0.27±0.04a — 5 11.912 1576-95-0 顺-2-戊烯醇 0.46±0.15a — — 6 12.871 111-27-3 正己醇 0.89±0.06a — 1.01±0.15a 7 13.801 928-96-1 叶醇 5.07±0.76b 2.18±0.20b 9.55±1.29a 8 14.142 5454-79-5 顺-3-甲基环己醇 — 0.17±0.16a — 9 15.973 5921-73-3 2-壬炔-1-醇 0.11±0.10a — — 10 15.978 105-30-6 2-甲基-1-戊醇 0.10±0.00a — — 11 17.032 104-76-7 2-乙基己醇 — 0.31±0.02a — 12 18.734 78-70-6 芳樟醇 — 0.14±0.00a — 13 19.039 111-87-5 正辛醇 0.14±0.02b 0.37±0.03a 0.19±0.04b 14 20.279 562-74-3 4-萜烯醇 — 0.18±0.19a — 15 20.292 150-86-7 植物醇 — 0.24±0.23a — 16 21.418 15356-70-4 DL-薄荷醇 — 0.10±0.01a — 17 21.804 1066-42-8 二甲基硅烷二醇 — 0.19±0.2a — 18 22.015 143-08-8 1-壬醇 0.16±0.01a — — 19 22.685 10339-61-4 反式-3-壬烯-1-醇 — — 0.04±0.04a 20 22.712 50598-21-5 2-乙烯基-2,5-二甲基-4-己烯-1-醇 — 0.09±0.09a — 21 23.015 98-55-5 α-松油醇 — 0.12±0.005a — 22 24.494 56805-23-3 3,6-亚壬基-1-醇 0.14±0.06a 0.15±0.03a 0.88±0.35a 23 26.649 1197-01-9 2-(4-甲基苯基)丙-2-醇 0.64±0.32a 0.22±0.01a — 24 26.68 106-24-1 香叶醇 — — 0.81±0.09a 25 28.64 112-53-8 月桂醇 — — 0.01±0.02a 26 31.159 112-72-1 1-十四醇 — — 0.14±0.11a 醛类 1 1.798 75-07-0 乙醛 — 0.69±0.36a — 2 5.155 66-25-1 正己醛 — 0.33±0.00b 0.43±0.03a 3 6.47 4440-65-7 3-己烯醛 0.14±0.12a — 0.56±0.61a 4 7.648 111-71-7 庚醛 — 0.51±0.49a — 5 8.498 6728-26-3 2-已烯醛 1.51±0.48b 5.60±0.81a 1.87±0.02b 6 10.364 124-13-0 正辛醛 0.27±0.05a — — 7 13.635 124-19-6 壬醛 0.64±0.12b 3.00±0.63a 0.75±0.17b 8 15.51 112-54-9 十二醛 0.05±0.04b 0.51±0.19a — 9 16.938 112-31-2 癸醛 0.79±0.02b 3.08±0.86a 0.38±0.05b 10 17.664 100-52-7 苯甲醛 0.21±0.26a — — 11 18.209 18829-56-6 反式-2-壬烯醛 — 0.07±0.07a — 12 19.598 557-48-2 (E,Z)-2,6-壬二烯醛 1.17±0.04a 1.50±0.14a — 13 20.682 432-25-7 β-环柠檬醛 — 0.14±0.00a — 14 22.445 106-26-3 (Z)-3,7-二甲基-2,6-辛二烯醛 — 0.27±0.03a — 15 23.334 124-25-4 肉豆蔻醛 — 0.10±0.01a — 16 23.811 5392-40-5 柠檬醛 0.14±0.02a — — 17 23.88 141-27-5 (E)-3,7-二甲基-2,6-辛二烯醛 0.05±0.05b 0.20±0.04a — 18 29.162 1620-98-0 3,5-二叔丁基-4-羟基苯甲醛 0.13±0.11b — 0.49±0.10a 19 32.33 66408-55-7 金合欢基乙醛 — — 0.06±0.06a 酯类 1 2.557 141-78-6 乙酸乙酯 1.92±0.63a — — 2 4.368 105-54-4 丁酸乙酯 3.42±0.84a — — 3 4.567 4358-59-2 (2Z)-2-丁烯酸甲酯 — 0.21±0.20a — 4 4.985 123-86-4 乙酸丁酯 0.13±0.01a — — 5 5.686 4606-07-9 环丙基甲酸乙酯 — 0.24±0.23a — 6 8.216 109-21-7 丁酸丁酯 0.83±0.19a — — 7 11.571 3681-82-1 (E)-3-己烯-1-醇乙酸酯 — — 0.27±0.08a 酯类 8 11.593 3681-71-8 乙酸叶醇酯 — 0.26±0.01a — 9 12.797 10307-26-3 正己基磺酸甲酯 — 