• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020

HPLC法同时测定甘薯叶中5种酚酸和异槲皮苷

傅志丰 周鹤 石燕 卢坚雯

傅志丰,周鹤,石燕,等. HPLC法同时测定甘薯叶中5种酚酸和异槲皮苷[J]. 食品工业科技,2023,44(5):292−298. doi:  10.13386/j.issn1002-0306.2022050099
引用本文: 傅志丰,周鹤,石燕,等. HPLC法同时测定甘薯叶中5种酚酸和异槲皮苷[J]. 食品工业科技,2023,44(5):292−298. doi:  10.13386/j.issn1002-0306.2022050099
FU Zhifeng, ZHOU He, SHI Yan, et al. Simultaneous Determination of Five Phenolic Acids and Isoquercitrin in Sweet Potato (Ipomoea batatas (L.) Lam) Leaves by HPLC[J]. Science and Technology of Food Industry, 2023, 44(5): 292−298. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022050099
Citation: FU Zhifeng, ZHOU He, SHI Yan, et al. Simultaneous Determination of Five Phenolic Acids and Isoquercitrin in Sweet Potato (Ipomoea batatas (L.) Lam) Leaves by HPLC[J]. Science and Technology of Food Industry, 2023, 44(5): 292−298. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022050099

HPLC法同时测定甘薯叶中5种酚酸和异槲皮苷

doi: 10.13386/j.issn1002-0306.2022050099
详细信息
    作者简介:

    傅志丰(1991−),男,硕士,工程师,研究方向:食品检测技术,E-mail:1062830538@qq.com

    通讯作者:

    卢坚雯(1971−),女,本科,高级农艺师,研究方向:农产品质量安全检测技术研究,E-mail:1139817128@qq.com

  • 中图分类号: TS255.7

Simultaneous Determination of Five Phenolic Acids and Isoquercitrin in Sweet Potato (Ipomoea batatas (L.) Lam) Leaves by HPLC

  • 摘要: 咖啡酸、绿原酸、3,4-二咖啡酰奎宁酸、3,5-二咖啡酰奎宁酸、4,5-二咖啡酰奎宁酸和异槲皮苷是甘薯叶中的主要活性成分,本研究建立高效液相色谱(high performance liquid chromatography, HPLC)同时测定这6种成分的方法。通过对检测波长、色谱柱、洗脱溶剂、洗脱流速等参数优化得到的最佳分析条件为:ZORBAX SB-C18(4.6 mm×250 mm,5 μm)为分析柱,以0.1%甲酸水溶液(A)和乙腈(B)为流动相,采用梯度洗脱:0~12 min,10%~25% B;12~18 min,25% B,流速0.8 mL/min,检测波长326 nm,柱温30 ℃。咖啡酸、绿原酸、3,4-二咖啡酰奎宁酸、3,5-二咖啡酰奎宁酸、4,5-二咖啡酰奎宁酸和异槲皮苷的线性范围分别为0.25~25.0、0.5~50.0、5.0~100.0、10.0~200.0、5.0~100.0和0.5~50.0 μg/mL。该方法分析时间短(18 min),线性度(R2≥0.998)、稳定性(RSD≤1.97%)、精密度(RSD≤1.56%)和加标回收率(95.14%~103.22%)好。对江西10个不同产地甘薯叶目标成分分析发现,宜春丰城的甘薯叶具有最高的总酚含量。
  • 图  1  5种酚酸和异槲皮苷的化学结构式

    Figure  1.  The chemical structures of 5 phenolic acids and isoquercetin

    图  2  5种酚酸和异槲皮苷的紫外扫描光谱图

    Figure  2.  The ultraviolet absorbance spectra of 5 phenolic acids and isoquercetin

    图  3  不同色谱柱对甘薯叶中5种酚酸和异槲皮苷分离效果的影响

    Figure  3.  Effect of different columns on the separation of five phenolic acids and isoquercitrin

    注:A: Agilent ZORBAX SB-C18柱;B: Phenomenex Luna 5u 100A C18长柱;C: Phenomenex LaChrom C18短柱;1. 绿原酸;2. 咖啡酸;3. 异槲皮苷;4. 3,4-二咖啡酰奎宁酸;5. 3,5-二咖啡酰奎宁酸;6. 4,5-二咖啡酰奎宁酸;图4~图6同。

