Effect of Processing Technology on Quality and Functional Activity of Taxilli Herba Tea
-
摘要: 目的:探讨不同加工工艺对桑寄生茶品质及功能活性的影响。方法:采用自然发酵、杀青、冠突曲霉发酵等3种加工技术进行工序组合,制备8种不同的桑寄生茶样品,进而测定8种桑寄生茶的主要化学成分、抗氧化活性及对α-淀粉酶的影响,并对8种桑寄生茶进行感官审评。结果:经杀青处理的桑寄生茶能提升水浸出物、游离氨基酸、茶多酚、总黄酮、可溶性糖等5种化学成分的含量(P<0.05)及抗氧化活性;经自然发酵处理的桑寄生茶清香气加强;冠突曲霉发酵处理桑寄生茶能显著提升α-淀粉酶的酶活力(P<0.05)。其中,杀青处理能最大程度提升桑寄生茶的主要化学成分含量、抗氧活活性;杀青结合冠突曲霉发酵处理桑寄生茶具有一定的抗氧化活性及风味特点,且能双向调节α-淀粉酶的活性。结论:杀青、杀青结合冠突曲霉发酵等加工技术在品质、功能活性上各有明显优势,可作为关键加工技术用于制作品质优异的桑寄生茶。Abstract: Objective: To explore the effect of different processing technology on the quality and functional activity of Taxilli Herba tea. Methods: A total of eight different samples of Taxilli Herba tea were prepared by different procedures combined with 3 processing technologies including natural fermentation, fixation, and Aspergillus cristatus fermentation. After processing, determinations were done on the main chemical components, antioxidant activity, influence on α-amylase activity, and organoleptic evaluation. Results: The content of 5 chemical compounds, including water extract, free amino acid, tea polyphenol, total flavonoid, and soluble sugar in Taxilli Herba tea, were increased (P < 0.05) after fixation while the antioxidant activity was improved too. The delightful odour of Taxilli Herba tea processed by natural fermentation was enhanced. The α-amylase activity of Taxilli Herba tea fermented by A. cristatus was significantly improved (P<0.05) . The data showed that, if only taken fixation process, the content of the main chemical components and anti-oxidant activity were improved in the maximum extent. What’s more, if taken fixation process combined with A. cristatus fermentation, the α-amylase activity was bidirectionally regulated, the antioxidant activity was detected to a certain extent, and flavor characteristics were tasted. Conclusion: Different processing technologies (fixation, and fixation combined with A. cristatus fermentation) on this project showed different and clear advantages on quality and functional activity of Taxilli Herba tea, and it could be key processing technologies used to produce excellent quality of Taxilli Herba tea.
-
Key words:
- Taxilli Herba tea /
- processing technology /
- quality /
- functional activity /
- organoleptic evaluation
-
表 1 感官审评评分标准
Table 1. Scoring criteria of organoleptic evaluation
指标 评价标准 评分(分) 汤色 根据发酵程度划分红浓、橙红、橙黄、
黄绿等档次,明亮,澄清90<x≤100 根据发酵程度划分红浓、橙红、橙黄、
黄绿等档次,尚明亮,略有浑浊80<x≤90 根据发酵程度划分红浓、橙红、橙黄、
黄绿等档次,欠亮,浑浊70<x≤80 香气 (香型描述,如花香、蜜香、药香),
香气纯正,无杂气味,香高爽,香气持久90<x≤100 (香型描述,如花香、蜜香、药香),
香气较高尚纯正,无杂气味,80<x≤90 (香型描述,如花香、蜜香、药香),香气尚纯 70<x≤80 滋味 醇厚,回味甘爽 90<x≤100 尚醇厚 80<x≤90 尚醇,略有苦涩等杂味 70<x≤80 表 2 8种样品的化学成分含量(干基,%)
