Simultaneous Preparation of Pu-erh Tea-selenium-doped Carbon Quantum Dots and Elemental Selenium and Its Application in Fe3+ Detection
-
摘要: 目的:为探讨普洱茶-纳米硒制备掺杂型碳量子点的可行性及其相关特性,实现水体系中Fe3+的快速检测。方法:以普洱茶水提取物稳定分散的普洱茶-硒原子为掺杂原子,采用水浴法,通过优化反应温度和时间,同时制备出普洱茶-硒掺杂碳量子点(Pu-erh tea nano-selenium doped carbon quantum dots,PT-Se-CQDs)和单质硒两种物质;采用紫外-可见吸收光谱和荧光光谱等技术表征PT-Se-CQDs的紫外-可见吸收特性和荧光强度,采用透射电子显微镜、X射线光电子能谱及X射线衍射等技术表征其形态形貌、元素组成及结构特性;并以PT-Se-CQDs为荧光探针构建荧光传感器,用于水体系中Fe3+检测。结果:当反应温度100 ℃、反应时间10 h时,可同时制备得量子产率为3.41%、平均直径约为3.1 nm的类球形PT-Se-CQDs和单质硒。Fe3+对PT-Se-CQDs具有强荧光静态猝灭效应,当Fe3+浓度为0~300 μmol/L时,比率荧光强度(F/F0)与Fe3+浓度呈良好的线性关系(R2>0.99),Fe3+的检出限低至0.2621 μmol/L;纯净水和矿泉水中Fe3+含量测定的加标回收率分别为90.93%~104.56%和84.53%~113.90%,RSD小于8.15%和4.00%。结论:本研究制备的PT-Se-CQDs对Fe3+具有高选择性和灵敏度,以此建立的检测Fe3+方法简单、快速,具有良好的应用前景。
-
关键词:
- 普洱茶-纳米硒 /
- 普洱茶-硒掺杂碳量子点 /
- 单质硒 /
- 荧光传感器 /
- Fe3+
Abstract: Object: To prepare Pu-erh tea nano-selenium doped carbon quantum dots (PT-Se-CQDs) for the rapid detection of Fe3+ in the water system and to profile their characteristics. Method: In this study, PT-Se-CQDs and elemental selenium were prepared simultaneously in a water-bath by optimizing the reaction temperature and time. The ultraviolet-visible absorption and fluorescent intensity of PT-Se-CQDs were subsequently analyzed by the ultraviolet-visible absorption spectroscopy and fluorescence spectroscopy. And their morphology, elemental composition, and structural characteristics were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction, respectively. On this basis, a novel fluorescence sensor for the detection of Fe3+ in the aqueous system was constructed using PT-Se-CQDs. Result: PT-Se-CQDs in a spherical shape with a quantum yield of 3.41%, an average particle size of about 3.1 nm as well as elemental selenium were successfully prepared simultaneously via the reaction in a boiling water bath at 100 °C for 10 h. In addition, a strong static fluorescence quenching effect on PT-Se-CQDs was observed in the presence of Fe3+. Accordingly, Fe3+ in the range of 0~300 μmol/L was successfully detected using PT-Se-CQDs as a fluorescence sensor with a good linear relationship between the concentration of Fe3+ and the ratio of fluorescence intensity (F/F0) of PT-Se-CQDs (R2>0.99) and a limit of detection of 0.2621 μmol/L. When this method was applied to detect Fe3+ in real water samples, satisfactory standard recovery rates of Fe3+ in pure water and mineral water of 90.93%~104.56% and 84.53%~113.90% with the RSD less than 8.15% and 4.00% were obtained, respectively. Conclusion: The preparation of PT-Se-CQDs with high selectivity and sensitivity to Fe3+ and their application as a new fluorescence sensor for the detection of Fe3+ in aqueous systems with simple operation and fast response were explored in the present study. -
表 1 不同荧光探针对Fe3+的检测性能比较
Table 1. Comparison of detection performance of Fe3+ by different fluorescence probes
表 2 Fe3+与PT-Se-CQDs在不同温度下相互作用的猝灭常数Ksv
Table 2. Quenching constants Ksv for the interaction of Fe3+ by PT-Se-CQDs at different temperatures
温度(℃) Ksv·103(L/mol) R2 21 6.3928±0.8423 0.9795 31 4.7116±0.7454 0.9569 41 3.7915±0.5856 0.9754 表 3 PT-Se-CQDs对实际样品中Fe3+的检测能力
Table 3. The detection ability of PT-Se-CQDs in the detection of Fe3+ in real samples
