• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020

复合保护剂与牛IgG的相互作用机制研究

刘妍妍 陈文璐 李建立 李凤 孙正瀚 栾晶华

刘妍妍,陈文璐,李建立,等. 复合保护剂与牛IgG的相互作用机制研究[J]. 食品工业科技,2023,44(11):45−53. doi:  10.13386/j.issn1002-0306.2022050111
引用本文: 刘妍妍,陈文璐,李建立,等. 复合保护剂与牛IgG的相互作用机制研究[J]. 食品工业科技,2023,44(11):45−53. doi:  10.13386/j.issn1002-0306.2022050111
LIU Yanyan, CHEN Wenlu, LI Jianli, et al. Study on the Interaction Mechanism between Compound Protective Agent and Bovine IgG[J]. Science and Technology of Food Industry, 2023, 44(11): 45−53. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022050111
Citation: LIU Yanyan, CHEN Wenlu, LI Jianli, et al. Study on the Interaction Mechanism between Compound Protective Agent and Bovine IgG[J]. Science and Technology of Food Industry, 2023, 44(11): 45−53. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022050111

复合保护剂与牛IgG的相互作用机制研究

doi: 10.13386/j.issn1002-0306.2022050111
基金项目: 功能性液态奶的研制及产业化(2019ZX07B02)。
详细信息
    作者简介:

    刘妍妍(1979−),女,硕士,副教授,研究方向:畜产品精深加工,E-mail:spxylyy@126.com

    通讯作者:

    刘妍妍(1979−),女,硕士,副教授,研究方向:畜产品精深加工,E-mail:spxylyy@126.com

  • 中图分类号: TS252.5

Study on the Interaction Mechanism between Compound Protective Agent and Bovine IgG

  • 摘要: 本研究综合利用紫外吸收光谱法、荧光光谱法、傅里叶变换红外光谱法、圆二色谱法、拉曼光谱法、扫描电镜法和差示扫描量热法研究复合保护剂与IgG的相互作用机制以及IgG结构的变化。结果表明复合保护剂对IgG的肽骨架影响较小,而对氨基酸残基的微环境影响较大,使IgG氨基酸残基所处的微环境极性增强;复合保护剂与IgG的相互作用主要涉及氢键、静电作用力和疏水作用力,并引起IgG的二级结构从α-螺旋结构向β-折叠、β-转角和无规卷曲结构转变,使IgG的二级结构趋于无序化,IgG二硫键构型由g-g-g构型逐渐转变为g-g-t构型和t-g-t构型。扫描电镜表明,复合保护剂在IgG分子表面形成不规则的棱形晶体复合物;差示扫描量热法表明,复合保护剂使IgG的变性温度从71.76 ℃升高到87.22 ℃,IgG的热焓变从6.51 J/g降低到4.68 J/g。说明复合保护剂使IgG分子的构象发生转变,从而增强了IgG的热稳定性。
  • 图  1  IgG和复合保护剂-IgG作用体系的同步荧光光谱图

    Figure  1.  Synchronous fluorescence spectrogram of IgG and compound protective agent-IgG interaction system

    图  2  IgG和复合保护剂-IgG作用体系的紫外光谱图

    Figure  2.  Ultraviolet second derivative spectrogram of IgG and compound protective agent-IgG interaction system

    注:A:紫外光谱图;B:紫外二阶导数光谱图:a为tyr的λmax(~λ288)和λmin(~λ284)纵坐标间距;b为trp的λmax(~λ295)和λmin(~λ291)纵坐标间距。

    图  3  IgG和复合保护剂-IgG作用体系的三维荧光光谱等高线图

    Figure  3.  Three-dimensional fluorescence contour map of IgG and compound protective agent-IgG interaction system

    图  4  IgG和复合保护剂-IgG作用体系的红外光谱图

    Figure  4.  FTIR spectrogram of IgG and compound protective agent-IgG interaction system

    图  5  IgG和复合保护剂-IgG作用体系的圆二光谱图

    Figure  5.  Circular dichroism spectrogram of IgG and compound protective agent-IgG interaction system

    图  6  IgG和复合保护剂-IgG作用体系的拉曼光谱图

    Figure  6.  Raman spectrogram of IgG and compound protective agenton-IgG interaction system

    图  7  IgG和复合保护剂-IgG作用体系的扫描电镜图

    Figure  7.  SEM spectrogram of IgG and compound protective agent-IgG interaction system

    注:图中a~c和d~f分别代表IgG和复合保护剂-IgG,放大倍数分别为300×、3000×、8000×。

    表  1  IgG含量和活性指标的变化

    Table  1.   Changes in IgG content and activity indicators

    指标IgG复合保护剂-IgG
    IgG含量(µg/mL)590±150b1830±130a
    IgG活性(IU/L)74.62±1.12b463.84±1.23a
    注:同行不同字母表示差异显著(P<0.05)。
    下载: 导出CSV

    表  2  IgG和复合保护剂-IgG作用体系的荧光激发-发射矩阵光谱

    Table  2.   Fluorescent EEM spectral characteristics of IgG and compound protective agent-IgG interaction system

    样品Peak 1Peak 2
    λex/λem(nm/nm)荧光强度Fλex/λem(nm/nm)荧光强度F
    IgG280/340563.87235/340308.45
    复合保护剂-IgG280/344433.74235/341235.53
    下载: 导出CSV

    表  3  IgG和复合保护剂-IgG作用体系二级结构的相对含量

    Table  3.   Secondary structure composition of IgG and compound protective agent-IgG interaction system