    图  4  流动相系统对甘薯叶5种酚酸和异槲皮苷分离效果的影响

    Figure  4.  Effect of mobile phase on the seperation of five phenolic acids and isoquercitrin

    注:A:乙腈/0.1%甲酸水;B:甲醇/0.1%甲酸水。

    图  5  流速对甘薯叶5种酚酸和异槲皮苷分离效果的影响

    Figure  5.  Effect of the flow rate of the mobile phase on the seperation of five phenolic acids and isoquercitrin

    注:A:0.6 mL/min;B:0.8 mL/min;C:1.0 mL/min;D:1.2 mL/min。

    图  6  样品和混标溶液色谱图

    Figure  6.  Chromatograms of samples and standard mixture

    注:A:样品;B:混标溶液。

    表  1  5种酚酸和异槲皮苷的线性范围、标准曲线、决定系数、检出限及定量限(n=7)

    Table  1.   Linear range, standard curve, determination coefficient, detection limit and quantification limit of five phenolic acids and isoquercitrin (n=7)

    化合物线性范围(μg/mL)标准曲线决定系数(R2检出限(μg/g DM)定量限(μg/g DM)
    咖啡酸 0.25~25.0 Y=67793X−18215 0.9997 0.9 3.0
    绿原酸 0.5~50.0 Y=37913X−21415 0.9996 4.3 14.2
    3,4-二咖啡酰奎宁酸 5.0~100.0 Y=40131X−105662 0.9980 11.6 38.6
    3,5-二咖啡酰奎宁酸 10.0~200.0 Y=25927−110983 0.9985 18.4 61.2
    4,5-二咖啡酰奎宁酸 5.0~100.0 Y=44641X−81094 0.9980 12.8 42.6
    异槲皮苷 0.5~50.0 Y=18595X−14879 0.9991 12.6 41.9
    下载: 导出CSV

    表  2  5种酚酸和异槲皮苷的加标回收率结果

    Table  2.   The recovery results of five phenolic acids and isoquercitrin determined

    化合物样品中含量
    (μg/g DM)
    加入量
    (μg/g DM)
    测得总量平均值
    (μg/g DM)
    平均回收
    率(%)
    RSD
    (%)
    咖啡酸 529 420 939 97.62 1.8
    525 1058 100.76 1.1
    630 1128.4 95.14 1.0
    绿原酸 2416 1900 4310.3 99.70 1.6
    2400 4784 98.67 1.8
    2900 5247 97.62 1.4
    3,4-二咖啡
    酰奎宁酸
    3332 2650 6017 101.32 2.6
    3350 6790 103.22 3.0
    4000 7426.4 102.36 2.4
    3,5-二咖啡
    酰奎宁酸
    12312 9850 21933.5 97.68 2.0
    12300 24272.5 97.24 2.9
    14800 27058.7 99.64 1.7
    4,5-二咖啡
    酰奎宁酸
    3857 3100 6895.7 98.02 3.0
    3850 7580.5 96.71 2.9
    4650 8407.5 95.91 1.6
    异槲皮苷 1340 1050 2361 97.24 1.6
    1340 2628.3 96.14 2.3
    1600 2874.5 95.91 1.1
    下载: 导出CSV

    表  3  不同产地甘薯叶中5种酚酸和异槲皮苷的含量

    Table  3.   Contents of five phenolic acids and isoquercitrin of sweet potato leaves from different areas