0.14±0.14a — 10 12.803 400-61-3 三氟乙酸己酯 — 0.11±0.12a — 11 16.039 53398-84-8 (E)-己-3-烯基丁酸酯 — 0.42±0.06a — 12 17.833 5405-41-4 3-羟基丁酸乙酯 0.44±0.06a 0.07±0.07b — 13 21.213 110-38-3 癸酸乙酯 0.14±0.03a — — 14 26.535 106-33-2 月桂酸乙酯 0.17±0.01a — — 15 22.896 695-06-7 γ-己内酯 0.69±0.3a — — 16 25.29 823-22-3 丁位己内酯 0.06±0.06a — — 17 27.015 74367-34-3 2-甲基丙酸3-羟基-2,4,4-三甲基苯酯 — 0.03±0.03a 0.13±0.13a 18 27.159 74381-40-1 2,4,4-三甲基戊烷-1,3-二基双(2-甲基丙酸酯) — — 1.17±1.27a 19 27.473 106-29-6 丁酸叶醇酯 — — 0.25±0.04a 20 27.734 104-50-7 丙位辛内酯 0.12±0.06b — 0.81±0.24a 21 27.872 126-73-8 磷酸三丁酯 — — 0.09±0.10a 22 28.555 698-76-0 丁位辛内酯 0.04±0.06a — — 烯烃 1 4.128 7785-70-8 蒎烯 — 2.10±0.05a — 2 5.536 127-91-3 β-蒎烯 0.53±0.32a 0.11±0.10a — 3 6.251 13466-78-9 3-蒈烯 1.69±0.25a 1.30±1.23a 1.80±0.11a 4 6.77 3338-55-4 (Z)-3,7-二甲基-1,3,6-十八烷三烯 — 0.66±0.71a 0.72±0.76a 5 6.89 99-86-5 松油烯 0.71±0.59a — — 6 7.173 123-35-3 月桂烯 — 1.05±0.27a — 7 7.286 5989-27-5 D-柠檬烯 8.10±0.64b 24.53±1.3a 1.67±0.47c 8 7.527 555-10-2 3-异丙基-6-亚甲基-1-环己烯 0.75±0.63a — — 9 8.642 99-85-4 γ-松油烯 0.58±0.48a 1.32±0.02a — 10 9.873 29050-33-7 4-蒈烯 30.70±4.28a 23.96±0.19a 5.63±0.92b 11 13.487 18368-95-1 对薄荷-1,3,8-三烯 0.44±0.10a — — 12 14.855 62338-57-2 3-乙烯基-1,2-二甲基-1,4-环己二烯 — 0.05±0.05a — 13 14.935 2039-90-9 2,6-二甲基苯乙烯 1.30±1.08a 0.70±0.66a — 14 14.995 768-49-0 2-甲基-1-苯基丙烯 0.72±0.91a 0.64±0.69a 0.56±0.23a 15 19.983 87-44-5 β-石竹烯 — 1.25±0.13a — 16 22.067 6753-98-6 α-石竹烯 — 0.30±0.32a — 17 23.417 3691-11-0 α-布藜烯 — 0.14±0.02a — 18 23.442 17066-67-0 β-瑟林烯 — — 0.39±0.18a 酮类 1 4.098 1629-58-9 1-戊烯-3-酮 0.52±0.08a — — 2 10.99 513-86-0 3-羟基-2-丁酮 0.29±0.07a — — 3 12.182 110-93-0 甲基庚烯酮 — 0.56±0.02a 0.11±0.11b 4 24.905 585-74-0 3'-甲基苯乙酮 — 0.02±0.02a — 5 26.768 3796-70-1 香叶基丙酮 — 0.41±0.03a 0.74±0.27a 6 28.174 14901-07-6 β-紫罗兰酮 — 0.04±0.04a — 7 29.555 3658-77-3 呋喃酮 — — 0.11±0.045a 酚类 1 27.757 128-37-0 2,6-二叔丁基对甲酚 — 0.02±0.03a — 2 29.175 57354-65-1 4-叔丁基-2,6-二异丙基苯酚 0.16±0.21a 0.03±0.04a — 3 32.565 96-76-4 2,4-二叔丁基苯酚 25.5±1.57b 14.06±3.72c 56.88±2.35a 4 30.086 106-44-5 对甲酚 0.10±0.08a — — 烷烃 1 3.21 630-04-6 三十一烷 — 0.07±0.07a — 2 5.285 1002-17-1 2,9-二甲基癸烷 — 0.11±0.10a — 3 25.681 629-94-7 正二十一烷 — — 0.30±0.38a 4 28.07 2719-62-2 6-苯基十二烷 — — 0.13±0.14a 5 28.191 2719-63-3 5-苯基十二烷 — — 0.12±0.13a 6 28.463 2719-64-4 4-苯基十二烷 — — 0.08±0.09a 7 