• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020

加工工艺对桑寄生茶品质及功能活性的影响

巫文鑫 覃展敏 刘佳莉 陈柳燕 夏玉苹 李霞楠 刘小勇 李永华

巫文鑫,覃展敏,刘佳莉,等. 加工工艺对桑寄生茶品质及功能活性的影响[J]. 食品工业科技,2023,44(5):149−157. doi:  10.13386/j.issn1002-0306.2022050036
引用本文: 巫文鑫,覃展敏,刘佳莉,等. 加工工艺对桑寄生茶品质及功能活性的影响[J]. 食品工业科技,2023,44(5):149−157. doi:  10.13386/j.issn1002-0306.2022050036
WU Wenxin, QIN Zhanmin, LIU Jiali, et al. Effect of Processing Technology on Quality and Functional Activity of Taxilli Herba Tea [J]. Science and Technology of Food Industry, 2023, 44(5): 149−157. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022050036
Citation: WU Wenxin, QIN Zhanmin, LIU Jiali, et al. Effect of Processing Technology on Quality and Functional Activity of Taxilli Herba Tea [J]. Science and Technology of Food Industry, 2023, 44(5): 149−157. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022050036

加工工艺对桑寄生茶品质及功能活性的影响

doi: 10.13386/j.issn1002-0306.2022050036
基金项目: 国家自然科学基金项目(82160754、81960722);中药学广西一流学科(桂教科研〔2022〕1号);中药学广西一流学科建设项目重点课题(2018XK027、2019XK091、2019XK097);广西食品安全地方标准制定计划项目(2022007);广西研究生教育创新计划资助项目(JGY2020102)。
详细信息
    作者简介:

    巫文鑫(1996−),男,硕士,初级中药师,研究方向:中药质量控制与中药资源开发,E-mail:2228525250@qq.com

    通讯作者:

    李永华(1964−),男,博士,研究员,研究方向:中药质量控制与中药资源开发,E-mail:liyonghua185@126.com

  • 中图分类号: TS272.5

Effect of Processing Technology on Quality and Functional Activity of Taxilli Herba Tea

  • 摘要: 目的:探讨不同加工工艺对桑寄生茶品质及功能活性的影响。方法:采用自然发酵、杀青、冠突曲霉发酵等3种加工技术进行工序组合,制备8种不同的桑寄生茶样品,进而测定8种桑寄生茶的主要化学成分、抗氧化活性及对α-淀粉酶的影响,并对8种桑寄生茶进行感官审评。结果:经杀青处理的桑寄生茶能提升水浸出物、游离氨基酸、茶多酚、总黄酮、可溶性糖等5种化学成分的含量(P<0.05)及抗氧化活性;经自然发酵处理的桑寄生茶清香气加强;冠突曲霉发酵处理桑寄生茶能显著提升α-淀粉酶的酶活力(P<0.05)。其中,杀青处理能最大程度提升桑寄生茶的主要化学成分含量、抗氧活活性;杀青结合冠突曲霉发酵处理桑寄生茶具有一定的抗氧化活性及风味特点,且能双向调节α-淀粉酶的活性。结论:杀青、杀青结合冠突曲霉发酵等加工技术在品质、功能活性上各有明显优势,可作为关键加工技术用于制作品质优异的桑寄生茶。
  • 图  1  样品的化学成分聚类热图