Table 2. Chemical composition content of eight kinds of samples (dry base, %)
样品 水浸出物 可溶性蛋白 原花青素 游离氨基酸 茶多酚 总黄酮 可溶性糖 A 25.18±0.15c 0.53±0.02a 0.75±0.01a 0.85±0.01b 8.88±0.36c 2.52±0.52b 3.02±0.03b B 27.73±0.14a 0.50±0.00b 0.58±0.00b 0.94±0.01a 9.70±0.46a 2.71±0.56a 3.50±0.04a C 23.55±0.11d 0.48±0.00c 0.43±0.01c 0.76±0.00d 7.96±0.56d 2.22±0.39c 2.66±0.03e D 25.61±0.21b 0.48±0.00c 0.41±0.03d 0.84±0.01c 9.42±0.68b 2.49±0.36b 2.94±0.02c E 20.90±0.10f 0.36±0.00f 0.14±0.03f 0.42±0.00f 3.74±0.58g 1.97±0.24d 2.15±0.03g F 24.90±0.04c 0.45±0.00d 0.22±0.02e 0.53±0.00e 4.52±0.04e 2.19±0.18c 2.70±0.04d G 19.15±0.20g 0.32±0.00g 0.08±0.01h 0.38±0.00g 3.25±0.07h 1.73±0.21f 2.00±0.03h H 21.88±0.11e 0.39±0.01e 0.13±0.01g 0.42±0.00f 4.25±0.12f 1.83±0.42e 2.34±0.03f 注:同列字母不同表示差异显著(P<0.05),表4~表7同。 表 3 主体间效应检验
Table 3. Inter subject effect test
源 因变量 III 类平
方和自由度 F值 显著性 自然发酵 水浸出物 27.219 1 1337.354 P<0.01 可溶性蛋白 0.009 1 6883.516 P<0.01 原花青素 0.157 1 70131.094 P<0.01 游离氨基酸 0.040 1 70676.859 P<0.01 茶多酚 1.448 1 788.066 P<0.01 总黄酮 0.480 1 325.743 P<0.01 可溶性糖 0.765 1 71570.144 P<0.01 杀青 水浸出物 48.335 1 2374.853 P<0.01 可溶性蛋白 0.006 1 4410.784 P<0.01 原花青素 0.001 1 579.138 P<0.01 游离氨基酸 0.037 1 65006.069 P<0.01 茶多酚 6.213 1 3381.868 P<0.01 总黄酮 0.227 1 154.337 P<0.01 可溶性糖 1.012 1 94704.247 P<0.01 冠突曲
霉发酵水浸出物 87.153 1 4282.078 P<0.01 可溶性蛋白 0.082 1 61515.840 P<0.01 原花青素 0.952 1 426128.386 P<0.01 游离氨基酸 1.016 1 1786183.053 P<0.01 茶多酚 153.059 1 83315.476 P<0.01 总黄酮 1.838 1 1248.053 P<0.01 可溶性糖 3.223 1 301573.024 P<0.01 自然发
酵×杀青水浸出物 1.146 1 56.318 P<0.01 可溶性蛋白 0.000 1 28.820 P<0.01 原花青素 0.006 1 2488.127 P<0.01 游离氨基酸 0.002 1 4307.651 P<0.01 茶多酚 0.275 1 149.944 P<0.01 总黄酮 0.001 1 0.783 - 可溶性糖 0.068 1 6323.129 P<0.01 自然发酵×
冠突曲霉发酵水浸出物 0.387 1 19.023 P<0.01 可溶性蛋白 0.000 1 369.264 P<0.01 原花青素 0.045 1 20083.856 P<0.01 游离氨基酸 0.000 1 638.403 P<0.01 茶多酚 0.078 1 42.565 P<0.01 总黄酮 0.003 1 2.004 - 可溶性糖 0.066 1 6193.973 P<0.01 杀青×冠突
曲霉发酵水浸出物 1.698 1 83.408 P<0.01 可溶性蛋白 0.015 1 11038.234 P<0.01 原花青素 0.038 1 16954.748 P<0.01 游离氨基酸 0.000 1 511.193 P<0.01 茶多酚 0.095 1 51.771 P<0.01 总黄酮 0.007 1 4.715 P<0.05 可溶性糖 0.006 1 601.096 P<0.01 自然发酵×
杀青×冠突
曲霉发酵水浸出物 0.235 1 11.538 P<0.01 可溶性蛋白 0.001 1 563.706 P<0.01 原花青素 0.011 1 4978.039 P<0.01 游离氨基酸 0.002 1 3209.791 P<0.01 茶多酚 0.063 1 34.076 P<0.01 总黄酮 0.013 1 8.685 P<0.01 可溶性糖 0.000 1 0.776 - 注:-表示差异不显著(P>0.05)。 表 4 8种样品的感官审评结果
Table 4. Organoleptic evaluation of eight kinds of samples
样品 泡数 审评因子 一二泡分别评分总分(汤色×0.3+香气×0.35+滋味×0.35) 样品总分(一泡总分×0.5+二泡总分×0.5) 汤色 香气 滋味 评语 评分(分) 评语 评分(分) 评语 评分(分) A 第一泡 明亮,澄清,鹅黄 91.67±1.53 花香,奶香,