28.637 294-62-2 环十二烷 — — 0.11±0.13a 其他 1 1.54 71773-95-0 (2S)-2-氨基-N-乙基丙酰胺 — 0.31±0.09a — 2 9.61 527-84-4 邻-异丙基苯 3.19±0.25a 3.20±0.09a 0.45±0.32b 其他 3 15.83 64-19-7 乙酸 — — 9.14±2.06a 4 17.933 1759-28-0 4-甲基-5-乙烯基噻唑 — 0.15±0.01a — 5 19.303 7320-37-8 1,2-环氧十六烷 — 0.08±0.03a — 6 19.535 631-61-8 乙酸铵 — 0.03±0.03a — 7 22.378 2834-5-1 11-溴十一酸 0.37±0.31a — — 8 22.504 556-68-3 十六烷基环八硅氧烷 — 0.05±0.05a — 9 24.986 2941-78-8 2-氨基-5-甲基苯甲酸 — — 0.99±0.25a 10 28.375 95-16-9 苯并噻唑 — 0.15±0.03a — 11 30.606 19870-75-8 8-丙氧基雪松 — — 0.10±0.12a 12 31.393 105-60-2 己内酰胺 — — 0.07±0.08a 13 32.972 76-74-4 戊巴比妥 — — 0.12±0.13a 注:“—”为未检测出成分,表中不同小写字母表示同一物质在不同品种之间差异性显著(P<0.05)。 表 6 不同品种芒果挥发性成分的相对风味活度值
Table 6. Relative flavor activity values of volatile components in different mango varieties
类别 序号 名称 阈值[25-28](mg/kg) 风味描述[1,26, 29-33] ROAV 台农 象牙 金煌 醇类 1 正己醇 0.2 水果香 0.01 — 0.23 2 叶醇 0.2 绿色嫩叶清香 0.04 0.01 2.13 3 芳樟醇 0.0015 花香 — 0.12 — 4 正辛醇 0.11 油脂,柑橘味 0.00 0.00 0.08 5 1-壬醇 0.002 柑橘香 0.14 — — 6 香叶醇 0.075 玫瑰香 — — 0.48 醛类 1 乙醛 0.167 过熟苹果香味 — 0.01 — 2 正己醛 0.21 青草香,苹果香 — 0.00 0.09 3 3-己烯醛 0.00025 青草味 0.96 — 100.00 4 庚醛 0.031 果香 — 0.02 — 5 2-已烯醛 0.04 草香味 0.06 0.19 2.09 6 正辛醛 0.0001 柑橘香 4.62 — — 7 壬醛 0.0035 脂肪花香 0.31 1.14 9.57 8 十二醛 0.00107 柑橘香 0.08 0.64 — 9 癸醛 0.005 柑橘香,花香 0.27 0.82 3.39 10 反式-2-壬烯醛 0.000065 黄瓜香气 — 1.44 — 11 (E,Z)-2,6-壬二烯醛 0.00002 绿色,甜瓜 100.00 100.00 — 12 β-环柠檬醛 0.005 玫瑰,果味 — 0.04 — 13 柠檬醛 0.005 柠檬香 0.05 — — 14 (E)-3,7-二甲基-2,6-辛二烯醛 0.04 — — 0.01 — 酯类 1 丁酸乙酯 0.001 强烈果香 5.85 — — 2 丁酸丁酯 0.1 果香 0.01 — — 3 乙酸叶醇酯 0.0121 青草香 — 0.03 — 4 癸酸乙酯 0.02 白兰地似香气 0.01 — — 烯烃 1 蒎烯 0.033 松节油味 — 0.08 — 2 3-蒈烯 0.044 柑橘香 0.07 0.04 1.83 3 松油烯 0.085 柠檬香 0.01 — — 4 月桂烯 0.013 柑橘味 — 0.11 — 5 D-柠檬烯 0.034 柠檬果香 0.41 0.96 2.19 6 3-异丙基-6-亚甲基-1-环己烯 0.036 — 0.04 — — 7 4-蒈烯 0.044 甜香味 1.19 0.73 5.71 8 对薄荷-1,3,8-三烯 0.0393 — 0.02 — — 9 β-石竹烯 0.064 丁香似香味 — 0.03 — 酮类 1 1-戊烯-3-酮 0.0012 刺激性气味 0.74 — — 2 甲基庚烯酮 0.1 柑橘香 — 0.01 0.05 3 香叶基丙酮 0.01 果香 — 0.05 3.30 4 β-紫罗兰酮 0.000461 花香 — 0.12 — 酚类 1 2,4-二叔丁基苯酚 0.2 酚芳香气味 0.22 0.09 12.70 2 对甲酚 0.002 苯酚气味 0.09 — — 其他 1 邻-异丙基苯 0.0084 胡萝卜气味 0.65 0.51 2.39 注:“—”为未查出相关阈值或香气描述。 -
