• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020

差分脉冲伏安法对果蔬中亚硝酸盐和抗坏血酸的同时测定

陈林林 宋佳琪 王玲 杨茜瑶 郑凤鸣 张佳欣 张娜

陈林林,宋佳琪,王玲,等. 差分脉冲伏安法对果蔬中亚硝酸盐和抗坏血酸的同时测定[J]. 食品工业科技,2023,44(5):267−276. doi:  10.13386/j.issn1002-0306.2022040260
引用本文: 陈林林,宋佳琪,王玲,等. 差分脉冲伏安法对果蔬中亚硝酸盐和抗坏血酸的同时测定[J]. 食品工业科技,2023,44(5):267−276. doi:  10.13386/j.issn1002-0306.2022040260
CHEN Linlin, SONG Jiaqi, WANG Ling, et al. Simultaneous Determination of Nitrite and Ascorbic Acid in Fruits and Vegetables by Differential Pulse Voltammetry[J]. Science and Technology of Food Industry, 2023, 44(5): 267−276. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022040260
Citation: CHEN Linlin, SONG Jiaqi, WANG Ling, et al. Simultaneous Determination of Nitrite and Ascorbic Acid in Fruits and Vegetables by Differential Pulse Voltammetry[J]. Science and Technology of Food Industry, 2023, 44(5): 267−276. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022040260

差分脉冲伏安法对果蔬中亚硝酸盐和抗坏血酸的同时测定

doi: 10.13386/j.issn1002-0306.2022040260
基金项目: 国家自然科学基金项目(21573055);黑龙江省“百千万”工程科技重大专项(SC2021ZX04B0019);哈尔滨商业大学博士科研启动项目(12DL010);国家级大学生创新创业训练计划项目(202110240019)。
详细信息
    作者简介:

    陈林林(1979−),女,博士,副教授,研究方向:食品科学,E-mail:chenlinl2013@126.com

    通讯作者:

    陈林林(1979−),女,博士,副教授,研究方向:食品科学,E-mail:chenlinl2013@126.com

  • 中图分类号: TS207

Simultaneous Determination of Nitrite and Ascorbic Acid in Fruits and Vegetables by Differential Pulse Voltammetry

  • 摘要: 采用对苯二酚(Hydroquinone,HQ)催化甲烷氧化菌素(Methanobactin,Mb)还原氯金酸合成纳米金(Gold Nanoparticles,AuNPs),利用电沉积法将Mb@AuNPs修饰到裸金电极表面,制备Mb@AuNPs/Au电极。采用差分脉冲伏安法对亚硝酸盐和抗坏血酸进行同时测定并对条件进行优化,结果表明:电极组装条件为电沉积扫速100 mV/s、扫描圈数为40圈;检测体系为浓度0.20 mol/L pH6.5的磷酸盐缓冲溶液,在2~5600 μmol/L和1~6000 μmol/L的线性范围内,Mb@AuNPs/Au对亚硝酸盐和抗坏血酸同时检测的氧化峰电流与浓度呈良好的线性关系(R2>0.9928),检出限分别为0.31和0.57 μmol/L。实际样品中亚硝酸盐和抗坏血酸的加标回收率范围分别为92.59%~109.26%、90.01%~103.51%,表明该方法具有良好的重现性和稳定性,可用于果蔬中亚硝酸盐和抗坏血酸的同时测定。
  • 图  1  AA和NO2在修饰电极上的电化学行为示意图

    Figure  1.  Electrochemical behavior of AA and NO2 at the modified electrode

    图  2  HQ催化Mb还原HAuCl4合成纳米金紫外光谱

    Figure  2.  Ultraviolet spectra of gold nanoparticles synthesized by reduction of HAuCl4 with Mb catalyzed by HQ

    图  3  Mb@AuNPs修饰电极CV图

    Figure  3.  Cyclic voltammetry of Mb@AuNPs modified electrode

    图  4  Mb@AuNPs修饰电极EIS图

    Figure  4.  Electrochemical impedance spectrum of Mb@AuNPs modified electrode

    图  5  AA和NO2在Mb@AuNPs修饰电极上的电化学行为

    Figure  5.  Electrochemical behavior of AA and NO2 on Mb@AuNPs modified electrode

    注:不同字母表示差异性显著(P<0.05),图6图8图10~图12表3同。

    图  6  不同扫描速度对Mb@AuNPs/Au电化学性能的影响

    Figure  6.  Effect of different scanning speed on the electrochemical performance of Mb@AuNPs/Au