样品 添加值(μmol/L) 检出值(μmol/L) 回收率(%) RSD(%) 纯净水 10 10.46 104.56 8.15 100 90.93 90.93 3.28 矿泉水 10 11.39 113.90 4.00 100 84.53 84.53 1.14 -
[1] 张绮彤, 刘天行, 王宇. 小身材大光芒-碳量子点的荧光应用[J]. 大学化学,2021,36(10):165−169. [ZHANG Q T, LIU T X, WANG Y. Small body, big light: Applications of carbon quantum dots[J]. University of Chemistry,2021,36(10):165−169. [2] CHUANG C, CHEN Y, KANG C, et al. Toxic or not toxic, that is the carbon quantum dot's question: A comprehensive evaluation with zebrafish embryo, eleutheroembryo and adult models[J]. Polymers,2021,13(10):1598−1598. doi: 10.3390/polym13101598 [3] CHEN C C, FAN T. Study on carbon quantum dots/BiFeO3 heterostructures and their enhanced photocatalytic activities under visible light irradiation[J]. Journal of Materials Science-Materials in Electronics, 2017, 28(14): 10019-10027. [4] 刘文, 李婷婷, 张冰, 等. 基于绿色天然物质合成荧光碳点及其性质和应用综述[J]. 材料导报,2019,33(3):402−409. [LIU W, LI T T, ZHANG B, et al. Properties and applications of fluorescent carbon dots prepared by green natural substances: A review[J]. Materials Reports,2019,33(3):402−409. doi: 10.11896/cldb.201903005 [5] 徐韶梅. 新型荧光碳量子点材料的合成及其在生物传感和细胞成像中的应用[D]. 长春: 吉林大学, 2021XU S M. Synthesis and application of novel fluorescent carbon quantum dots in biosensoring and celluar imaging[D]. Changchun: Jilin University, 2021. [6] 张劲松, 高学云, 黄镇, 等. 活性红色单质硒的制备方法[P]. 安徽: CN1059638C, 2000-12-20ZHANG J S, GAO X Y, HUANG Z, et al. Preparation method of active red elemental selenium[P]. Anhui: CN1059638C, 2000-12-20. [7] 王亮, 单安山. 纳米硒在动物营养中的研究进展[J]. 中国畜牧兽医,2011,38(4):38−42. [WANG L, SHAN A S. Recent advances of nano-selenium animal nutrition[J]. China Animal Husbandry & Verinary Medicine,2011,38(4):38−42. [8] TANG X Y, YU S J, GUO X M, et al. Betacyanins functionalized selenium nanoparticles inhibit HepG2 cells growth via mitochondria-mediated pathway[J]. Journal of Functional Foods,2021,78:104359. doi: 10.1016/j.jff.2021.104359 [9] LUO L B, JIE J S, CHEN Z H, et al. Photoconductive properties of selenium nanowire photodetectors[J]. Journal of Nanoscience & Nanotechnology,2009,9(11):6292−6298. [10] LUO B, YANG H, ZHUO B, et al. Facile synthesis of luffa sponge activated carbon fiber based carbon quantum dots with green fluorescence and their application in Cr (VI) determination[J]. ACS Omega,2020,5(10):5540−5547. doi: 10.1021/acsomega.0c00195 [11] 王晞. 两种碳点的微波法合成及其性质[D]. 武汉: 武汉大学, 2019WANG X. Microwave-assisted synthesis of two kinds of carbon dots and their properties[D]. Wuhan: Wuhan University, 2019. [12] GUO Z, LIU X, YU H, et al. Continuous response fluorescence sensor for three small molecules based on nitrogen-doped carbon quantum dots from prunus lannesiana and their logic gate operation[J]. Spectrochim Acta A Mol Biomol Spectrosc,2021,257:119774. doi: 10.1016/j.saa.2021.119774 [13] 郭涛. 氮掺杂碳量子点的制备及表面活性应用[D]. 太原: 太原理工大学, 2021GUO T. Preparation and surface activity application of nitrogen-doped carbon quantum dots[D]. Taiyuan: Taiyuan University of Technology, 2021. [14] WANG C J, WANG Y B, SHI H X, et al. A strong blue fluorescent nanoprobe for highly sensitive and selective detection of mercury (II) based on sulfur doped carbon quantum dots[J]. Materials Chemistry & Physics,2019,232:145−151. [15] 司晓晶, 邓卢辰, 徐鑫, 等. 