[1] CUEVAS-GLORY L F, SAURI-DUCH E, SOSA-MOGUEL O, et al. Characterization of odor-active compounds in mango ‘Ataulfo’ (Mangifera indica L.) fruit[J]. Chemical Papers,2020,74(11):4025−4032. doi: 10.1007/s11696-020-01217-y [2] MALDONADO-CELIS M E, YAHIA E M, BEDOYA R, et al. Chemical composition of mango (Mangifera indica L.) fruit: Nutritional and phytochemical compounds[J]. Frontiers in Plant Science,2019,10:1073. doi: 10.3389/fpls.2019.01073 [3] 梁秀媚. 芒果皮精油提取、成分分析及抗氧化性研究[D]. 广州: 华南农业大学, 2017LIANG Xiumei. Research on different extraction methods and antioxidant characteristics of mango peel essential oil[D]. Guangzhou: South China Agricultural University, 2017. [4] JHA S, NARSAIAH K, SHARMA A, et al. Quality parameters of mango and potential of non-destructive techniques for their measurement-A review[J]. Food Sci. Technol,2010,47(1):1−14. [5] 张劲, 黄丽, 夏宁, 等. 6个芒果品种品质特性评价研究[J]. 食品科技,2011,36(9):65−69. [ZHANG Jing, HUANG Li, XIA Ning, et al. Evaluation of six mango cultivars by fruit quality characters[J]. Food Science and Technology,2011,36(9):65−69. doi: 10.13684/j.cnki.spkj.2011.09.005 [6] 谢若男, 马晨, 张群, 等. 海南省芒果主产区主栽品种果实品质特性分析[J]. 南方农业学报,2018,49(12):2511−2517. [XIE Ruonan, MA Chen, ZHANG Qun, et al. Characteristic analysis on fruit quality of major varieties in main mango producing regions of Hainan[J]. Journal of Southern Agriculture,2018,49(12):2511−2517. doi: 10.3969/j.issn.2095-1191.2018.12.23 [7] RUMAINUM I M, WORARAD K, SRILAONG V, et al. Fruit quality and antioxidant capacity of six Thai mango cultivars[J]. Agriculture and Natural Resources,2018,52:208−214. doi: 10.1016/j.anres.2018.06.007 [8] PANDIT S S, CHIDLEY H G, KULKARNI R S, et al. Cultivar relationships in mango based on fruit volatile profiles[J]. Food Chemistry,2009,114(1):363−372. doi: 10.1016/j.foodchem.2008.09.107 [9] LEBRUN M, PLOTTO A, GOODNER K, et al. Discrimination of mango fruit maturity by volatiles using the electronic nose and gas chromatography[J]. Postharvest Biology and Technology,2008,48(1):122−131. doi: 10.1016/j.postharvbio.2007.09.010 [10] MUNAFO J P, DIDZBALIS J, SCHNELL R J, et al. Characterization of the major aroma-active compounds in mango (Mangifera indica L.) cultivars haden, white alfonso, Praya Sowoy, royal special, and malindi by application of a comparative aroma extract dilution analysisdilution analysis[J]. Journal of Agricultural and Food Chemistry,2014,62(20):4544−4551. doi: 10.1021/jf5008743 [11] SHIMIZU K, MATSUKAWA T, KANEMATSU R, et al. Volatile profiling of fruits of 17 mango cultivars by HS-SPME-GC/MS combined with principal component analysis[J]. Biosci Biotechnol Biochem,2021,85(8):1789−1797. doi: 10.1093/bbb/zbab097 [12] SILVA E D S, SANTOS JUNIOR H B, GUEDES T J F L, et al. Comparative analysis of fresh and processed mango (Mangifera indica L, cv. “Maria”) pulps: Influence of processing on the volatiles, bioactive compounds and antioxidant activity[J]. Food Science and Technology,2021:1−10. [13] 刘晓珍, 李福香, 祝兆亮, 等. 芒果核多酚超声辅助提取工艺优化及抑菌活性研究[J]. 食品研究与开发,2021,42(14):56−60, 70. [LIU Xiaozhen, LI Fuxiang, ZHU Zhaoliang, et al. Optimization of ultrasound-assisted extraction and antimicrobial activity of polyphenols from mango core[J]. Food Research and Development,2021,42(14):56−60, 70. doi: 10.12161/j.issn.1005-6521.2021.14.010 [14] ZHU Y, CHEN J, CHEN X, et al. Use of relative odor activity value (ROAV) to link aroma profiles to volatile compounds: application to fresh and dried eel (Muraenesox cinereus)[J]. International Journal of Food Properties,2020,23(1):2257−2270. doi: 10.1080/10942912.2020.1856133 [15] 郑丽静, 聂继云, 闫震. 糖酸组分及其对水果风味的影响研究进展[J]. 果树学报,2015,32(2):304−312. [ZHENG Lijing, NIE Jiyun, YAN Zhen. Advances in research on sugars, organic acids and their effects on taste of fruits[J]. Journal of Fruit Science,2015,32(2):304−312. doi: 10.13925/j.cnki.gsxb.20140271 [16] WU J X, XU Z L, ZHANG Y J, et al. An integrative analysis of the transcriptome and proteome of the pulp of a spontaneous late-ripening sweet orange mutant and its wild type improves our understanding of fruit ripening in citrus[J]. Journal of Experimental Botany,2014,65(6):1651−1671. doi: 10.1093/jxb/eru044 [17] 王贵一, 孟嘉珺, 许文静, 等. 不同品种芒果的营养成分及风味物质分析[J]. 食品工业科技,2022,43(1):71−79. [WANG Guiyi, MENG Jiajun, XU Wenjing, et al. Analysis of nutritional components and flavor substances of different varieties of mangoes[J]. Science and Technology of Food Industry,2022,43(1):71−79. doi: 10.13386/j.issn1002-0306.2021030216 [18] 雷月, 宫彦龙, 邓茹月, 等. 基于主成分分析和聚类分析综合评价蒸谷米的品质特性[J]. 食品工业科技,2021,42(7):258−267. [LEI Yue, GONG Yanlong, DENG Ruyue, et al. Comprehensive evaluation of quality characteristics of parboiled rice based on principal component analysis and cluster analysis[J]. Science and Technology of Food Industry,2021,42(7):258−267. doi: 10.13386/j.issn1002-0306.2020050209 [19] 李伟, 郜海燕, 陈杭君, 等. 