    样品产地样品含量(mg/g DM)
    咖啡酸绿原酸3,4-二咖啡酰奎宁酸3,5-二咖啡酰奎宁酸4,5-二咖啡酰奎宁酸异槲皮苷总计含量
    产地10.29±
    0.02cd
    0.68±
    0.09a
    1.55±
    0.19b
    8.25±
    0.32d
    2.73±
    0.39c
    0.63±
    0.04c
    14.13
    产地20.22±
    0.01b
    1.10±
    0.12bc
    1.52±
    0.18b
    8.34±
    0.30d
    2.73±
    0.26c
    0.67±
    0.03c
    14.58
    产地30.24±
    0.02bc
    1.65±
    0.14de
    0.61±
    0.05a
    8.16±
    0.32d
    0.99±
    0.05a
    0.44±
    0.02b
    12.09
    产地40.51±
    0.04f
    2.99±
    0.18g
    3.04±
    0.33d
    18.25±
    0.20f
    4.49±
    0.28e
    0.96±
    0.04e
    30.24
    产地50.19±
    0.02b
    0.86±
    0.10ab
    2.26±
    0.23c
    3.27±
    0.19a
    1.97±
    0.10b
    1.03±
    0.05e
    9.59
    产地60.31±
    0.02d
    1.89±
    0.17e
    0.35±
    0.02a
    5.40±
    0.20b
    1.85±
    0.10b
    0.32±
    0.01a
    10.15
    产地70.12±
    0.01a
    2.73±
    0.14g
    0.23±
    0.01a
    4.75±
    0.20b
    1.22±
    0.08a
    0.40±
    0.01ab
    9.45
    产地80.53±
    0.03f
    2.42±
    0.12f
    3.33±
    0.25d
    12.31±
    0.43e
    3.86±
    0.43d
    1.34±
    0.07f
    23.79
    产地90.44±
    0.02e
    1.86±
    0.16e
    2.31±
    0.22c
    4.91±
    0.20b
    0.85±
    0.04a
    0.82±
    0.03d
    11.19
    产地100.41±
    0.02e
    1.36±
    0.12cd
    2.02±
    0.18c
    7.47±
    0.30c
    1.29±
    0.09a
    0.62±
    0.02c
    13.17
    注:产地1:吉安新干县;产地2:吉安吉安县;产地3:新余渝水区;产地4:宜春丰城市;产地5:宜春袁州区;产地6:上饶横峰县;产地7:鹰潭贵溪市;产地8:南昌南昌县;产地9:景德镇浮梁县;产地10:九江永修县。同列不同小写字母表示样品间差异显著(P<0.05)。
    下载: 导出CSV
  • [1] NGUYEN H C, CHEN C C, LIN K H, et al. Bioactive compounds, antioxidants, and health benefits of sweet potato leaves[J]. Molecules,2021,26(7):1820. doi:  10.3390/molecules26071820
    [2] JANG Y, KOH E. Antioxidant content and activity in leaves and petioles of six sweet potato (Ipomoea batatas L.) and antioxidant properties of blanched leaves[J]. Food Science and Biotechnology,2019,28(2):337−345. doi:  10.1007/s10068-018-0481-3
    [3] TAIRA J, UEHARA M, TSUCHIDA E, et al. Inhibition of the β-catenin/Tcf signaling by caffeoylquinic acids in sweet potato leaf through down regulation of the Tcf-4 transcription[J]. Journal of Agricultural and Food Chemistry,2014,62(1):167−172. doi:  10.1021/jf404411r
    [4] LUO D, MU T H, SUN H N. Profiling of phenolic acids and flavonoids in sweet potato (Ipomoea batatas L.) leaves and evaluation of their anti-oxidant and hypoglycemic activities[J]. Food Bioscience,2021,39:100801. doi:  10.1016/j.fbio.2020.100801
    [5] NTCHAPDA F, TCHATCHOUANG F C, MIAFFO D, et al. Hypolipidemic and anti-atherosclerogenic effects of aqueous extract of Ipomoea batatas leaves in diet-induced hypercholesterolemic rats[J]. Journal of Integrative Medicine,2021,19(3):243−250. doi:  10.1016/j.joim.2021.02.002
    [6] ISHIDA H, SUZUNO H, SUGIYAMA N, et al. Nutritive evaluation on chemical components of leaves, stalks and stems of sweet potatoes (Ipomoea batatas poir)[J]. Food Chemistry,2000,68(3):359−367. doi:  10.1016/S0308-8146(99)00206-X