香兰素的铜掺杂碳量子点的荧光法检测[J]. 食品工业科技,2022,43(7):280−285. [SI X J, DENG L C, XU X, et al. Fluorescence detection of vanillin by copper doped carbon quantum dots[J]. Science and Technology of Food Industry,2022,43(7):280−285. doi: 10.13386/j.issn1002-0306.2021060242 [16] LI R R, ZHU Z K, PAN P, et al. One-step synthesis of nitrogen-doped carbon quantum dots for paper-based electrochemiluminescence detection of Cu2+ ions[J]. Microchemical Journal,2022,174:107057. doi: 10.1016/j.microc.2021.107057 [17] CHIKKILI V R, GOPI K, SELVARAJ P, et al. Phosphorous doped carbon quantum dots as an efficient solid state electrochemiluminescence platform for highly sensitive turn-on detection of Cu2+ ions[J]. Electrochimica Acta,2020,331:135391. doi: 10.1016/j.electacta.2019.135391 [18] JING X, WU J, WANG H H, et al. Application of deep eutectic solvent-based extraction coupled with an S-CQD fluorescent sensor for the determination of pirimicarb in cereals[J]. Food Chemistry,2022,370:1313360. [19] CHAUHAN P, CHAUDHARY S. One step production of Se doped carbon dots for rapid sensing of tetracycline in real water sample[J]. Optical Materials,2021,121:111638. doi: 10.1016/j.optmat.2021.111638 [20] LI F, LI T, SUN C, et al. Selenium-doped carbon quantum dots for free-radical scavenging[J]. Angewandte Chemie,2017,129(33):10042−10046. doi: 10.1002/ange.201705989 [21] HUANG G, LIN Y, ZHANG L, et al. Synthesis of sulfur-selenium doped carbon quantum dots for biological imaging and scavenging reactive oxygen species[J]. Scientific Reports,2019,9:19651. doi: 10.1038/s41598-019-55996-w [22] 叶锡光. 茶-纳米硒构建、表征及其应用研究[D]. 广州: 华南农业大学, 2018YE X G. Construction, characterization and application of tea nano-selenium stabled by tea nano-aggregates[D]. Guangzhou: South China Agricultural University, 2018. [23] 穆静静. 茶多糖—纳米硒构建、表征及抗癌特性研究[D]. 广州: 华南农业大学, 2019MU J J. Construction, characterization and anticancer properties of tea polysaccharide-nano-selenium[D]. Guangzhou: South China Agricultural University, 2019. [24] 林晓蓉, 黄欣琪, 李斌, 等. 利用茶褐素制备纳米硒的方法及制备而成的纳米硒[P]. 广东: CN109941976A, 2019-06-28LIN X R, HUANG X Q, LI B, et al. Method for preparing nano-selenium by theacin and the nano-selenium prepared [P]. Guangdong: CN109941976A, 2019-06-28. [25] 张建花. 不同形貌和粒度纳米硒的制备及其相变热力学性质的研究[D]. 太原: 太原理工大学, 2018ZHANG J H. Researches into preparation of nano-Se with different morphologies and sizes and its thermodynamics properties transitions[D]. Taiyuan: Taiyuan University of Technology, 2018. [26] 李家耀, 韩维杰, 杨周平, 等. 土豆基碳量子点的制备、Mn掺杂及在Ag+检测中的应用[J]. 人工晶体学报,2021,50(11):2093−2102. [LI J Y, HAN W J, YANG Z P, et al. Synthesis of potato-based carbon quantum dots, Mn doping and their application in Ag+ detection[J]. Journal of Synthetic Crystals,2021,50(11):2093−2102. doi: 10.3969/j.issn.1000-985X.2021.11.013 [27] 赵鸿宾, 冷天翠, 刘晓梦, 等. 微波法制备猕猴桃生物质碳点及应用于金银花中Fe3+的检测[J]. 食品工业科技,2022,43(3):246−253. [ZHAO H B, LENG T C, LIU X M, et al. Preparation of kiwifruit biomass carbon dots by microwave method and application of Fe+ detection in honeysuckle[J]. Science and Technology of Food Industry,2022,43(3):246−253. [28] 杨继亮, 蒋倩倩, 岳贤田. 高荧光量子产率掺氮碳量子点的制备及表征[J]. 化工新型材料,2021,49(12):133−136. [YANG J L, JIANG Q Q, YUE X T. Preparation and characterization of highly photoluminescent quantum yield N-CQDs[J]. New Chemical Materials,2021,49(12):133−136. [29] 黄国杰. 