Simultaneous Determination of Nitrite and Ascorbic Acid in Fruits and Vegetables by Differential Pulse Voltammetry
-
摘要: 采用对苯二酚(Hydroquinone,HQ)催化甲烷氧化菌素(Methanobactin,Mb)还原氯金酸合成纳米金(Gold Nanoparticles,AuNPs),利用电沉积法将Mb@AuNPs修饰到裸金电极表面,制备Mb@AuNPs/Au电极。采用差分脉冲伏安法对亚硝酸盐和抗坏血酸进行同时测定并对条件进行优化,结果表明:电极组装条件为电沉积扫速100 mV/s、扫描圈数为40圈;检测体系为浓度0.20 mol/L pH6.5的磷酸盐缓冲溶液,在2~5600 μmol/L和1~6000 μmol/L的线性范围内,Mb@AuNPs/Au对亚硝酸盐和抗坏血酸同时检测的氧化峰电流与浓度呈良好的线性关系(R2>0.9928),检出限分别为0.31和0.57 μmol/L。实际样品中亚硝酸盐和抗坏血酸的加标回收率范围分别为92.59%~109.26%、90.01%~103.51%,表明该方法具有良好的重现性和稳定性,可用于果蔬中亚硝酸盐和抗坏血酸的同时测定。Abstract: Hydroquinone (HQ) was used to catalyze Methanobactin (Mb) to reduce chlorauric acid to prepare Gold Nanoparticles (AuNPs). Mb@AuNPs was modified onto the surface of a bare gold electrode via electrodeposition to prepare the Mb@AuNPs/Au electrode. Subsequently, differential pulse voltammetry was conducted for the simultaneous determination of nitrite and ascorbic acid concentrations as well as condition optimization. For the electrode assembly, electrodeposition was performed with a 0.20 mol/L and pH6.5 PBS at a 100 mV/s scan rate for 40 cycles. In the linear range of 2~5600 μmol/L and 1~6000 μmol/L, the oxidation peak current of both nitrite and ascorbic acid detected by Mb@AuNPs/Au showed a good linear relationship with the concentration (R2>0.9928), and the limit of detection (LOD) was 0.31 and 0.57 μmol/L, respectively. The recovery rates of standard addition for the actual samples were 92.59%~109.26%, 90.01%~103.51%. The method has good reproducibility and stability and can be used for simultaneous determination of nitrite and ascorbic acid in fruits and vegetables.
-
Key words:
- nitrite /
- ascorbic acid /
- differential pulse voltammetry /
- modified electrode
-
表 1 几种修饰电极同时检测NO2−和AA的比较
Table 1. Comparison of some modified electrodes in the determination of NO2− and AA
表 2 同时测定时AA和NO2−的回收率
Table 2. Recovery rate of AA and NO2− in simultaneous determination
样品 AA初始量
(mg/100 mL)NO2−初始量
(mg/L)加标量
(mg/L)AA测定量
(mg/100 mL)NO2−测定量
(mg/L)AA回收率
(%)NO2−回收率
(%)AA RSD
(%)NO2− RSD
(%)菠菜 0.47 0.72 1 1.48 1.78 102.84 109.26 1.87 2.03 5 5.44 5.73 93.60 102.15 2.64 2.89 10 10.46 10.69 102.84 96.75 2.64 2.12 大白菜 0.32 0.61 1 1.30 10.58 93.75 95.08 1.83 2.33 5 5.33 5.60 103.13 98.90 2.80 1.99 10 10.31 10.31 99.03 99.02 1.39 1.87 西红柿 0.19 0.41 1 1.18 1.38 94.74 93.49 2.16 2.07 5 5.20 5.19 99.99 101.76 2.91 1.54 10 10.20 10.20 103.51 103.51 1.89 1.63 水晶梨 0.4 未检出 1 1.36 0.98 90.01 98.00 2.45 2.23 5 5.37 5.09 94.89 101.80 1.72 1.43 10 10.39 9.99 97.50 99.90 1.70 2.74 苹果 0.51 0.39 1 1.48 1.38 94.12 97.44 2.12 2.21 5 5.50 5.37 98.03 94.87 1.81 1.98 10 10.49 10.39 96.08 99.99 1.99 2.01 橘子 1.48 0.27 1 2.49 1.26 100.68 96.30 1.23 1.81 5 6.46 5.25 98.65 92.59 1.51 1.02 10 11.48 10.27 99.99 100.00 2.44 1.07 表 3 果蔬中NO2−和AA贮存期间测定的回收率
Table 3. Recovery rate of NO2− and AA in fruits and vegetables during storage
样品 不同贮存时间
NO2−含量(mg/L)不同贮存时间
NO2−测定回收率(%)不同贮存时间
AA含量(mg/100 mL)不同贮存时间
AA测定回收率(%)0 d 3 d 6 d 9 d 3 d 6 d 9 d 0 d 3 d 6 d 9 d 3 d 6 d 9 d 大白菜 0.61c 0.62c 0.71b 0.75a 95.17 91.55 92.00 0.32a 0.31a 0.31a 0.27b 90.32 93.54 92.60 苹果 0.39c 0.39c 0.44b 0.47a 94.89 93.18 91.50 0.51a 0.51a 0.47b 0.44c 94.12 95.74 90.91 -