    Figure  1.  Cluster heat map of the chemical composition of samples

    图  2  8种样品的DPPH自由基清除能力

    Figure  2.  DPPH radical scavenging capacity of eight kinds of samples

    图  3  8种样品的ABTS自由基清除能力

    Figure  3.  ABTS radical scavenging ability of eight kinds of samples

    图  4  8种样品的铁离子还原能力

    Figure  4.  Iron ion reduction ability of eight kinds of samples

    图  5  8种样品对α-淀粉酶活力的影响

    Figure  5.  The effect of eight kinds of samples on α-amylase activity

    注:纵坐标的“1”表示和α-淀粉酶活力相同。

    表  1  感官审评评分标准

    Table  1.   Scoring criteria of organoleptic evaluation

    指标评价标准评分(分)
    汤色根据发酵程度划分红浓、橙红、橙黄、
    黄绿等档次,明亮,澄清
    90<x≤100
    根据发酵程度划分红浓、橙红、橙黄、
    黄绿等档次,尚明亮,略有浑浊
    80<x≤90
    根据发酵程度划分红浓、橙红、橙黄、
    黄绿等档次,欠亮,浑浊
    70<x≤80
    香气(香型描述,如花香、蜜香、药香),
    香气纯正,无杂气味,香高爽,香气持久
    90<x≤100
    (香型描述,如花香、蜜香、药香),
    香气较高尚纯正,无杂气味,
    80<x≤90
    (香型描述,如花香、蜜香、药香),香气尚纯70<x≤80
    滋味醇厚,回味甘爽90<x≤100
    尚醇厚80<x≤90
    尚醇,略有苦涩等杂味70<x≤80
    下载: 导出CSV

    表  2  8种样品的化学成分含量(干基,%)

    Table  2.   Chemical composition content of eight kinds of samples (dry base, %)

    样品水浸出物可溶性蛋白原花青素游离氨基酸茶多酚总黄酮可溶性糖
    A25.18±0.15c0.53±0.02a0.75±0.01a0.85±0.01b8.88±0.36c2.52±0.52b3.02±0.03b
    B27.73±0.14a0.50±0.00b0.58±0.00b0.94±0.01a9.70±0.46a2.71±0.56a3.50±0.04a
    C23.55±0.11d0.48±0.00c0.43±0.01c0.76±0.00d7.96±0.56d2.22±0.39c2.66±0.03e
    D25.61±0.21b0.48±0.00c0.41±0.03d0.84±0.01c9.42±0.68b2.49±0.36b2.94±0.02c
    E20.90±0.10f0.36±0.00f0.14±0.03f0.42±0.00f3.74±0.58g1.97±0.24d2.15±0.03g
    F24.90±0.04c0.45±0.00d0.22±0.02e0.53±0.00e4.52±0.04e2.19±0.18c2.70±0.04d
    G19.15±0.20g0.32±0.00g0.08±0.01h0.38±0.00g3.25±0.07h1.73±0.21f2.00±0.03h
    H21.88±0.11e0.39±0.01e0.13±0.01g0.42±0.00f4.25±0.12f1.83±0.42e2.34±0.03f
    注:同列字母不同表示差异显著(P<0.05),表4~表7同。
    下载: 导出CSV

