Optimization of Fermentation Technology and Evaluation of Antioxidant Activity of Black Soybean Meal Beverage
-
摘要: 以黑豆粕为原料,通过乳酸菌发酵制备具有抗氧化活性的乳酸饮料。实验采用单因素和响应面分析法优化乳酸菌发酵工艺,以DPPH•清除率为指标,考察料液比、接种量、发酵温度、发酵时间对发酵过程的影响;再通过DPPH•清除实验、•OH清除实验、ABTS+•清除实验、脂质过氧化抑制实验来评价发酵产物的抗氧化功效。结果表明:最佳发酵菌株为嗜热链球菌,最佳的发酵工艺为料液比1:5 g/mL、接种量5%、温度37.6 ℃、时间36 h。在最佳发酵工艺下,发酵液的DPPH•清除率为71.56%。黑豆粕发酵产物的DPPH、OH、ABTS自由基的半抑制浓度分别为2.43、1.30和0.37 mg/mL,且有效抑制脂质过氧化反应,说明发酵产物具有较好的体外抗氧化活性。饮料的感官评价可达90.21,悬浮稳定性为96.8%。本研究将为开发以黑豆粕为原料的功能性食品提供一个新思路,也为实现农副产品的进一步开发提供参考。Abstract: Black soybean meal was used as raw material to prepare lactic acid beverage with antioxidant activity through lactic acid bacteria fermentation. Single factor and response surface methodology were used to optimize the fermentation process of lactic acid bacteria. The effects of the solid-liquid ratio, inoculation quantity, fermentation temperature, and fermentation time on the fermentation process were investigated with DPPH radical scavenging ratio as an index. The DPPH radical scavenging experiment, OH radical scavenging experiment, ABTS radical scavenging experiment, and lipid peroxidation inhibition experiment were tested to assess the antioxidant effect of fermented products. The results showed that Streptococcus thermophilus was the best fermentation strain, and the optimum fermentation processes were solid-liquid ratio 1:5 g/mL, inoculation quantity 5%, fermentation temperature 37.6 ℃, and fermentation time 36 h, respectively. Under the optimal fermentation conditions, the DPPH radical scavenging ratio was 71.56%. The semi-inhibitory concentrations of DPPH, OH and ABTS free radicals in the fermentation products of black soybean meal were 2.43, 1.30 and 0.37 mg/mL, respectively, and the lipid peroxidation was effectively inhibited, indicating that the fermentation products had good antioxidant activity in vitro. The sensory evaluation and suspension stability of beverage were 90.21 and 96.8%, respectively. This study provides a new idea for the development of functional foods with black soybean meal as raw material, and also provides a reference for the further development of agricultural by-products.
-
表 1 响应面试验因素水平表
Table 1. Factors and levels of response surface experiment
因素 水平 −1 0 1 A 料液比(g/mL) 1:10 1:5 3:10 B 接种量(%) 4 5 6 C 发酵温度(℃) 34 37 40 D 发酵时间(h) 24 30 36 表 2 饮料的感官评价方法
Table 2. Sensory evaluation methods for beverages
评价项目 评价指标 得分(分) 色泽形态 浅黄色,无分层 21~30 色泽稍深或稍浅,放置一段时间出现分层 11~20 色泽过深或过浅,分层现象明显 0~10 香味 豆子香味浓郁,清爽的酸味 21~30 豆子香味较淡,酸味较重 11~20 酸味过重 0~10 滋味 入口有豆沙的绵密感,酸甜可口 31~40 滋味偏甜或偏酸,但有原材料的滋味 16~30 滋味过甜或过酸,原材料滋味被掩盖 0~15 表 3 不同菌种对黑豆粕发酵情况
Table 3. Fermentation of black soybean meal by different strains
菌种 多肽浓度(μg/mL) 水解度(%) DPPH自由基清除率(%) 嗜热链球菌 944.18±4.36a 13.13±0.46a 64.24±2.62c 发酵乳杆菌 1508.01±3.98c 47.03±0.63c 45.95±2.10a 德氏乳杆菌 1124.33±2.11b 26.25±3.24b 57.35±0.50b 注:同列不同小写字母表示差异显著(P<0.05)。 表 4 响应面试验设计与结果