    [7] CHEN Y, FU Z F, TU Z C, et al. Influence of in vitro gastrointestinal digestion on the bioavailability and antioxidant activity of polyphenols from Ipomoea batatas leaves[J]. International Journal of Food Science & Technology,2017,52(5):1131−1137.
    [8] ZHANG C C, LIU D Q, WU L H, et al. Chemical characterization and antioxidant properties of ethanolic extract and its fractions from sweet potato (Ipomoea batatas L.) leaves[J]. Foods,2019,9(1):15. doi:  10.3390/foods9010015
    [9] NAVEED M, HEJAZI V, ABBAS M, et al. Chlorogenic acid (CGA): A pharmacological review and call for further research[J]. Biomedicine & Pharmacotherapy,2018,97:67−74.
    [10] CHEN S, LIU J, DONG G Q, et al. Flavonoids and caffeoylquinic acids in Chrysanthemum morifolium Ramat flowers: A potentially rich source of bioactive compounds[J]. Food Chemistry,2021,344:128733. doi:  10.1016/j.foodchem.2020.128733
    [11] LIAN W W, DU G H. Caffeic acid[M]//Natural small molecule drugs from plants. Springer, Singapore, 2018: 19−23.
    [12] LI C, TAN F, YANG J J, et al. Antioxidant effects of Apocynum venetum tea extracts on D-galactose-induced aging model in mice[J]. Antioxidants,2019,8(9):381. doi:  10.3390/antiox8090381
    [13] STASZOWSKA-KARKUT M, MATERSKA M. Phenolic composition, mineral content, and beneficial bioactivities of leaf extracts from black currant (Ribes nigrum L.), raspberry (Rubus idaeus), and aronia (Aronia melanocarpa)[J]. Nutrients,2020,12(2):463. doi:  10.3390/nu12020463
    [14] EL-HAWARY S S, MOHAMMED R, EL-DIN M E, et al. Comparative phytochemical analysis of five Egyptian strawberry cultivars (Fragaria×ananassa Duch.) and antidiabetic potential of festival and red merlin cultivars[J]. RSC Advances,2021,11(27):16755−16767. doi:  10.1039/D0RA10748D
    [15] FU Z F, TU Z C, ZHANG L, et al. Antioxidant activities and polyphenols of sweet potato (Ipomoea batatas L.) leaves extracted with solvents of various polarities[J]. Food Bioscience,2016,15:11−18. doi:  10.1016/j.fbio.2016.04.004
    [16] WAY M L, JONES J E, NICHOLS D S, et al. A comparison of laboratory analysis methods for total phenolic content of cider[J]. Beverages,2020,6(3):55. doi:  10.3390/beverages6030055
    [17] BAE I K, HAM H M, JEONG M H, et al. Simultaneous determination of 15 phenolic compounds and caffeine in teas and mate using RP-HPLC/UV detection: Method development and optimization of extraction process[J]. Food Chemistry,2015,172:469−475. doi:  10.1016/j.foodchem.2014.09.050
    [18] RUSSO M, FANALI C, TRIPODO G, et al. Analysis of phenolic compounds in different parts of pomegranate (Punica granatum) fruit by HPLC-PDA-ESI/MS and evaluation of their antioxidant activity: Application to different Italian varieties[J]. Analytical and Bioanalytical Chemistry,2018,410(15):3507−3520. doi:  10.1007/s00216-018-0854-8
    [19] MUSTAFA A M, ANGELONI S, ABOUELENEIN D, et al. A new HPLC-MS/MS method for the simultaneous determination of 36 polyphenols in blueberry, strawberry and their commercial products and determination of antioxidant activity[J]. Food Chemistry,2022,367:130743. doi:  10.1016/j.foodchem.2021.130743
    [20] 钟伟. 红薯叶中多酚类物质的抗氧化及抗肿瘤细胞增殖作用研究[D]. 广州: 华南理工大学, 2015