    表  3  主体间效应检验

    Table  3.   Inter subject effect test

    因变量III 类平
    方和
    自由度F显著性
    自然发酵水浸出物27.21911337.354P<0.01
    可溶性蛋白0.00916883.516P<0.01
    原花青素0.157170131.094P<0.01
    游离氨基酸0.040170676.859P<0.01
    茶多酚1.4481788.066P<0.01
    总黄酮0.4801325.743P<0.01
    可溶性糖0.765171570.144P<0.01
    杀青水浸出物48.33512374.853P<0.01
    可溶性蛋白0.00614410.784P<0.01
    原花青素0.0011579.138P<0.01
    游离氨基酸0.037165006.069P<0.01
    茶多酚6.21313381.868P<0.01
    总黄酮0.2271154.337P<0.01
    可溶性糖1.012194704.247P<0.01
    冠突曲
    霉发酵
    水浸出物87.15314282.078P<0.01
    可溶性蛋白0.082161515.840P<0.01
    原花青素0.9521426128.386P<0.01
    游离氨基酸1.01611786183.053P<0.01
    茶多酚153.059183315.476P<0.01
    总黄酮1.83811248.053P<0.01
    可溶性糖3.2231301573.024P<0.01
    自然发
    酵×杀青
    水浸出物1.146156.318P<0.01
    可溶性蛋白0.000128.820P<0.01
    原花青素0.00612488.127P<0.01
    游离氨基酸0.00214307.651P<0.01
    茶多酚0.2751149.944P<0.01
    总黄酮0.00110.783-
    可溶性糖0.06816323.129P<0.01
    自然发酵×
    冠突曲霉发酵
    水浸出物0.387119.023P<0.01
    可溶性蛋白0.0001369.264P<0.01
    原花青素0.045120083.856P<0.01
    游离氨基酸0.0001638.403P<0.01
    茶多酚0.078142.565P<0.01
    总黄酮0.00312.004-
    可溶性糖0.06616193.973P<0.01
    杀青×冠突
    曲霉发酵
    水浸出物1.698183.408P<0.01
    可溶性蛋白0.015111038.234P<0.01
    原花青素0.038116954.748P<0.01
    游离氨基酸0.0001511.193P<0.01
    茶多酚0.095151.771P<0.01
    总黄酮0.00714.715P<0.05
    可溶性糖0.0061601.096P<0.01
    自然发酵×
    杀青×冠突
    曲霉发酵
    水浸出物0.235111.538P<0.01
    可溶性蛋白0.0011563.706P<0.01
    原花青素0.01114978.039P<0.01
    游离氨基酸0.00213209.791P<0.01
    茶多酚0.063134.076P<0.01
    总黄酮0.01318.685P<0.01
    可溶性糖0.00010.776-
    注:-表示差异不显著(P>0.05)。
    下载: 导出CSV

    表  4  8种样品的感官审评结果

    Table  4.   Organoleptic evaluation of eight kinds of samples

    样品泡数审评因子一二泡分别评分总分(汤色×0.3+香气×0.35+滋味×0.35)样品总分(一泡总分×0.5+二泡总分×0.5)
    汤色香气滋味
    评语评分(分)评语评分(分)评语评分(分)
    A第一泡明亮,澄清,鹅黄91.67±1.53花香,奶香,
    香气纯正
    93.00±3.00醇厚,回味甘爽89.67±3.5191.43±2.0390.90±1.57a
    第二泡透亮,黄带绿92.00±1.73奶香气显著,带桑叶香,香气持久90.67±1.15醇厚,回甜88.67±4.1690.37±1.10
    B第一泡尚明亮,黄绿82.33±6.35清香,略带酸气80.33±5.51尚醇厚,微酸,涩74.33±4.0478.83±4.1378.01±3.68d
    第二泡尚明亮,黄带绿82.67±8.74淡香,略带酸气75.33±4.04尚醇厚,微涩,微酸74.33±5.1377.18±3.84
    C第一泡明亮,黄87.33±6.43清香,略带奶香81.67±6.66尚醇,微甜,微涩79.33±5.7782.55±4.6383.08±3.20c
    第二泡明亮,黄89.33±3.06清香,微带奶香气83.67±3.21尚醇厚,微酸,微甘78.67±7.0983.62±1.81
    D第一泡透亮,澄清,黄92.33±2.08栗香,清香86.00±3.61尚醇厚,微酸回甘81.00±8.5486.15±3.6386.61±2.93bc
    第二泡明亮,橙黄92.67±2.52蜜香,栗香87.67±2.52微涩,带甜81.67±9.0787.07±2.77
    E第一泡尚明亮,橙黄87.00±2.65淡药香,清香82.33±4.04尚醇,微苦,回甘,82.67±4.9383.85±1.9683.97±1.82bc
    第二泡明亮,橙黄87.00±2.65淡药香气82.33±4.04尚醇,甘甜,
    回甘持久
    83.33±4.6284.08±2.09
    F第一泡明亮,澄清,橙黄89.67±3.51桑叶茶香,带花香87.33±2.31尚醇厚82.33±4.0486.28±1.1585.97±1.35bc
    第二泡明亮,橙黄88.33±4.73花香,微带枣香气84.00±1.73尚醇厚,微涩85.00±3.0085.65±1.70
    G第一泡尚明亮,橙黄带绿88.33±2.08甘和茶药香89.33±3.51尚醇厚,回甘84.00±4.5887.17±2.0587.28±2.25ab
    第二泡尚明亮,橙黄带绿88.33±3.21药香明显,纯正86.67±3.51尚醇厚,甘甜87.33±2.3187.40±2.90
    H第一泡尚明亮,橙黄带绿84.00±3.46清香79.33±3.06尚醇厚,微涩,略苦72.00±3.4678.17±0.9179.30±2.33d
    第二泡尚明亮,橙黄87.67±7.51淡枣香79.33±5.77尚醇厚,微涩,微凉75.33±5.0380.43±2.99
    下载: 导出CSV