[1] 张遴, 姚晓瑜, 王昌钊, 等. 11种蔬菜中亚硝酸盐含量稳定性研究[J]. 食品研究与开发,2017,38(9):188−191. [ZHANG L, YAO X Y, WANG C Z, et al. Study on stability of the nitrite content in 11 kinds of vegetables[J]. Food Research and Development,2017,38(9):188−191. [2] 刘俊, 谢骏, 金根娣. 常用食品添加剂对果蔬汁中维生素C含量的影响研究[J]. 食品安全导刊,2021(21):120−121. [LIU J, XIE J, JIN G D. Effect of common food additives on vitamin C content in fruit and vegetable juice[J]. China Food Safety Magazine,2021(21):120−121. [3] KUNTOLAKSONO S, JOELIANINGSIH J, YOSHI L A, et al. Bibliometric analysis of global research trends on electrochemical nitrite sensing using scopus database[J]. Analytical and Bioanalytical Electrochemistry,2022,14(7):680−695. [4] 冷桃花, 万丽佳, 翁史昱, 等. 蔬菜中亚硝酸盐和硝酸盐检测技术研究进展[J]. 食品安全质量检测学报,2020,11(19):6970−6976. [LENG T H, WAN L J, WENG S Y, et al. Research progress in the detection technology of nitrite and nitrate in vegetables[J]. Food Safe Qual Detec Technol,2020,11(19):6970−6976. [5] ÜZER A, SAĞLAM Ş, CAN Z, et al. Electrochemical determination of food preservative nitrite with gold nanoparticles/p-aminothiophenol-modified gold electrode[J]. International Journal of Molecular Sciences,2016,17(8):1253. doi: 10.3390/ijms17081253 [6] 杨建飞, 马倩, 左勇, 等. 亚硝酸盐快速检测试剂研究及其在酱腌菜中的应用[J]. 食品科学,2021,42(18):321−328. [YANG J F, MA Q, ZUO Y, et al. A spectrophotometric reagent for the rapid detection of nitrite and its application to pickles[J]. Food Sci,2021,42(18):321−328. [7] WANG Q H, YU L J, LIU Y, et al. Methods for the detection and determination of nitrite and nitrate: A review[J]. Talanta,2017,165:709−720. doi: 10.1016/j.talanta.2016.12.044 [8] SIEGEL J M, SCHILLY K M, WIJESINGHE M B, et al. Optimization of a microchip electrophoresis method with electrochemical detection for the determination of nitrite in macrophage cells as an indicator of nitric oxide production[J]. Analytical Methods,2019,11(2):148−156. doi: 10.1039/C8AY02014K [9] 冯亮, 余科, 杨艳, 等. pH值对“L-抗坏血酸-L-半胱氨酸-甘氨酸”体系挥发性物质形成的影响[J]. 中国食品学报,2022, 22(4): 44-54.FENG L, YU K, YANG Y, et al. Effects of pH on the formation of flavor compounds in the L-ascorbic acid-L-cysteine-glycine[J]. Journal of Chinese Institute of Food Science and Technology System,2022, 22(4): 44-54. [10] LI X, ZHOU C H, ZI Q, et al. An electrochemical signal transduction amplification strategy for ultrasensitive detection of ascorbic acid[J]. Journal of Electroanalytical Chemistry,2016,780:321−326. doi: 10.1016/j.jelechem.2016.09.038 [11] BAHADORAN Z, MIRMIRAN P, JEDDI S, et al. Nitrate and nitrite content of vegetables, fruits, grains, legumes, dairy products, meats and processed meats[J]. Journal of Food Composition and Analysis,2016,51:93−105. doi: 10.1016/j.jfca.2016.06.006 [12] REDDY Y V M, SRAVANI B, AGARWAL S, et al. Electrochemical sensor for detection of uric acid in the presence of ascorbic acid and dopamine using the poly (DPA)/SiO2@ Fe3O4 modified carbon paste electrodee electrode[J]. Journal of Electroanalytical Chemistry,2018,820:168−175. doi: 10.1016/j.jelechem.2018.04.059 [13] 徐艺伟, 朱丹, 石吉勇, 等. 原位合成铜基金属有机框架差分脉冲伏安法快速检测肉制品中亚硝酸盐[J]. 