香气纯正93.00±3.00 醇厚,回味甘爽 89.67±3.51 91.43±2.03 90.90±1.57a 第二泡 透亮,黄带绿 92.00±1.73 奶香气显著,带桑叶香,香气持久 90.67±1.15 醇厚,回甜 88.67±4.16 90.37±1.10 B 第一泡 尚明亮,黄绿 82.33±6.35 清香,略带酸气 80.33±5.51 尚醇厚,微酸,涩 74.33±4.04 78.83±4.13 78.01±3.68d 第二泡 尚明亮,黄带绿 82.67±8.74 淡香,略带酸气 75.33±4.04 尚醇厚,微涩,微酸 74.33±5.13 77.18±3.84 C 第一泡 明亮,黄 87.33±6.43 清香,略带奶香 81.67±6.66 尚醇,微甜,微涩 79.33±5.77 82.55±4.63 83.08±3.20c 第二泡 明亮,黄 89.33±3.06 清香,微带奶香气 83.67±3.21 尚醇厚,微酸,微甘 78.67±7.09 83.62±1.81 D 第一泡 透亮,澄清,黄 92.33±2.08 栗香,清香 86.00±3.61 尚醇厚,微酸回甘 81.00±8.54 86.15±3.63 86.61±2.93bc 第二泡 明亮,橙黄 92.67±2.52 蜜香,栗香 87.67±2.52 微涩,带甜 81.67±9.07 87.07±2.77 E 第一泡 尚明亮,橙黄 87.00±2.65 淡药香,清香 82.33±4.04 尚醇,微苦,回甘, 82.67±4.93 83.85±1.96 83.97±1.82bc 第二泡 明亮,橙黄 87.00±2.65 淡药香气 82.33±4.04 尚醇,甘甜,
回甘持久83.33±4.62 84.08±2.09 F 第一泡 明亮,澄清,橙黄 89.67±3.51 桑叶茶香,带花香 87.33±2.31 尚醇厚 82.33±4.04 86.28±1.15 85.97±1.35bc 第二泡 明亮,橙黄 88.33±4.73 花香,微带枣香气 84.00±1.73 尚醇厚,微涩 85.00±3.00 85.65±1.70 G 第一泡 尚明亮,橙黄带绿 88.33±2.08 甘和茶药香 89.33±3.51 尚醇厚,回甘 84.00±4.58 87.17±2.05 87.28±2.25ab 第二泡 尚明亮,橙黄带绿 88.33±3.21 药香明显,纯正 86.67±3.51 尚醇厚,甘甜 87.33±2.31 87.40±2.90 H 第一泡 尚明亮,橙黄带绿 84.00±3.46 清香 79.33±3.06 尚醇厚,微涩,略苦 72.00±3.46 78.17±0.91 79.30±2.33d 第二泡 尚明亮,橙黄 87.67±7.51 淡枣香 79.33±5.77 尚醇厚,微涩,微凉 75.33±5.03 80.43±2.99 表 5 8种样品的DPPH自由基清除能力的IC50
Table 5. IC50 of DPPH radical scavenging capacity of eight kinds of samples
样品 IC50(mg/mL) A 8.03±0.30e B 5.29±0.32f C 10.23±0.17d D 8.58±0.70de E 17.31±0.20c F 8.75±0.23de G 27.26±0.87a H 19.98±2.71b 表 6 8种样品浓度为2.5 mg/mL时的ABTS自由基清除能力及相关线性方程
Table 6. ABTS radical scavenging ability and correlation linear equation of eight kinds of samples at the concentration of 2.5 mg/mL
样品 浓度2.5 mg/mL时
Trolox相对值(mmol/L)相关线性方程 R2 A 1.20±0.07b y=0.453x+0.0792 0.9972 B 1.62±0.01a y=0.6086x+0.1166 0.9963 C 0.90±0.05d y=0.3459x+0.043 0.9994 D 1.08±0.06c y=0.3944x+0.0961 0.9999 E 0.56±0.01f y=0.1916x+0.0858 0.9970 F 0.92±0.04d y=0.328x+0.0928 0.9997 G 0.47±0.01g y=0.1414x+0.1185 0.9994 H 0.66±0.01e y=0.2156x+0.1189 0.9993 注:相关线性方程中的y为Trolox标准浓度,mmol/L;x为样品浓度,mg/mL。 表 7 8种样品浓度为6.0 mg/mL时的铁离子还原能力及相关线性方程
Table 7. Iron ion reduction capacity and correlation linear equation of eight kinds of samples at the concentration of 6.0 mg/mL
样品 浓度6.0 mg/mL时FeSO4-7H2O
含量相对值(mmol/L)相关线性方程 R2 A 2.03±0.10b y=0.3093x+0.0596 0.9961 B 2.72±0.01a y=0.4193x+0.0754 0.9973 C 1.52±0.03d y=0.2277x+0.077 0.9978 D 1.73±0.09c y=0.2771x+0.0426 0.9986 E 0.97±0.01e y=0.1535x+0.03 0.9996 F 1.43±0.07d y=0.2251x+0.0088 0.9952 G 0.61±0.04f y=0.1043x−0.0231 0.9997 H 0.91±0.20e y=0.1553x−0.0067 0.9998 注:相关线性方程中的y为Fe2+相对浓度,mmol/L;x为样品浓度,mg/mL。 表 8 化学成分与功能活性的相关性分析
Table 8. Correlation analysis between chemical composition and functional activity