    ZHONG W. Research evaluation of antioxidant and antitumour activities of Ipomoea batatas leaves[D]. Guangzhou: South China University of Technology, 2015
    [21] Q2 (R1) Validation of analytical procedures: Text and methodology[S].2005.
    [22] 覃日宏, 陈汝旭, 盘涌, 等. HPLC法同时测定五指毛桃中6个黄酮类成分的含量[J]. 药物分析杂志,2020,40(12):2244−2249. [QIN R H, CHEN R X, PAN Y, et al. Simultaneous determination of six flavonoids in Ficushirta Vahl. by HPLC[J]. Chinese Journal of Pharmaceutical Analysis,2020,40(12):2244−2249. doi:  10.16155/j.0254-1793.2020.12.19
    [23] TSOLMON B, FANG Y, YANG T, et al. Structural identification and UPLC-ESI-QTOF-MS-MS analysis of flavonoids in the aquatic plant Landoltia punctata and their in vitro and in vivo antioxidant activities[J]. Food Chemistry,2021,343:128392. doi:  10.1016/j.foodchem.2020.128392
    [24] LIU J, MU T H, SUN H N, et al. Optimization of ultrasonic-microwave synergistic extraction of flavonoids from sweet potato leaves by response surface methodology[J]. Journal of Food Processing and Preservation,2019,43(5):e13928. doi:  10.1111/jfpp.13928
    [25] 马帅, 王纪华, 高媛, 等. 超高效液相色谱-串联质谱法同时测定5个产地花椰菜和西兰花中的23种酚酸类化合物[J]. 食品科学,2018,39(4):176−187. [MA S, WANG J H, GAO Y, et al. Simultaneous determination of twenty-three phenolic acids in Cauliflower (Brassica oleracea L. var. botrytis L.) and Broccoli (B. oleracea L. var. italica) from five producing places by ultra performance liquid chromatography-tandem mass spectrometry[J]. Food Science,2018,39(4):176−187. doi:  10.7506/spkx1002-6630-201804027
    [26] ZHANG A, WAN L, WU C Y, et al. Simultaneous determination of 14 phenolic compounds in grape canes by HPLC-DAD-UV using wavelength switching detection[J]. Molecules,2013,18(11):14241−14257. doi:  10.3390/molecules181114241
    [27] HUANG R T, LU Y F, INBARAJ B S, et al. Determination of phenolic acids and flavonoids in Rhinacanthus nasutus (L.) kurz by high-performance-liquid-chromatography with photodiode-array detection and tandem mass spectrometry[J]. Journal of Functional Foods,2015,12:498−508. doi:  10.1016/j.jff.2014.12.002
    [28] 段云飞, 吴光斌, 叶洪, 等. HPLC法同时测定采后莲雾果实7种有机酸的含量[J]. 食品科学,2021,42(4):175−180. [DUAN Y F, WU G B, YE H, et al. Simultaneous determination of seven organic acids in wax apple (Syzygium samarangenese [Blume] Merrill & L. M. Perry) fruit during postharvest storage by high performance liquid chromatography[J]. Food Science,2021,42(4):175−180. doi:  10.7506/spkx1002-6630-20191025-287
    [29] 朱亚珠. 甘薯叶中咖啡酰奎尼酸类物质的分离纯化和高效液相色谱法分析[J]. 食品工业科技,2015,36(10):73−77. [ZHU Y Z. Purification of caffeoylquinic acids from sweet potato leaves and their analysis by high performance liquid chromatography[J]. Science and Technology of Food Industry,2015,36(10):73−77. doi:  10.13386/j.issn1002-0306.2015.10.006
    [30] MAKORI S I, MU T H, SUN H N. Total polyphenol content, antioxidant activity, and individual phenolic composition of different edible parts of 4 sweet potato cultivars[J]. Natural Product Communications, 2020, 15(7): 1934578X20936931.
    [31] SUÁREZ S, MU T H, SUN H N, et al. Antioxidant activity, nutritional, and phenolic composition of sweet potato leaves as affected by harvesting period[J]. International Journal of Food Properties,2020,23(1):178−188. doi:  10.1080/10942912.2020.1716796
    [32] XIANG G, YANG H Y, YANG L, et al. Multivariate statistical analysis of tobacco of different origin, grade and variety according to polyphenols and organic acids[J]. Microchemical Journal,2010,95(2):198−206. doi:  10.1016/j.microc.2009.12.001
    [33] ZHANG D Y, WAN Y, HAO J Y, et al. Evaluation of the alkaloid, polyphenols, and antioxidant contents of various mulberry cultivars from different planting areas in eastern China[J]. Industrial Crops and Products,2018,122:298−307. doi:  10.1016/j.indcrop.2018.05.065
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  45
  • HTML全文浏览量:  9
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-11
  • 网络出版日期:  2023-02-01
  • 刊出日期:  2023-03-01

目录

    /

    返回文章
    返回

    重要通知

    喜报:《食品工业科技》入选《食品科学与工程领域高质量科技期刊分级目录》第一方阵T1区
          会议通知:第六届食品科技创新论坛4月与您相约上海