食品科学,2021,42(16):267−272. [XU Y W, ZHU D, SHI J Y, et al. Rapid detection of nitrite in meat products by in-situ synthesized Cu-based metal organicframeworks coupled with differential pulse voltammetry[J]. Food Sci,2021,42(16):267−272. [14] LI L, LIU D, WANG K, et al. Quantitative detection of nitrite with N-doped graphene quantum dots decorated N-doped carbon nanofibers composite-based electrochemical sensor[J]. Sensors and Actuators B: Chemical,2017,252:17−23. doi: 10.1016/j.snb.2017.05.155 [15] LIN H, DING L, ZHANG B, et al. Detection of nitrite based on fluorescent carbon dots by the hydrothermal method with folic acid[J]. Royal Society Open Science,2018,5(5):172149. doi: 10.1098/rsos.172149 [16] 罗大娟, 刘冰倩, 覃蒙颜, 等. 基于Au/rGO/FeOOH的新型电化学传感器一步检测亚硝酸盐[J/OL]. 电化学: 1−14[2022−06−07]. DOI: 10.13208/j. electrochem. 211019.LUO D J, LIU B Q, QIN M Y, et al. A Novel electrochemical sensor based on Au/GO/FeOOH for one-step detection of nitrite[J/OL]. Electrochemistry: 1−14[2022−06−07]. DOI: 10.13208/j.electrochem.211019. [17] YAN M, YU B, DONG X H, et al. Research progress on nitrite electrochemical sensor[J]. Chinese Journal of Analytical Chemistry,2018,46(2):147−155. doi: 10.1016/S1872-2040(17)61066-1 [18] JILANI B S, MALATHESH P, MRUTHYUNJAYACHARI C D, et al. Cobalt (II) tetra methyl-quinoline oxy bridged phthalocyanine carbon nano particles modified glassy carbon electrode for sensing nitrite: A voltammetric study[J]. Materials Chemistry and Physics,2020,239:121920. doi: 10.1016/j.matchemphys.2019.121920 [19] MEJRI A, MARS A, ELFIL H, et al. Curcumin graphite pencil electrode modified with molybdenum disulfide nanosheets decorated gold foams for simultaneous quantification of nitrite and hydrazine in water samples[J]. Analytica Chimica Acta,2020,1137:19−27. [20] WANG Q, KHUNGWA J, LI L, et al. Fabrication of polyoxometalate/GO/PDDA hybrid nanocomposite modified electrode and electrocatalysis for nitrite ion, ascorbic acid and dopamine[J]. Journal of Electroanalytical Chemistry,2018,824:91−98. doi: 10.1016/j.jelechem.2018.07.043 [21] ZHANG L, FENG J, CHOU K C, et al. Simultaneously electrochemical detection of uric acid and ascorbic acid using glassy carbon electrode modified with chrysanthemum-like titanium nitride[J]. Journal of Electroanalytical Chemistry,2017,803:11−18. doi: 10.1016/j.jelechem.2017.09.006 [22] 张伟. 甲烷氧化菌素模拟SOD的光谱学与电化学研究[D]. 哈尔滨: 哈尔滨商业大学, 2018ZHANG W. Spectroscopic and electrochemical investigations of methanbactin Mimic SOD[D]. Harbin: Harbin University of Commerce, 2018. [23] 窦博鑫, 辛嘉英, 王振兴, 等. 甲烷氧化菌素功能化金纳米层层自组装修饰电极上过氧化氢的催化还原[J]. 分子催化,2017,31(6):534−543. [DOU B X, XIN J Y, WANG Z X, et al. Multilayer self-assembly modified electrode of methanobactin functionalized goldnanoparticle to catalytic reduction of hydrogen peroxide[J]. Molecular Catalysis,2017,31(6):534−543. [24] 王春艳, 周健, 汤洪波, 等. 基于石墨烯构建的电化学传感器测定抗坏血酸[J]. 现代食品科技,2021,37(5):319−324, 295. [WANG C Y, ZHOU J, TANG H B, et al. Determination of ascorbic acid by electrochemical sensor based on graphene[J]. Modern Food Science & Technology,2021,37(5):319−324, 295. [25] HE B S, ZHANG J X. Rapid detection of ascorbic acid based on a dual-electrode sensor system using a powder microelectrode embedded with carboxyl multi-walled carbon nanotubes[J]. Sensors,2017,17(7):1549. doi: 10.3390/s17071549 [26] 张铁男, 辛嘉英, 张秀凤, 等. 甲烷氧化菌素催化纳米金合成[J]. 分子催化,2013,27(2):192−197. [ZHANG T N, XIN J Y, ZHANG X F, et al. Methanobactin-catalyzed synthesis of gold nanoparticles[J]. Molecular Catalysis,2013,27(2):192−197. [27] 王艳辉. 