水浸出物 可溶性蛋白 原花青素 游离氨基酸 茶多酚 总黄酮 可溶性糖 DPPH ABTS FRAP α-淀粉酶活性 水浸出物 1.00 0.90** 0.78** 0.88** 0.84** 0.94** 0.98** −0.94** 0.95** 0.94** −0.90** 可溶性蛋白 1.00 0.91** 0.91** 0.89** 0.90** 0.89** −0.92** 0.85** 0.86** −0.96** 原花青素 1.00 0.92** 0.90** 0.88** 0.85** −0.78** 0.84** 0.87** −0.77** 游离氨基酸 1.00 0.99** 0.95** 0.92** −0.84** 0.91** 0.92** −0.84** 茶多酚 1.00 0.92** 0.89** −0.81** 0.87** 0.88** −0.83** 总黄酮 1.00 0.96** −0.91** 0.95** 0.96** −0.82** 可溶性糖 1.00 −0.89** 0.99** 0.98** −0.86** DPPH 1.00 −0.85** −0.86** 0.89** ABTS 1.00 0.98** −0.80** FRAP 1.00 −0.79** α-淀粉酶活性 1.00 注:单尾显著性:*P<0.05,**P<0.01。 -
[1] NANRI H, YOSHIDA T, WATANABE Y, et al. The association between habitual green tea consumption and comprehensive frailty as assessed by Kihon checklist indexes among an older Japanese population[J]. Nutrients,2021,13(11):4149. doi: 10.3390/nu13114149 [2] ZENG L, WATANABE N, YANG Z. Understanding the biosyntheses and stress response mechanisms of aroma compounds in tea (Camellia sinensis) to safely and effectively improve tea aroma[J]. Crit Rev Food Sci Nutr,2019,59(14):2321−2334. doi: 10.1080/10408398.2018.1506907 [3] DAI W, XIE D, LU M, et al. Characterization of white tea metabolome: Comparison against green and black tea by a nontargeted metabolomics approach[J]. Food Res Int,2017,96:40−45. doi: 10.1016/j.foodres.2017.03.028 [4] ANNUNZIATA G, MAISTO M, SCHISANO C, et al. Colon bioaccessibility and antioxidant activity of white, green and black tea polyphenols extract after in vitro simulated gastrointestinal digestion[J]. Nutrients,2018,10(11):1711. doi: 10.3390/nu10111711 [5] YUAN D, LIN L, PENG Y, et al. Effects of black tea and black brick tea with fungal growth on lowering uric acid levels in hyperuricemic mice[J]. J Food Biochem,2022,46(7):e14140. [6] LONG P, CUI Z, WANG Y, et al. Commercialized non-Camellia tea: traditional function and molecular identification[J]. Acta Pharm Sin B,2014,4(3):227−37. doi: 10.1016/j.apsb.2014.02.006 [7] 张巧花, 赵思远, 韩雪, 等. 葛叶代用茶制备工艺及品质分析[J]. 食品工业,2022,43(7):77−81. [ZHANG Q H, ZHAO S Y, HAN X, et al. Preparation technology and quality analysis of Pueraria lobata leaf herbal tea[J]. The Food Industry,2022,43(7):77−81. [8] 张永瑞, 鲁静, 郭桂义, 等. 刺槐花代用茶加工工艺研究与品质分析[J]. 食品科技,2020,45(3):121−126. [ZHANG Y R, LU J, GUO G Y, et al. Technology research and quality analysis on substitute tea of Robinia pseudoacacia L. flowers[J]. Food Science,2020,45(3):121−126. doi: 10.13684/j.cnki.spkj.2020.03.024 [9] 何克谏. 生草药性备要[M]. 广州: 广东科技出版社, 2009: 57.HE K J. Preparation of raw herbal medicine[M]. Guangzhou: Guangdong Science and Technology Press, 2009: 57. [10] 纪鹏彬, 李新生, 燕飞, 等. 茶叶适制性研究进展[J]. 食品研究与开发,2021,42(13):219−224. [JI P B, LI X S, YAN F, et al. Research progress on tea suitability[J]. Food Research and Development,2021,42(13):219−224. doi: 10.12161/j.issn.1005-6521.2021.13.032 [11] 国家食品药品监督管理总局, 国家卫生和计划生育委员会. GB 5009.3-2016食品安全国家标准 食品中水分的测定[S]. 