    表  5  8种样品的DPPH自由基清除能力的IC50

    Table  5.   IC50 of DPPH radical scavenging capacity of eight kinds of samples

    样品IC50(mg/mL)
    A8.03±0.30e
    B5.29±0.32f
    C10.23±0.17d
    D8.58±0.70de
    E17.31±0.20c
    F8.75±0.23de
    G27.26±0.87a
    H19.98±2.71b
    下载: 导出CSV

    表  6  8种样品浓度为2.5 mg/mL时的ABTS自由基清除能力及相关线性方程

    Table  6.   ABTS radical scavenging ability and correlation linear equation of eight kinds of samples at the concentration of 2.5 mg/mL

    样品浓度2.5 mg/mL时
    Trolox相对值(mmol/L)
    相关线性方程R2
    A1.20±0.07by=0.453x+0.07920.9972
    B1.62±0.01ay=0.6086x+0.11660.9963
    C0.90±0.05dy=0.3459x+0.0430.9994
    D1.08±0.06cy=0.3944x+0.09610.9999
    E0.56±0.01fy=0.1916x+0.08580.9970
    F0.92±0.04dy=0.328x+0.09280.9997
    G0.47±0.01gy=0.1414x+0.11850.9994
    H0.66±0.01ey=0.2156x+0.11890.9993
    注:相关线性方程中的y为Trolox标准浓度,mmol/L;x为样品浓度,mg/mL。
    下载: 导出CSV

    表  7  8种样品浓度为6.0 mg/mL时的铁离子还原能力及相关线性方程

    Table  7.   Iron ion reduction capacity and correlation linear equation of eight kinds of samples at the concentration of 6.0 mg/mL

    样品浓度6.0 mg/mL时FeSO4-7H2O
    含量相对值(mmol/L)
    相关线性方程R2
    A2.03±0.10by=0.3093x+0.05960.9961
    B2.72±0.01ay=0.4193x+0.07540.9973
    C1.52±0.03dy=0.2277x+0.0770.9978
    D1.73±0.09cy=0.2771x+0.04260.9986
    E0.97±0.01ey=0.1535x+0.030.9996
    F1.43±0.07dy=0.2251x+0.00880.9952
    G0.61±0.04fy=0.1043x−0.02310.9997
    H0.91±0.20ey=0.1553x−0.00670.9998
    注:相关线性方程中的y为Fe2+相对浓度,mmol/L;x为样品浓度,mg/mL。
    下载: 导出CSV

    表  8  化学成分与功能活性的相关性分析

    Table  8.   Correlation analysis between chemical composition and functional activity