Table 4. Experimental design and results for response surface analysis
试验号 A 料液比(g/mL) B 接种量(%) C 发酵温度(℃) D 发酵时间(h) DPPH自由基
清除率(%)1 1:10 4 37 30 42.29 2 3:10 4 37 30 56.97 3 1:10 6 37 30 52.49 4 3:10 6 37 30 45.77 5 1:5 5 34 24 58.47 6 1:5 5 40 24 60.19 7 1:5 5 34 36 57.08 8 1:5 5 40 36 62.50 9 1:10 5 37 24 55.97 10 3:10 5 37 24 60.70 11 1:10 5 37 36 54.98 12 3:10 5 37 36 62.69 13 1:5 4 34 30 55.68 14 1:5 6 34 30 46.17 15 1:5 4 40 30 45.37 16 1:5 6 40 30 58.56 17 1:10 5 34 30 52.67 18 3:10 5 34 30 37.59 19 1:10 5 40 30 33.80 20 3:10 5 40 30 59.72 21 1:5 4 37 24 62.19 22 1:5 6 37 24 60.70 23 1:5 4 37 36 61.69 24 1:5 6 37 36 62.69 25 1:5 5 37 30 69.91 26 1:5 5 37 30 70.60 27 1:5 5 37 30 71.30 28 1:5 5 37 30 70.37 29 1:5 5 37 30 69.91 表 5 发酵工艺模型回归方程方差分析
Table 5. ANOVA of regression equation for fermentation process
变异来源 平方和 自由度 均方和 F值 P值 显著性水平 模型 2633.89 14 188.13 165.67 < 0.0001 *** A 料液比 81.33 1 81.33 71.62 < 0.0001 *** B 接种量 0.40 1 0.40 0.35 0.5625 C 发酵温度 12.98 1 12.98 11.43 0.0045 *** D 发酵时间 0.97 1 0.97 0.85 0.3713 AB 114.49 1 114.49 100.82 < 0.0001 *** AC 420.25 1 420.25 370.07 < 0.0001 *** AD 2.22 1 2.22 1.95 0.1838 BC 128.82 1 128.82 113.44 < 0.0001 *** BD 1.55 1 1.55 1.36 0.2622 CD 3.42 1 3.42 3.01 0.1045 A2 1047.76 1 1047.76 922.65 < 0.0001 *** B2 451.51 1 451.51 397.60 < 0.0001 *** C2 812.13 1 812.13 715.15 < 0.0001 *** D2 0.65 1 0.65 0.57 0.4615 残差 15.90 14 1.14 失拟 14.57 10 1.46 4.38 0.0836 不显著 净误差 1.33 4 0.33 注:***代表P<0.01,**代表P<0.05。 表 6 饮料成分分析与评价
Table 6. Component analysis and evaluation of beverage
组分 蛋白质
(%)粗脂肪
(%)总糖
(%)乳酸
(mg/mL)悬浮稳定性
(%)感官
评分(分)含量 8.69±0.19 6.06±0.85 21.2±1.23 0.36±0.07 96.8±1.2 90.21±2.2 -
[1] 徐飞, 葛阳阳, 刘新春, 等. 黑豆营养成分及生物活性的研究进展[J]. 中国食物与营养,2019,25(9):55−61. [XU F, GE Y Y, LIU X C, et al. Research advancement of nutritional composition and biological activiey of black soybean[J]. Food and Nutrition in China,2019,25(9):55−61. [2] 黄强, 郏弋萍, 黄磊, 等. 黑豆的营养价值及其利用[J]. 饮食科学,2018(22):123. [HUANG Q, JIA Y P, HUANG L, et al. Nutritional value and utilization of black bean[J]. Diet Science,2018(22):123. [3] 于栋, 高洋, 何新蕾. 酶法制备黑豆粕粉多肽的工艺研究[J]. 中国酿造,2021,40(4):143−147. [YU D, GAO Y, HE X L. Preparation of polypeptides from black bean meal by enzymatic method[J]. China Brewing,2021,40(4):143−147. [4] 何明, 喻一峰, 李小勤, 等. 大口黑鲈饲料中发酵豆粕营养价值的评定[J]. 动物营养学报,2020,32(10):4943−4955. [HE M, YU Y F, LI X Q, et al. Evaluation of nutrient value of fermented soybean meal in diet for largemouth bass (Micropterus salmoides)[J]. Chinese Journal of Animal Nutrition,2020,32(10):4943−4955. [5] AMADOU I, KAMARA T, AMZA T, et al. Physicochemical and nutritional analysis of fermented soybean protein meal by Lactobacillus plantarum Lp6[J]. World Journal of Dairy & Food Sciences,2010,5:114−118. [6] PAPAGIANNI M. Metabolic engineering