    图  7  不同扫描速度对Mb@AuNPs/Au影响的EIS图

    Figure  7.  Electrochemical impedance spectrum of the effects on Mb@AuNPs/Au with different scanning speed

    图  8  不同电沉积圈数对Mb@AuNPs/Au电化学性能的影响

    Figure  8.  Effects of different deposition cycles on the electrochemical performance of Mb@AuNPs/Au

    图  9  不同电沉积圈数对Mb@AuNPs/Au影响的EIS图

    Figure  9.  Electrochemical impedance spectrum of the effects on Mb@AuNPs/Au with different deposition cycles

    图  10  不同缓冲溶液对NO2和AA电化学行为影响的DPV图

    Figure  10.  DPV of the effects on the electrochemical behavior of NO2 and AA with different buffer solutions

    图  11  不同PBS缓冲溶液pH对NO2和AA电化学行为影响的DPV图

    Figure  11.  DPV of the effects on the electrochemical behavior of NO2 and AA with different pH of PBS buffer solution

    图  12  不同PBS缓冲溶液浓度对NO2和AA电化学行为影响的DPV图

    Figure  12.  DPV of the effects on the electrochemical behavior of NO2 and AA with different PBS buffer solution concentration

    图  13  Mb@AuNPs/Au同时检测NO2和AA标准曲线

    Figure  13.  Standard curves for simultaneous detection of NO2 and AA with Mb@AuNPs/Au

    表  1  几种修饰电极同时检测NO2和AA的比较

    Table  1.   Comparison of some modified electrodes in the determination of NO2 and AA

    修饰电极线性范围(μmol/L)检出限(μmol/L)参考
    文献
    AANO2AANO2
    N-LC/CoS2MoS29.9~48000.5~51603.000.20[38]
    Poly-NALM/GC10.0~10001.0~5000.970.75[29]
    Carbon hybrid electrode6.0~15006.0~15005.003.00[34]
    Fe(III)TPyP-Ba/GCE5.0~3301.0~2500.900.50[39]
    Mb@AuNPs/Au2.0~56001.0~60000.57±
    0.017
    0.31±
    0.002
    本法
    下载: 导出CSV

    表  2  同时测定时AA和NO2的回收率

    Table  2.   Recovery rate of AA and NO2 in simultaneous determination

    样品AA初始量
    (mg/100 mL)
    NO2初始量
    (mg/L)
    加标量
    (mg/L)
    AA测定量
    (mg/100 mL)
    NO2测定量
    (mg/L)
    AA回收率
    (%)
    NO2回收率
    (%)
    AA RSD
    (%)
    NO2 RSD
    (%)
    菠菜0.470.7211.481.78102.84109.261.872.03
    55.445.7393.60102.152.642.89
    1010.4610.69102.8496.752.642.12
    大白菜0.320.6111.3010.5893.7595.081.832.33
    55.335.60103.1398.902.801.99
    1010.3110.3199.0399.021.391.87
    西红柿0.190.4111.181.3894.7493.492.162.07
    55.205.1999.99101.762.911.54
    1010.2010.20103.51103.511.891.63
    水晶梨0.4未检出11.360.9890.0198.002.452.23
    55.375.0994.89101.801.721.43
    1010.399.9997.5099.901.702.74
    苹果0.510.3911.481.3894.1297.442.122.21
    55.505.3798.0394.871.811.98
    1010.4910.3996.0899.991.992.01
    橘子1.480.2712.491.26100.6896.301.231.81
    56.465.2598.6592.591.511.02
    1011.4810.2799.99100.002.441.07
    下载: 导出CSV