    水浸出物可溶性蛋白原花青素游离氨基酸茶多酚总黄酮可溶性糖DPPHABTSFRAPα-淀粉酶活性
    水浸出物1.000.90**0.78**0.88**0.84**0.94**0.98**−0.94**0.95**0.94**−0.90**
    可溶性蛋白1.000.91**0.91**0.89**0.90**0.89**−0.92**0.85**0.86**−0.96**
    原花青素1.000.92**0.90**0.88**0.85**−0.78**0.84**0.87**−0.77**
    游离氨基酸1.000.99**0.95**0.92**−0.84**0.91**0.92**−0.84**
    茶多酚1.000.92**0.89**−0.81**0.87**0.88**−0.83**
    总黄酮1.000.96**−0.91**0.95**0.96**−0.82**
    可溶性糖1.00−0.89**0.99**0.98**−0.86**
    DPPH1.00−0.85**−0.86**0.89**
    ABTS1.000.98**−0.80**
    FRAP1.00−0.79**
    α-淀粉酶活性1.00
    注:单尾显著性:*P<0.05,**P<0.01。
    下载: 导出CSV
  • [1] NANRI H, YOSHIDA T, WATANABE Y, et al. The association between habitual green tea consumption and comprehensive frailty as assessed by Kihon checklist indexes among an older Japanese population[J]. Nutrients,2021,13(11):4149. doi:  10.3390/nu13114149
    [2] ZENG L, WATANABE N, YANG Z. Understanding the biosyntheses and stress response mechanisms of aroma compounds in tea (Camellia sinensis) to safely and effectively improve tea aroma[J]. Crit Rev Food Sci Nutr,2019,59(14):2321−2334. doi:  10.1080/10408398.2018.1506907
    [3] DAI W, XIE D, LU M, et al. Characterization of white tea metabolome: Comparison against green and black tea by a nontargeted metabolomics approach[J]. Food Res Int,2017,96:40−45. doi:  10.1016/j.foodres.2017.03.028
    [4] ANNUNZIATA G, MAISTO M, SCHISANO C, et al. Colon bioaccessibility and antioxidant activity of white, green and black tea polyphenols extract after in vitro simulated gastrointestinal digestion[J]. Nutrients,2018,10(11):1711. doi:  10.3390/nu10111711
    [5] YUAN D, LIN L, PENG Y, et al. Effects of black tea and black brick tea with fungal growth on lowering uric acid levels in hyperuricemic mice[J]. J Food Biochem,2022,46(7):e14140.
    [6] LONG P, CUI Z, WANG Y, et al. Commercialized non-Camellia tea: traditional function and molecular identification[J]. Acta Pharm Sin B,2014,4(3):227−37. doi:  10.1016/j.apsb.2014.02.006
    [7] 张巧花, 赵思远, 韩雪, 等. 葛叶代用茶制备工艺及品质分析[J]. 食品工业,2022,43(7):77−81. [ZHANG Q H, ZHAO S Y, HAN X, et al. Preparation technology and quality analysis of Pueraria lobata leaf herbal tea[J]. The Food Industry,2022,43(7):77−81.
    [8] 张永瑞, 鲁静, 郭桂义, 等. 刺槐花代用茶加工工艺研究与品质分析[J]. 食品科技,2020,45(3):121−126. [ZHANG Y R, LU J, GUO G Y, et al. Technology research and quality analysis on substitute tea of Robinia pseudoacacia L. flowers[J]. Food Science,2020,45(3):121−126. doi:  10.13684/j.cnki.spkj.2020.03.024
    [9] 何克谏. 生草药性备要[M]. 广州: 广东科技出版社, 2009: 57.

    HE K J. Preparation of raw herbal medicine[M]. Guangzhou: Guangdong Science and Technology Press, 2009: 57.
    [10] 纪鹏彬, 李新生, 燕飞, 等. 茶叶适制性研究进展[J]. 食品研究与开发,2021,42(13):219−224. [JI P B, LI X S, YAN F, et al. Research progress on tea suitability[J]. Food Research and Development,2021,42(13):219−224. doi:  10.12161/j.issn.1005-6521.2021.13.032
    [11] 国家食品药品监督管理总局, 国家卫生和计划生育委员会. GB 5009.3-2016食品安全国家标准 食品中水分的测定[S]. 北京: 中国标准出版社, 2016: 1−2.