of lactic acid bacteria for the production of industrially important compounds[J]. Computational and Structural Biotechnology Journal,2012,3(4):e201210003. doi: 10.5936/csbj.201210003 [7] KITAEVSKAYA S V, PONOMAREV V Y, YUNUSOV E S. Research of fermentation processes of protein substrates by consortiums of lactic acid bacteria[J]. IOP Conference Series: Earth and Environmental Science, 2022, 978(1): 012052 (6pp). [8] YU S, LIU L, BU T, et al. Purification and characterization of hypoglycemic peptides from traditional Chinese soy-fermented douchi[J]. Food & Function,2022,13(6):3343−3352. [9] PANCHAL G K, DAS S, SAKURE A, et al. Production and characterization of antioxidative peptides during lactic fermentation of goat milk[J]. Journal of Food Processing and Preservation,2021,45(12):e15992. [10] 樊庆涛, 孙湘沛, 刘梁, 等. 藤茶中二氢杨梅素对乳酸菌生长及活性的影响[J]. 中国酿造,2021,40(5):134−139. [FAN Q T, SUN X P, LIU L, et al. Effect of dihydromyricetin in Ampelopsis grossedentata on the growth and activity of lactic acid bacteria[J]. China Brewing,2021,40(5):134−139. [11] 卫国, 边海旭, 奚苗苗, 等. 福林酚比色法测定优泌嘉胶囊中多肽[J]. 中成药,2016,38(1):91−93. [WEI G, BIAN H X, XI M M, et al. Determination of polypeptide in Youmijia Capsulesby Folin-phenolcolorimetry[J]. Chinese Traditional Patent Medicine,2016,38(1):91−93. [12] 李皖光, 汪桃花, 王新文, 等. 4种大米蛋白水解度测定方法比较[J]. 粮食科技与经济,2017,42(5):35−37. [LI W G, WANG T H, WANG X W, et al. The comparison of four methods in testing degree of hydrolysis[J]. Grain Science and Technology and Economy,2017,42(5):35−37. [13] 刘军. 食品中蛋白质凯氏定氮法测定比较[J]. 食品安全导刊,2021(12):147−149. [LIU J. Comparison of Kjeldahl determination of protein in food[J]. China Food Safety,2021(12):147−149. [14] TU J M, SHI D D, WEN L R, et al. Identification of moracin N in mulberry leaf and evaluation of antioxidant activity[J]. Food and Chemical Toxicology,2019,132:110730. doi: 10.1016/j.fct.2019.110730 [15] ZHOU S Y, HUANG G L. Extraction, derivatization, and antioxidant activity of Morinda citrifolia polysaccharide[J]. Chemical Biology & Drug Design,2022,99(4):603−608. [16] HUANG C W, LIN I J, LIU Y M, et al. Composition, enzyme and antioxidant activities of pineapple[J]. International Journal of Food Properties,2021,24(1):1244−1251. doi: 10.1080/10942912.2021.1958840 [17] OSAWA T, NAMIKI M. A novel type of antioxidant isolated from leaf wax of Eucalyptus leaves[J]. Agricultural Biological Chemistry,1981,45(3):735−739. [18] 杨旭, 朱新鹏, 吕远平. 加工工艺对浑浊型银耳饮料稳定性的影响[J]. 食品与机械,2016,32(8):196−201. [YANG X, ZHU X P, LÜ Y P. Influence of processing technology on stability of Tremella fuciformis cloudy drik[J]. Food & Machinery,2016,32(8):196−201. [19] 张晓婷, 潘建君, 王知, 等. 食品中脂肪测定国家标准的分析与探讨[J]. 食品工业科技,2018,39(20):348−351. [ZHANG X T, PAN J J, WANG Z, et al. Analysis and discussion of national standard for determination of fat in food[J]. Science and Technology of Food Industry,2018,39(20):348−351. [20] 曲祖乙, 刘靖. 