    表  3  果蔬中NO2和AA贮存期间测定的回收率

    Table  3.   Recovery rate of NO2 and AA in fruits and vegetables during storage

    样品不同贮存时间
    NO2含量(mg/L)
    不同贮存时间
    NO2测定回收率(%)
    不同贮存时间
    AA含量(mg/100 mL)
    不同贮存时间
    AA测定回收率(%)
    0 d3 d6 d9 d3 d6 d9 d0 d3 d6 d9 d3 d6 d9 d
    大白菜0.61c0.62c0.71b0.75a95.1791.5592.000.32a0.31a0.31a0.27b90.3293.5492.60
    苹果0.39c0.39c0.44b0.47a94.8993.1891.500.51a0.51a0.47b0.44c94.1295.7490.91
    下载: 导出CSV
  • [1] 张遴, 姚晓瑜, 王昌钊, 等. 11种蔬菜中亚硝酸盐含量稳定性研究[J]. 食品研究与开发,2017,38(9):188−191. [ZHANG L, YAO X Y, WANG C Z, et al. Study on stability of the nitrite content in 11 kinds of vegetables[J]. Food Research and Development,2017,38(9):188−191.
    [2] 刘俊, 谢骏, 金根娣. 常用食品添加剂对果蔬汁中维生素C含量的影响研究[J]. 食品安全导刊,2021(21):120−121. [LIU J, XIE J, JIN G D. Effect of common food additives on vitamin C content in fruit and vegetable juice[J]. China Food Safety Magazine,2021(21):120−121.
    [3] KUNTOLAKSONO S, JOELIANINGSIH J, YOSHI L A, et al. Bibliometric analysis of global research trends on electrochemical nitrite sensing using scopus database[J]. Analytical and Bioanalytical Electrochemistry,2022,14(7):680−695.
    [4] 冷桃花, 万丽佳, 翁史昱, 等. 蔬菜中亚硝酸盐和硝酸盐检测技术研究进展[J]. 食品安全质量检测学报,2020,11(19):6970−6976. [LENG T H, WAN L J, WENG S Y, et al. Research progress in the detection technology of nitrite and nitrate in vegetables[J]. Food Safe Qual Detec Technol,2020,11(19):6970−6976.
    [5] ÜZER A, SAĞLAM Ş, CAN Z, et al. Electrochemical determination of food preservative nitrite with gold nanoparticles/p-aminothiophenol-modified gold electrode[J]. International Journal of Molecular Sciences,2016,17(8):1253. doi:  10.3390/ijms17081253
    [6] 杨建飞, 马倩, 左勇, 等. 亚硝酸盐快速检测试剂研究及其在酱腌菜中的应用[J]. 食品科学,2021,42(18):321−328. [YANG J F, MA Q, ZUO Y, et al. A spectrophotometric reagent for the rapid detection of nitrite and its application to pickles[J]. Food Sci,2021,42(18):321−328.
    [7] WANG Q H, YU L J, LIU Y, et al. Methods for the detection and determination of nitrite and nitrate: A review[J]. Talanta,2017,165:709−720. doi:  10.1016/j.talanta.2016.12.044
    [8] SIEGEL J M, SCHILLY K M, WIJESINGHE M B, et al. Optimization of a microchip electrophoresis method with electrochemical detection for the determination of nitrite in macrophage cells as an indicator of nitric oxide production[J]. Analytical Methods,2019,11(2):148−156. doi:  10.1039/C8AY02014K
    [9] 冯亮, 余科, 杨艳, 等. pH值对“L-抗坏血酸-L-半胱氨酸-甘氨酸”体系挥发性物质形成的影响[J]. 中国食品学报,2022, 22(4): 44-54.

    FENG L, YU K, YANG Y, et al. Effects of pH on the formation of flavor compounds in the L-ascorbic acid-L-cysteine-glycine[J]. Journal of Chinese Institute of Food Science and Technology System,2022, 22(4): 44-54.
    [10] LI X, ZHOU C H, ZI Q, et al. An electrochemical signal transduction amplification strategy for ultrasensitive detection of ascorbic acid[J]. Journal of Electroanalytical Chemistry,2016,780:321−326. doi:  10.1016/j.jelechem.2016.09.038
    [11] BAHADORAN Z, MIRMIRAN P, JEDDI S, et al. Nitrate and nitrite content of vegetables, fruits, grains, legumes, dairy products, meats and processed meats[J]. Journal of Food Composition and Analysis,2016,51:93−105. doi:  10.1016/j.jfca.2016.06.006
    [12] REDDY Y V M, SRAVANI B, AGARWAL S, et al. Electrochemical sensor for detection of uric acid in the presence of ascorbic acid and dopamine using the poly (DPA)/SiO2@ Fe3O4 modified carbon paste electrodee electrode[J]. Journal of Electroanalytical Chemistry,2018,820:168−175. doi:  10.1016/j.jelechem.2018.04.059
    [13] 徐艺伟, 朱丹, 石吉勇, 等. 原位合成铜基金属有机框架差分脉冲伏安法快速检测肉制品中亚硝酸盐[J]. 食品科学,2021,42(16):267−272. [XU Y W, ZHU D, SHI J Y, et al. Rapid detection of nitrite in meat products by in-situ synthesized Cu-based metal organicframeworks coupled with differential pulse voltammetry[J]. Food Sci,2021,42(16):267−272.
    [14] LI L, LIU D, WANG K, et al. Quantitative detection of nitrite with N-doped graphene quantum dots decorated N-doped carbon nanofibers composite-based electrochemical sensor[J]. Sensors and Actuators B: Chemical,2017,252:17−23. doi:  10.1016/j.snb.2017.05.155
    [15] LIN H, DING L, ZHANG B, et al. Detection of nitrite based on fluorescent carbon dots by the hydrothermal method with folic acid[J]. Royal Society Open Science,2018,5(5):172149. doi:  10.1098/rsos.172149
    [16] 罗大娟, 刘冰倩, 覃蒙颜, 等. 基于Au/rGO/FeOOH的新型电化学传感器一步检测亚硝酸盐[J/OL]. 电化学: 1−14[2022−06−07]. DOI: 10.13208/j. electrochem. 211019.