北京: 中国标准出版社, 2016: 1−2.State Food and Drug Administration, National Health and Family Planning Commission. GB 5009.3-2016 National food safety standard Determination of moisture in food[S]. Beijing: China Standard Press, 2016: 1−2. [12] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 8305-2013茶 水浸出物测定[S]. 北京: 中国标准出版社, 2014: 1−2.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. GB/T 8305-2013 Tea—Determination of water extracts content[S]. Beijing: Standards Press of China, 2014: 1−2. [13] 张馨宇. 杜仲叶功能茶加工工艺研究[D]. 杨凌: 西北农林科技大学, 2016: 14.ZHANG X Y. A study on the processing technology of Eucommia ulmoides functional tea[D]. Yangling: Northwest A & F University, 2016: 14. [14] 天津市市场监督管理委员会. DB12/T 885-2019植物提取物中原花青素的测定紫外/可见分光光度法[S]. 2019: 1−3.Tianjin Administration for Market Regulation. DB12/T 885-2019 Determination of polysaccharide in Lily Bulbus-UV/VIS spectrophotometry[S]. 2019: 1−3. [15] 国家食品药品监督管理总局, 国家卫生和计划生育委员会. GB 5009.124-2016 食品安全国家标准 食品中氨基酸的测定[S]. 北京: 中国标准出版社, 2016: 1−6.State Food and Drug Administration, National Health and Family Planning Commission. GB 5009.124-2016 National food safety standard determination of amino acids in foods[S]. Beijing: China Standard Press, 2016: 1−6. [16] 国家市场监督管理总局, 国家标准化管理委员会. GB/T 8313-2018 茶叶中茶多酚和儿茶素类含量的检测方法[S]. 北京: 中国标准出版社, 2018: 4−5.State Administration of Market Supervision and Administration, Standardization Administration of the People's Republic of China. GB/T 8313-2018 Determination of total polyphenols and catechins content in tea[S]. Beijing: Standards Press of China, 2018: 4−5. [17] 黄蜚颖. 基于寄主影响的中药桑寄生药性研究[D]. 南宁: 广西中医药大学, 2018: 9−21.HUANG F Y. Study on the difference of cold and hot property of Taxillus chinensis based on host plants[D]. Nanning: Guangxi University of Chinese Medicine, 2018: 9−21. [18] 李远华. 普通高等教育“十三五”规划教材 茶学综合实验[M]. 北京: 中国轻工业出版社, 2018: 198−199.LI Y H. Textbooks for the 13th five year plan of general higher education comprehensive experiment of tea science[M]. Beijing: China Light Industry Press, 2018: 198−199. [19] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 23776-2018 茶叶感官审评方法[S]. 北京: 中国标准出版社, 2018: 1−20.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. GB/T 23776-2018 Methodology for sensory evaluation of tea[S]. Beijing: Standards Press of China, 2018: 1−20. [20] 薛金金, 尹鹏, 张建勇, 等. 工夫红茶品质化学成分及加工工艺研究进展[J]. 食品研究与开发,2020,41(18):219−224. [XUE J J, YIN P, ZHANG J Y, et al. Research progress on quality-related chemical components and processing technology of Congou black tea doi: 10.12161/j.issn.1005-6521.2020.18.036J]. Food Research and Development,2020,41(18):219−224. doi: 10.12161/j.issn.1005-6521.2020.18.036 [21] 陶琳琳, 张娅楠, 闫振, 等. 红茶加工过程中发酵技术研究进展[J]. 