    State Food and Drug Administration, National Health and Family Planning Commission. GB 5009.3-2016 National food safety standard Determination of moisture in food[S]. Beijing: China Standard Press, 2016: 1−2.
    [12] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 8305-2013茶 水浸出物测定[S]. 北京: 中国标准出版社, 2014: 1−2.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. GB/T 8305-2013 Tea—Determination of water extracts content[S]. Beijing: Standards Press of China, 2014: 1−2.
    [13] 张馨宇. 杜仲叶功能茶加工工艺研究[D]. 杨凌: 西北农林科技大学, 2016: 14.

    ZHANG X Y. A study on the processing technology of Eucommia ulmoides functional tea[D]. Yangling: Northwest A & F University, 2016: 14.
    [14] 天津市市场监督管理委员会. DB12/T 885-2019植物提取物中原花青素的测定紫外/可见分光光度法[S]. 2019: 1−3.

    Tianjin Administration for Market Regulation. DB12/T 885-2019 Determination of polysaccharide in Lily Bulbus-UV/VIS spectrophotometry[S]. 2019: 1−3.
    [15] 国家食品药品监督管理总局, 国家卫生和计划生育委员会. GB 5009.124-2016 食品安全国家标准 食品中氨基酸的测定[S]. 北京: 中国标准出版社, 2016: 1−6.

    State Food and Drug Administration, National Health and Family Planning Commission. GB 5009.124-2016 National food safety standard determination of amino acids in foods[S]. Beijing: China Standard Press, 2016: 1−6.
    [16] 国家市场监督管理总局, 国家标准化管理委员会. GB/T 8313-2018 茶叶中茶多酚和儿茶素类含量的检测方法[S]. 北京: 中国标准出版社, 2018: 4−5.

    State Administration of Market Supervision and Administration, Standardization Administration of the People's Republic of China. GB/T 8313-2018 Determination of total polyphenols and catechins content in tea[S]. Beijing: Standards Press of China, 2018: 4−5.
    [17] 黄蜚颖. 基于寄主影响的中药桑寄生药性研究[D]. 南宁: 广西中医药大学, 2018: 9−21.

    HUANG F Y. Study on the difference of cold and hot property of Taxillus chinensis based on host plants[D]. Nanning: Guangxi University of Chinese Medicine, 2018: 9−21.
    [18] 李远华. 普通高等教育“十三五”规划教材 茶学综合实验[M]. 北京: 中国轻工业出版社, 2018: 198−199.

    LI Y H. Textbooks for the 13th five year plan of general higher education comprehensive experiment of tea science[M]. Beijing: China Light Industry Press, 2018: 198−199.
    [19] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 23776-2018 茶叶感官审评方法[S]. 北京: 中国标准出版社, 2018: 1−20.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. GB/T 23776-2018 Methodology for sensory evaluation of tea[S]. Beijing: Standards Press of China, 2018: 1−20.
    [20] 薛金金, 尹鹏, 张建勇, 等. 工夫红茶品质化学成分及加工工艺研究进展[J]. 食品研究与开发,2020,41(18):219−224. [XUE J J, YIN P, ZHANG J Y, et al. Research progress on quality-related chemical components and processing technology of Congou black tea doi:  10.12161/j.issn.1005-6521.2020.18.036

    J]. Food Research and Development,2020,41(18):219−224. doi:  10.12161/j.issn.1005-6521.2020.18.036
    [21] 陶琳琳, 张娅楠, 闫振, 等. 红茶加工过程中发酵技术研究进展[J]. 广东茶业,2020,1(1):2−6. [TAO L L, ZHANG Y N, YAN Z, et al. Research progress of fermentation technology in black tea processing[J]. Guangdong Tea Industry,2020,1(1):2−6. doi:  10.3969/j.issn.1672-7398.2020.01.001
    [22] CHEN Y, ZENG L, LIAO Y, et al. Enzymatic reaction-related protein degradation and proteinaceous amino acid metabolism during the black tea (Camellia sinensis) manufacturing process[J]. Foods,2020,9(1):66. doi:  10.3390/foods9010066
    [23] 赵和涛. 红茶发酵时主要化学变化及不同发酵方法对工夫红茶品质的影响[J]. 蚕桑茶叶通讯,1989(2):10−13. [ZHAO H T. Main chemical changes of black tea during fermentation and effects of different fermentation methods on quality of Congou black tea[J]. Journal of Sericulture Tea Communication,1989(2):10−13.
    [24] 胡晶. 炒制对大麦芽蛋白—多酚复合物抗氧化活性、抗增殖活性的影响[D]. 广州: 暨南大学, 2020: 44−45.