    LUO D J, LIU B Q, QIN M Y, et al. A Novel electrochemical sensor based on Au/GO/FeOOH for one-step detection of nitrite[J/OL]. Electrochemistry: 1−14[2022−06−07]. DOI:  10.13208/j.electrochem.211019.
    [17] YAN M, YU B, DONG X H, et al. Research progress on nitrite electrochemical sensor[J]. Chinese Journal of Analytical Chemistry,2018,46(2):147−155. doi:  10.1016/S1872-2040(17)61066-1
    [18] JILANI B S, MALATHESH P, MRUTHYUNJAYACHARI C D, et al. Cobalt (II) tetra methyl-quinoline oxy bridged phthalocyanine carbon nano particles modified glassy carbon electrode for sensing nitrite: A voltammetric study[J]. Materials Chemistry and Physics,2020,239:121920. doi:  10.1016/j.matchemphys.2019.121920
    [19] MEJRI A, MARS A, ELFIL H, et al. Curcumin graphite pencil electrode modified with molybdenum disulfide nanosheets decorated gold foams for simultaneous quantification of nitrite and hydrazine in water samples[J]. Analytica Chimica Acta,2020,1137:19−27.
    [20] WANG Q, KHUNGWA J, LI L, et al. Fabrication of polyoxometalate/GO/PDDA hybrid nanocomposite modified electrode and electrocatalysis for nitrite ion, ascorbic acid and dopamine[J]. Journal of Electroanalytical Chemistry,2018,824:91−98. doi:  10.1016/j.jelechem.2018.07.043
    [21] ZHANG L, FENG J, CHOU K C, et al. Simultaneously electrochemical detection of uric acid and ascorbic acid using glassy carbon electrode modified with chrysanthemum-like titanium nitride[J]. Journal of Electroanalytical Chemistry,2017,803:11−18. doi:  10.1016/j.jelechem.2017.09.006
    [22] 张伟. 甲烷氧化菌素模拟SOD的光谱学与电化学研究[D]. 哈尔滨: 哈尔滨商业大学, 2018

    ZHANG W. Spectroscopic and electrochemical investigations of methanbactin Mimic SOD[D]. Harbin: Harbin University of Commerce, 2018.
    [23] 窦博鑫, 辛嘉英, 王振兴, 等. 甲烷氧化菌素功能化金纳米层层自组装修饰电极上过氧化氢的催化还原[J]. 分子催化,2017,31(6):534−543. [DOU B X, XIN J Y, WANG Z X, et al. Multilayer self-assembly modified electrode of methanobactin functionalized goldnanoparticle to catalytic reduction of hydrogen peroxide[J]. Molecular Catalysis,2017,31(6):534−543.
    [24] 王春艳, 周健, 汤洪波, 等. 基于石墨烯构建的电化学传感器测定抗坏血酸[J]. 现代食品科技,2021,37(5):319−324, 295. [WANG C Y, ZHOU J, TANG H B, et al. Determination of ascorbic acid by electrochemical sensor based on graphene[J]. Modern Food Science & Technology,2021,37(5):319−324, 295.
    [25] HE B S, ZHANG J X. Rapid detection of ascorbic acid based on a dual-electrode sensor system using a powder microelectrode embedded with carboxyl multi-walled carbon nanotubes[J]. Sensors,2017,17(7):1549. doi:  10.3390/s17071549
    [26] 张铁男, 辛嘉英, 张秀凤, 等. 甲烷氧化菌素催化纳米金合成[J]. 分子催化,2013,27(2):192−197. [ZHANG T N, XIN J Y, ZHANG X F, et al. Methanobactin-catalyzed synthesis of gold nanoparticles[J]. Molecular Catalysis,2013,27(2):192−197.
    [27] 王艳辉. 多酚相互作用对金纳米法测定抗氧化能力结果的影响[D]. 北京: 北京林业大学, 2020.