基于主成分分析的不同品种杨梅果实综合品质评价[J]. 中国食品学报,2017,17(6):161−171. [LI Wei, HAO Haiyan, CHEN Hangjun, et al. Comprehensive fruit quality evaluation of different varieties of bayberry based on principal component analysis[J]. Journal of Chinese Institute of Food Science and Technology,2017,17(6):161−171. doi: 10.16429/j.1009-7848.2017.06.022 [20] MA X W, SU M Q, WU H X, et al. Analysis of the volatile profile of core chinese mango germplasm by headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry[J]. Molecules,2018,23(6):1480. doi: 10.3390/molecules23061480 [21] 刘华南, 江虹锐, 陆雄伟, 等. 顶空固相微萃取-气质联用分析不同芒果品种香气成分差异[J]. 食品工业科技,2021,42(11):211−217. [LIU Huanan, JIANG Hongrui, LU Xiongwei, et al. Analysis and comparison of aroma components in different mango varieties by headspace-solid-phase microextraction-gas chromatograph-mass spectrometer[J]. Science and Technology of Food Industry,2021,42(11):211−217. doi: 10.13386/j.issn1002-0306.2020060377 [22] 张浩, 安可婧, 徐玉娟, 等. 基于电子舌与SPME-GC-MS技术的芒果风味物质的比较分析[J]. 现代食品科技,2018,34(10):214−224. [ZHANG Hao, AN Keqian, XU Yujuan, et al. The characteristic flavor compounds analysis of different cultivars of mango by electronic tongue and SPME-GC-MS[J]. Modern Food Science and Technology,2018,34(10):214−224. doi: 10.13982/j.mfst.1673-9078.2018.10.029 [23] 李雪, 韩燕, 许晶冰, 等. 顶空固相微萃取-气质联用法研究油麦菜采后香气成分的变化[J]. 食品与发酵工业,2020,46(8):254−260. [LI Xue, HAN Yan, XU Jingbing, et al. Analysis of aroma components dynamic changes during the storage of the leaf-used lettuce by HS-SPME-GC-MS method[J]. Food and Fermentation Industries,2020,46(8):254−260. doi: 10.13995/j.cnki.11-1802/ts.023028 [24] PINO J A, MESA J. Contribution of volatile compounds to mango (Mangifera indica L.) aroma[J]. Flavour and Fragrance Journal,2006,21(2):207−213. doi: 10.1002/ffj.1703 [25] 李美萍, 李彩林, 王华瑞, 等. 顶空固相微萃取-气相色谱-嗅闻-质谱联用分析红香酥梨的香气成分[J]. 食品研究与开发,2020,41(6):130−139. [LI Meiping, LI Cailin, WANG Huarui, et al. Analysis of aroma compounds in red fragrant pear by headspace solid phase micro-extraction and gas chromatography-olfactometry-mass spectrometry[J]. Food Research and Development,2020,41(6):130−139. doi: 10.12161/j.issn.1005-6521.2020.06.023 [26] 张劲. 