硫硒掺杂碳量子点的合成及其应用的探究[D]. 广州: 广东药科大学, 2020HUANG G J. Study on synthesis and application of sulfur-selenium doped carbon quantum dots[D]. Guangzhou: Guangdong Pharmaceutical University, 2020. [30] VYAS Y, CHUNDAWAT P, DHARMENDRA, et al. Green and facile synthesis of luminescent CQDs from pomegranate peels and its utilization in the degradation of azure b and amido black 10b by decorating it on CuO nanorods[J]. Chemistry Select,2021,6(33):8566−8580. [31] 牛一凡, 杨赢, 杨文韬. 水热法合成一维硒纳米材料及其力学性能分析[J]. 无机化学学报,2016,32(12):2129−2135. [NIU Y F, YANG Y, YANG W T. Hydrothermal synthesis and nanomechanical performance of one-dimensional selenium nanosructtures[J]. Chinese Journal of Inorganic Chemistry,2016,32(12):2129−2135. [32] HOLA K, SUDOLSKA M, KALYTCHUK S, et al. Graphitic nitrogen triggers red fluorescence in carbon dots[J]. ACS Nano,2017,11(12):12402−12410. doi: 10.1021/acsnano.7b06399 [33] GAO X, ZHOU X, MA Y, et al. Facile and cost-effective preparation of carbon quantum dots for Fe3+ ion and ascorbic acid detection in living cells based on the "on-off-on" fluorescence principle[J]. Applied Surface Science,2019,469:911−916. doi: 10.1016/j.apsusc.2018.11.095 [34] 刘昌岭, 朱志刚, 贺行良, 等. 重铬酸钾氧化-硫酸亚铁滴定法快速测定海洋沉积物中有机碳[J]. 岩矿测试,2007(3):205−208. [LIU C L, ZHU Z G, HE X L, et al. Rapid determination of organic carbon in marine sediment samples by potassium dichromate oxidation-ferrous sulphate titrimetry[J]. Rock And Mineral Analysis,2007(3):205−208. doi: 10.3969/j.issn.0254-5357.2007.03.008 [35] 中国国家标准化管理委员会. GB 5749-2006 生活饮用水卫生标准[S]. 2006Standardization Administration of China. GB 5749-2006 Standards for drinking water quality[S]. 2006. [36] 冯焕然, 赖家平, 孙慧, 等. 以鞣花酸为荧光探针的水体中二/三价铁离子的检测[J]. 分析测试学报,2019,38(5):581−585. [FENG H R, LAI J P, SUN H, et al. Detection of ferrous/ferric ions in aqueous phase using ellagic acid as fluorescent probe[J]. Journal of Instrumental Analysis,2019,38(5):581−585. doi: 10.3969/j.issn.1004-4957.2019.05.013 [37] 余佩林, 陈磊, 刘军, 等. 具有荧光特性的硅量子点合成及在铁离子检测中应用[J]. 西南民族大学学报(自然科学版),2021,47(2):149−153. [YU P L, CHEN L, LIU J, et al. Highly fluorescent silicon quantum dots: Synthesis and application in ferric ions detection[J]. Journal of Southwest Minzu University (Natural Science Edition),2021,47(2):149−153. [38] SABARINATHAN D, SHARMA A S, AGYEKU A A, et al. Thunnus albacares protein-mediated synthesis of water-soluble copper nanoclusters as sensitive fluorescent probe for Ferric ion detection[J]. Journal of Molecular Structure,2022,1254:132333. doi: 10.1016/j.molstruc.2022.132333 [39] 蒋云霞, 李艳, 刘柏松, 等. 一步合成氮掺杂的碳量子点并用于对Fe3+的检测[J]. 化工技术与开发,2020,49(11):10−14. [JIANG Y X, LI Y, LIU B S, et al. One-step synthesis of nitrogen-doped carbon quantum dots for Fe3+ detection[J]. Technology & Development of Chemical Industry,2020,49(11):10−14. doi: 10.3969/j.issn.1671-9905.2020.11.004 [40] 王靖蕊, 彭佳敏, 代成, 等. 基于光谱和分子模拟研究半乳甘露聚糖和人血清白蛋白的相互作用[J]. 食品工业科技,2022,43(2):42−49. [WANG J R, PENG J M, DAI C, et al. Study on the interaction mechanism between galactomannan and human serum albumin by spectroscopy and molecular docking[J]. Science and Technology of Food Industry,2022,43(2):42−49. doi: 10.13386/j.issn1002-0306.2021040093 -