    WANG Y H. Interaction effects on a gold nanoparticles-based assay for antioxidantcapacity evaluation of polyphenols[J]. Beijing: Beijing Forestry University, 2020.
    [28] 陈丹丹. 甲烷氧化菌素介导纳米金合成检测三聚氰胺的机理[D]. 哈尔滨: 哈尔滨商业大学, 2014

    CHEN D D. Mechanism of melamine detection bymethanobactin-mediated synthesis of goldnanoparticles[D]. Harbin: Harbin University of Commerce, 2014.
    [29] KANNAN A, SIVANESAN A, KALAIVANI G, et al. A highly selective and simultaneous determination of ascorbic acid, uric acid and nitrite based on a novel poly-N-acetyl-l-methionine (poly-NALM) thin film[J]. RSC advances,2016,6(99):96898−96907. doi:  10.1039/C6RA18440E
    [30] 梁彩云, 刘凤平, 张翠忠, 等. 基于铜纳米粒子/氧化锌/石墨烯修饰电极的电化学方法测定硫酸卡那霉素[J]. 分析化学,2019,47(5):739−747. [LIANG C Y, LIU F P, ZHANG C Z, et al. Electrochemical determination of kanamycin sulfate based on copper nanoparticle/zincoxide/graphene modified electrode[J]. Analytical Chemistry,2019,47(5):739−747.
    [31] 赵燕荣. 基于电化学传感器的吗啡检测方法研究[D]. 苏州: 苏州大学, 2009: 21

    ZHAO Y R. Study on detection method of morphine based on electrochemical sensor[D]. Suzhou: Suzhou University, 2009: 21.
    [32] CHI K N, HU R, YANG Y H. An ultrasensitive photoelectrochemistry sensor for ascorbic acid based on etching perylenediimide modified CoOOH nanosheets[J]. Materials Express,2019,9(7):741−748. doi:  10.1166/mex.2019.1554
    [33] KOYUN O, SAHIN Y. Voltammetric determination of nitrite with gold nanoparticles/poly (methylene blue)-modified pencil graphite electrode: Application in food and water samples[J]. Ionics,2018,24(10):3187−3197. doi:  10.1007/s11581-017-2429-7
    [34] SUN L P, LI H J, LI M J, et al. Simultaneous determination of ascorbic acid, dopamine, uric acid, tryptophan, and nitrite on a novel carbon electrode[J]. Journal of Electroanalytical Chemistry,2016,783:167−175. doi:  10.1016/j.jelechem.2016.11.026
    [35] CHEN H Y, YANG T, LIU F Q, et al. Electrode position of gold nanoparticles on Cu-based metal-organic framework for the electrochemical detection of nitrite[J]. Sensors and Actuators,2019,286(18):401−407.
    [36] 叶耘峰. 基于碳纳米金复合材料电化学检测 BHA[J]. 食品工业,2020,41(11):293−296. [YE Y F. Electrochemical detection of BHA based on carbon nano gold composite[J]. Food Industry,2020,41(11):293−296.
    [37] DODEVSKA T, SHTEREV I, LAZAROVA Y. An electrochemical sensing platform based on iridium oxide for highly sensitive and selective detection of nitrite and ascorbic acid[J]. Acta Chimica Slovenica,2018,65(4):970−979.
    [38] ZHANG Y, WEN F, HUANG Z, et al. Nitrogen doped lignocellulose/binary metal sulfide modified electrode: Preparation and application for non-enzymatic ascorbic acid, dopamine and nitrite sensing[J]. Journal of Electroanalytical Chemistry,2017,806:150−157. doi:  10.1016/j.jelechem.2017.10.066
    [39] KEMMEGNE-MBOUGUEN J C, ANGNES L. Simultaneous quantification of ascorbic acid, uric acid and nitrite using a clay/porphyrin modified electrode[J]. Sensors and Actuators B: Chemical,2015,212:464−471. doi:  10.1016/j.snb.2015.02.046
    [40] 毛燚杰, 何晋浙. 新鲜蔬菜与烹调蔬菜中亚硝酸盐及VC的变化规律[J]. 食品与发酵工业,2016,42(8):166−170. [MAO Y J, HE J Z. The changes of nitrite and VC in fresh vegetables and cooked vegetables[J]. Food and Fermentation Industries,2016,42(8):166−170.
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  46
  • HTML全文浏览量:  35
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-24
  • 网络出版日期:  2023-01-12
  • 刊出日期:  2023-03-01

目录

    /

    返回文章
    返回

    重要通知

    喜报:《食品工业科技》入选《食品科学与工程领域高质量科技期刊分级目录》第一方阵T1区
          会议通知:第六届食品科技创新论坛4月与您相约上海