芒果香气特征分析研究[D]. 南宁: 广西大学, 2011ZHANG Jing. Study on aroma characterization of mango fruit[D]. Nanning: Guangxi University, 2011. [27] SAN A T, JOYCE D C, HOFMAN P J, et al. Stable isotope dilution assay (SIDA) and HS-SPME-GCMS quantification of key aroma volatiles for fruit and sap of Australian mango cultivars[J]. Food Chemistry,2017,221:613−619. doi: 10.1016/j.foodchem.2016.11.130 [28] 沈菲, 罗瑞明, 丁丹, 等. 基于相对气味活度值法的新疆大盘鸡中主要挥发性风味物质分析[J]. 肉类研究,2020,34(8):46−50. [SHEN Fei, LUO Ruiming, DING Dan, et al. Analysis of main volatile flavor compounds in Xinjiang market chicken based on relative odor activity value[J]. Meat Research,2020,34(8):46−50. doi: 10.7506/rlyj1001-8123-20200520-130 [29] ZHANG W T, DONG P, LAO F, et al. Characterization of the major aroma-active compounds in Keitt mango juice: Comparison among fresh, pasteurization and high hydrostatic pressure processing juices[J]. Food Chemistry,2019,289:215−222. doi: 10.1016/j.foodchem.2019.03.064 [30] 陈婷婷. 柑橘果实香气活性物质的确定及香气品质评价模型的建立[D]. 重庆: 西南大学, 2018CHEN Tingting. Identification of aroma-active compounds and modeling of aroma quality evaluation of citrus fruits[D]. Chongqing: Southwest University, 2018. [31] 项攀. 芒果香气化合物协同作用研究[D]. 上海: 上海应用技术大学, 2020XIANG Pan. Study on the perceptual interactions among odorants in mangoes[D]. Shanghai: Shanghai Institute of Technology, 2020. [32] 王春龙, 罗禹, 段灵鑫, 等. GC-MS法比较分析不同产地川佛手精油成分[J]. 食品工业科技,2021,42(7):274−281. [WANG Chunlong, LUO Yu, DUAN Lingxin, et al. Comparative analysis of essential oil components of bergamot from different origins by GC-MS[J]. Science and Technology of Food Industry,2021,42(7):274−281. doi: 10.13386/j.issn1002-0306.2020050372 [33] TAO Y S, ZHANG L. Intensity prediction of typical aroma characters of cabernet sauvignon wine in Changli County (China)[J]. LWT-Food Science and Technology,2010,43(10):1550−1556. doi: 10.1016/j.lwt.2010.06.003 [34] 崔琳琳, 赵燊, 周一鸣, 等. 基于GC-MS和电子鼻技术的大米挥发性风味成分分析[J]. 中国粮油学报,2018,33(12):134−141. [CUI Linlin, ZHAO Shen, ZHOU Yiming, et al. Analysis of volatile flavor components in rice based on GC-MS and electronic nose technology[J]. Journal of the Chinese Cereals and Oils Association,2018,33(12):134−141. doi: 10.3969/j.issn.1003-0174.2018.12.021 -