食品分析与检验[M]. 北京: 中国环境科学出版社, 2006: 96−112QU Z Y, LIU J. Analysis and detection of food[M]. Beijing: China Environmental Science Press, 2006: 96−112. [21] 梁琼, 鲁明波, 卢正东, 等. 对羟基联苯法定量测定发酵液中的乳酸[J]. 食品科学,2008,29(6):357−360. [LIANG Q, LU M B, LU Z D, et al. Determination of lactic acid in fermentation broth by p-hydroxybiphenol colorimetry[J]. Food Science,2008,29(6):357−360. [22] 杨柳, 陈宇飞. 黑豆纳豆饮料发酵条件的研究[J]. 粮食与饲料工业,2014,12(10):39−42. [YANG L, CHEN Y F. Study on fermentation conditions of black beans and natto beverage[J]. Cereal and Feed Industry,2014,12(10):39−42. [23] 陶令霞, 夏铁骑, 常慧萍. 两种测定固氮菌NT06菌株生长曲线方法的比较[J]. 生物学杂志,2007,24(5):57−58. [TAO L X, XIA T Q, CHANG H P. Comparing with two different methods of measuring Azotobacter NT06 growth[J]. Journal of Biology,2007,24(5):57−58. [24] 张友维. 枯草芽孢杆菌发酵花生粕制备抗氧化肽的研究[D]. 无锡: 江南大学, 2012ZHANG Y W. Preparation of antioxidant peptides from peanut meal fermented by Bacillus subtilis[D]. Wuxi: Jiangnan University, 2012. [25] 易军鹏, 朱文学, 马海乐, 等. 牡丹籽油超声波辅助提取工艺的响应面法优化[J]. 农业机械学报,2009,40(6):103−110. [YI J P, ZHU W X, MA H L, et al. Optimization on ultrasonic-assisted extraction technology of oil from Paeonia suffruticosa Andr. seeds with response surface analysis[J]. Transactions of the Chinese Society for Agricultural Machinery,2009,40(6):103−110. [26] EJIKEME P M. Investigation of the physicochemical properties of microcrystalline cellulose from agricultural wastes I: Orange mesocarp[J]. Cellulose,2008,15(1):141−147. doi: 10.1007/s10570-007-9147-7 [27] 薛勇, 赵明明, 王超, 等. 响应面法优化南极磷虾蛋白自溶工艺的研究[J]. 食品工业科技,2012,33(4):346−348. [XUE Y, ZHAO M M, WANG C, et al. Optimization of autolysis of Antarctic krill by response surface method[J]. Science and Technology of Food Industry,2012,33(4):346−348. [28] 林款, 周梅, 田香, 等. 4种抗氧化剂抗氧化活性和稳定性的比较[J]. 食品科技,2020,45(6):328−332. [LIN K, ZHOU M, TIAN X, et al. Comparison of antioxidant activity and stability of four antioxidants[J]. Food Science and Technology,2020,45(6):328−332. [29] 尹乐斌, 周娟, 何平, 等. 乳酸菌发酵豆清液制备多肽及其体外抗氧化活性研究[J]. 食品与发酵工业,2020,46(11):131−137. [YIN L B, ZHOU J, HE P, et al. Preparation of peptide from soybean processing waste water by lactic acid bacteria fermentation and its antioxidant activity in vitro[J]. Food and Fermentation Industries,2020,46(11):131−137. [30] 尹乐斌, 周娟, 何平, 等. 豆清多肽发酵液不同超滤组分抗氧化及抑菌活性[J]. 食品工业,2020,41(10):176−180. [YIN L B, ZHOU J, HE P, et al. Antioxidant and antibacterial activities of different ultrafiltration components of soybean peptide fermentation broth[J]. The Food Industry,2020,41(10):176−180. [31] 尹乐斌, 李乐乐, 何平, 等. 枯草芽孢杆菌发酵豆渣制备多肽及其活性研究[J]. 中国酿造,2022,41(1):75−79. [YIN L B, LI L L, HE P, et al. Preparation and activity of peptides from soybean dregs by fermentation with Bacillus subtilis[J]. China Brewing,2022,41(1):75−79. -