    HU J. Effect of frying on antioxidant activity and antiproliferation activity of protein-phenolic complex from barley malt[D]. Guangzhou: Jinan University, 2020: 44−45.
    [25] 钱玉玲, 王维维, 荣国强, 等. 超声波辅助提取蔓越莓中原花青素及其抗氧化性研究[J]. 凯里学院学报,2021,39(6):35−41. [QIAN Y L, WANG W W, RONG G Q, et al. Ultrasonic assisted extraction and antioxidant activity of proanthocyanidins from cranberry doi:  10.3969/j.issn.1673-9329.2021.06.007

    J]. Journal of Kaili University,2021,39(6):35−41. doi:  10.3969/j.issn.1673-9329.2021.06.007
    [26] 方洪枫. 冠突曲霉和黑曲霉产胞外水解酶及酯型儿茶素水解研究[D]. 福州: 福建师范大学, 2017, 9−46.

    FANG H F. Detection of extracellular hydrolase from Aspergillus cristatus and Aspergillus niger and hydrolysis of catechin gallates[D]. Fuzhou: Fujian Normal University, 2017, 9−46.
    [27] 赵宏朋, 黄斯晨, 施丽娟, 等. 茯砖茶优势菌株分离鉴定及发酵低级绿茶分析[J]. 食品科学,2022,43(6):89−95. [ZHAO H P, HUANG S C, SHI L J, et al. Isolation and identiflcation of predominant fungi in Fuzhuan tea and their application for fermentation of low-grade green tea[J]. Food Science,2022,43(6):89−95. doi:  10.7506/spkx1002-6630-20210415-211
    [28] 冉莉莎, 刘宝贵, 陈崇俊, 等. “金花”菌分离鉴定及其对茯茶化学成分的影响[J]. 辐射研究与辐射工艺学报,2021,39(5):96−103. [RAN L S, LIU B G, CHEN C J, et al. Isolation and identification of “golden flower” fungus and determination of its effects on chemical the composition of Fu tea[J]. Journal of Radiation Research and Radiation Processing,2021,39(5):96−103. doi:  10.11889/j.1000-3436.2021.rrj.39.050701
    [29] 陈希宏, 曾仲奎, 刘荣华. 桑寄生凝集素的纯化及部分性质研究[J]. 生物化学杂志,1992(2):150−156. [CHEN X H, ZENG Z K, LIU R H. Purification and characterization of lectin from Loranthus parasiticus (L.) Merr[J]. Biochemical Journal,1992(2):150−156.
    [30] 李梦洋, 常远, 冯国军, 等. α-淀粉酶抑制剂构效关系及应用研究进展[J/OL]. 食品工业科技:1−17[2022-05-04]. DOI: 10.13386/j.issn1002-0306.2021080293.

    LI M Y, CHANG Y, FENG G J, et al. Research progress on structure-activity relationship and application of α-amylase inhibitors[J/OL]. Science and Technology of Food Industry:1−17[2022-05-04]. DOI: 10.13386/j.issn1002-0306.2021080293.
  • 加载中
图(5) / 表(8)
计量
  • 文章访问数:  48
  • HTML全文浏览量:  20
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-09
  • 网络出版日期:  2023-01-12
  • 刊出日期:  2023-03-01

目录

    /

    返回文章
    返回

    重要通知

    喜报:《食品工业科技》入选《食品科学与工程领域高质量科技期刊分级目录》第一方阵T1区
          会议通知:第六届食品科技创新论坛4月与您相约上海