多酚相互作用对金纳米法测定抗氧化能力结果的影响[D]. 北京: 北京林业大学, 2020.WANG Y H. Interaction effects on a gold nanoparticles-based assay for antioxidantcapacity evaluation of polyphenols[J]. Beijing: Beijing Forestry University, 2020. [28] 陈丹丹. 甲烷氧化菌素介导纳米金合成检测三聚氰胺的机理[D]. 哈尔滨: 哈尔滨商业大学, 2014CHEN D D. Mechanism of melamine detection bymethanobactin-mediated synthesis of goldnanoparticles[D]. Harbin: Harbin University of Commerce, 2014. [29] KANNAN A, SIVANESAN A, KALAIVANI G, et al. A highly selective and simultaneous determination of ascorbic acid, uric acid and nitrite based on a novel poly-N-acetyl-l-methionine (poly-NALM) thin film[J]. RSC advances,2016,6(99):96898−96907. doi: 10.1039/C6RA18440E [30] 梁彩云, 刘凤平, 张翠忠, 等. 基于铜纳米粒子/氧化锌/石墨烯修饰电极的电化学方法测定硫酸卡那霉素[J]. 分析化学,2019,47(5):739−747. [LIANG C Y, LIU F P, ZHANG C Z, et al. Electrochemical determination of kanamycin sulfate based on copper nanoparticle/zincoxide/graphene modified electrode[J]. Analytical Chemistry,2019,47(5):739−747. [31] 赵燕荣. 基于电化学传感器的吗啡检测方法研究[D]. 苏州: 苏州大学, 2009: 21ZHAO Y R. Study on detection method of morphine based on electrochemical sensor[D]. Suzhou: Suzhou University, 2009: 21. [32] CHI K N, HU R, YANG Y H. An ultrasensitive photoelectrochemistry sensor for ascorbic acid based on etching perylenediimide modified CoOOH nanosheets[J]. Materials Express,2019,9(7):741−748. doi: 10.1166/mex.2019.1554 [33] KOYUN O, SAHIN Y. Voltammetric determination of nitrite with gold nanoparticles/poly (methylene blue)-modified pencil graphite electrode: Application in food and water samples[J]. Ionics,2018,24(10):3187−3197. doi: 10.1007/s11581-017-2429-7 [34] SUN L P, LI H J, LI M J, et al. Simultaneous determination of ascorbic acid, dopamine, uric acid, tryptophan, and nitrite on a novel carbon electrode[J]. Journal of Electroanalytical Chemistry,2016,783:167−175. doi: 10.1016/j.jelechem.2016.11.026 [35] CHEN H Y, YANG T, LIU F Q, et al. Electrode position of gold nanoparticles on Cu-based metal-organic framework for the electrochemical detection of nitrite[J]. Sensors and Actuators,2019,286(18):401−407. [36] 叶耘峰. 基于碳纳米金复合材料电化学检测 BHA[J]. 食品工业,2020,41(11):293−296. [YE Y F. Electrochemical detection of BHA based on carbon nano gold composite[J]. Food Industry,2020,41(11):293−296. [37] DODEVSKA T, SHTEREV I, LAZAROVA Y. An electrochemical sensing platform based on iridium oxide for highly sensitive and selective detection of nitrite and ascorbic acid[J]. Acta Chimica Slovenica,2018,65(4):970−979. [38] ZHANG Y, WEN F, HUANG Z, et al. Nitrogen doped lignocellulose/binary metal sulfide modified electrode: Preparation and application for non-enzymatic ascorbic acid, dopamine and nitrite sensing[J]. Journal of Electroanalytical Chemistry,2017,806:150−157. doi: 10.1016/j.jelechem.2017.10.066 [39] KEMMEGNE-MBOUGUEN J C, ANGNES L. Simultaneous quantification of ascorbic acid, uric acid and nitrite using a clay/porphyrin modified electrode[J]. Sensors and Actuators B: Chemical,2015,212:464−471. doi: 10.1016/j.snb.2015.02.046 [40] 毛燚杰, 何晋浙. 新鲜蔬菜与烹调蔬菜中亚硝酸盐及VC的变化规律[J]. 食品与发酵工业,2016,42(8):166−170. [MAO Y J, HE J Z. The changes of nitrite and VC in fresh vegetables and cooked vegetables[J]. Food and Fermentation Industries,2016,42(8):166−170. -