广东茶业,2020,1(1):2−6. [TAO L L, ZHANG Y N, YAN Z, et al. Research progress of fermentation technology in black tea processing[J]. Guangdong Tea Industry,2020,1(1):2−6. doi: 10.3969/j.issn.1672-7398.2020.01.001 [22] CHEN Y, ZENG L, LIAO Y, et al. Enzymatic reaction-related protein degradation and proteinaceous amino acid metabolism during the black tea (Camellia sinensis) manufacturing process[J]. Foods,2020,9(1):66. doi: 10.3390/foods9010066 [23] 赵和涛. 红茶发酵时主要化学变化及不同发酵方法对工夫红茶品质的影响[J]. 蚕桑茶叶通讯,1989(2):10−13. [ZHAO H T. Main chemical changes of black tea during fermentation and effects of different fermentation methods on quality of Congou black tea[J]. Journal of Sericulture Tea Communication,1989(2):10−13. [24] 胡晶. 炒制对大麦芽蛋白—多酚复合物抗氧化活性、抗增殖活性的影响[D]. 广州: 暨南大学, 2020: 44−45.HU J. Effect of frying on antioxidant activity and antiproliferation activity of protein-phenolic complex from barley malt[D]. Guangzhou: Jinan University, 2020: 44−45. [25] 钱玉玲, 王维维, 荣国强, 等. 超声波辅助提取蔓越莓中原花青素及其抗氧化性研究[J]. 凯里学院学报,2021,39(6):35−41. [QIAN Y L, WANG W W, RONG G Q, et al. Ultrasonic assisted extraction and antioxidant activity of proanthocyanidins from cranberry doi: 10.3969/j.issn.1673-9329.2021.06.007J]. Journal of Kaili University,2021,39(6):35−41. doi: 10.3969/j.issn.1673-9329.2021.06.007 [26] 方洪枫. 冠突曲霉和黑曲霉产胞外水解酶及酯型儿茶素水解研究[D]. 福州: 福建师范大学, 2017, 9−46.FANG H F. Detection of extracellular hydrolase from Aspergillus cristatus and Aspergillus niger and hydrolysis of catechin gallates[D]. Fuzhou: Fujian Normal University, 2017, 9−46. [27] 赵宏朋, 黄斯晨, 施丽娟, 等. 茯砖茶优势菌株分离鉴定及发酵低级绿茶分析[J]. 食品科学,2022,43(6):89−95. [ZHAO H P, HUANG S C, SHI L J, et al. Isolation and identiflcation of predominant fungi in Fuzhuan tea and their application for fermentation of low-grade green tea[J]. Food Science,2022,43(6):89−95. doi: 10.7506/spkx1002-6630-20210415-211 [28] 冉莉莎, 刘宝贵, 陈崇俊, 等. “金花”菌分离鉴定及其对茯茶化学成分的影响[J]. 辐射研究与辐射工艺学报,2021,39(5):96−103. [RAN L S, LIU B G, CHEN C J, et al. Isolation and identification of “golden flower” fungus and determination of its effects on chemical the composition of Fu tea[J]. Journal of Radiation Research and Radiation Processing,2021,39(5):96−103. doi: 10.11889/j.1000-3436.2021.rrj.39.050701 [29] 陈希宏, 曾仲奎, 刘荣华. 桑寄生凝集素的纯化及部分性质研究[J]. 生物化学杂志,1992(2):150−156. [CHEN X H, ZENG Z K, LIU R H. Purification and characterization of lectin from Loranthus parasiticus (L.) Merr[J]. Biochemical Journal,1992(2):150−156. [30] 李梦洋, 常远, 冯国军, 等. α-淀粉酶抑制剂构效关系及应用研究进展[J/OL]. 食品工业科技:1−17[2022-05-04]. DOI: 10.13386/j.issn1002-0306.2021080293.LI M Y, CHANG Y, FENG G J, et al. Research progress on structure-activity relationship and application of α-amylase inhibitors[J/OL]. Science and Technology of Food Industry:1−17[2022-05-04]. DOI: 10.13386/j.issn1002-0306.2021080293. -