    样品α-螺旋(%)β-折叠(%)β-转角(%)无规卷曲(%)
    IgG25.10±0.06a21.70±0.04b18.40±0.03b39.40±0.05b
    复合保护剂-IgG19.50±0.07b26.70±0.06a19.90±0.05a44.70±0.07a
    注:同列不同小写字母表示显著性差异(P<0.05);表5~表7同。
    下载: 导出CSV

    表  4  IgG和复合保护剂-IgG作用体系的拉曼特征峰位及峰位归属

    Table  4.   Assignment of characteristic bands in the Raman spectra of IgG and compound protective agent-IgG interaction system

    波数(cm−1峰位归属
    500~500s-s伸缩振动
    760色氨酸
    850/830酪氨酸
    1003苯丙氨酸
    1220~1330酰胺III带
    1600~1700酰胺I带
    下载: 导出CSV

    表  5  IgG和复合保护剂-IgG作用体系的酪氨酸、色氨酸微环境

    Table  5.   Tyrosine and tryptophan microenvironment of IgG and compound protective agent-IgG interaction system

    样品I850 cm−1/I830 cm−1I760 cm−1
    IgG1.21±0.06a0.90±0.08a
    复合保护剂-IgG1.09±0.04b0.91±0.05a
    下载: 导出CSV

    表  6  IgG和复合保护剂-IgG作用体系中二硫键构型组成含量

    Table  6.   Configurational compositions of disulfide bonds in IgG and compound protective agent-IgG interaction system

    样品g-g-g构型(%)g-g-t构型(%)t-g-t构型(%)
    IgG64.50±0.11a10.90±0.06b24.60±0.08b
    复合保护剂-IgG26.40±0.05b28.10±0.07a45.50±0.09a
    下载: 导出CSV

    表  7  IgG和复合保护剂-IgG作用体系的DSC分析

    Table  7.   DSC analysis of IgG and compound protective agent-IgG interaction system

    样品Td(℃)ΔH(J/g)
    IgG71.76±0.08b6.51±0.05a
    复合保护剂-IgG87.22±0.06a4.68±0.07b
    下载: 导出CSV
  • [1] 王慧, 方洛云, 熊本海, 等. 牛乳生物活性成分及其研究进展[J]. 中国乳业,2018(8):62−67. [WANG H, FANG L Y, XIONG B H, et al. Bioactive components of bovine milk and their research progress[J]. China Dairy,2018(8):62−67. doi:  10.16172/j.cnki.114768.2018.08.013
    [2] 陆东林, 刘朋龙, 徐敏, 等. 我国牛初乳资源及其安全性评价[J]. 中国乳业,2020(9):62−66. [LU D L, LIU P L, XU M, et al. Resource and safety evaluation of bovine colostrum in China[J]. China Dairy,2020(9):62−66.
    [3] UIFMAN L H, LEUSEN J H W, SAVELKOUL H F J, et al. Effects of bovine immunoglobulin on immune function, allergy, and infection[J]. Frontiers in Nutrition,2018,5:52−58. doi:  10.3389/fnut.2018.00052
    [4] 秦兰霞. 牛初乳粉中免疫球蛋白IgG增强免疫力功能的研究[J]. 现代食品,2018(17):111−115. [QIN L X. Study on immunoglobulin IgG in bovine colostrum powder enhanced immune function[J]. Modern Food,2018(17):111−115.
    [5] BARAKAT S H, MEHEISSEN M A, OMAR O M, et al. Bovine colostrum in the treatment of acute diarrhea in children: A double-blinded randomized controlled trial[J]. Journal of Tropical Pediatrics,2020,66(1):79−82.
    [6] BLUM J W. Nutritional physiology of neonatal calves[J]. Journal of Animal Physiology and Animal Nutrition,2006,90(1−2):1−11. doi:  10.1111/j.1439-0396.2005.00614.x
    [7] HUNG L H, WU C H, LIN B F, et al. Hyperimmune colostrum alleviates rheumatoid arthritis in a collagen-induced arthritis murine model[J]. Journal of Dairy Science,2018,9:12−16.
    [8] 包晓宇, 陈美霞, 王加启, 等. 牛乳中活性蛋白生物学功能研究进展[J]. 食品科学,2017,38(19):315−324. [BAO X Y, CHEN M X, WANG J Q, et al. Advances in bioactive functions of milk proteins[J]. Food Science,2017,38(19):315−324. doi:  10.7506/spkx1002-6630-201719049
    [9] 提伟钢, 邵士凤, 邹佩文, 等. 牛初乳加工技术研究进展[J]. 饮料工业,2013,16(1):9−12. [TI W G, SHAO S F, ZOU P W, et al. Advances in study on processing technology of bovine colostrums-based products[J]. Beverage Industry,2013,16(1):9−12. doi:  10.3969/j.issn.1007-7871.2013.01.002
    [10] NGUYEN D N, CURRIE A J, REN S, et al. Heat treatment and irradiation reduce anti-bacterial and immune-modulatory properties of bovine colostrum[J]. Journal of Functional Foods,2019,57:182−189. doi:  10.1016/j.jff.2019.04.012
    [11] 刘伟. 牛初乳免疫球蛋白(IgG)稳定性的研究及改善[D]. 北京: 中国农业大学, 2005.

    LIU W. Study and improvement on the stability of bovine colosturm immunoglobulin G[D]. Beijing: China Agricultural University, 2005.
    [12] 雷昌贵, 孟宇竹, 蔡华真, 等. 食品添加剂对牛初乳免疫球蛋白(IgG)稳定性的影响[J]. 中国食品添加剂,2013(3):137−142. [LEI C G, MENG Y Z, CAI H Z, et al. Influence of food additives on the stability of bovine colostrums immunoglobulin G[J]. China Food Additives,2013(3):137−142. doi:  10.3969/j.issn.1006-2513.2013.03.016
    [13] 徐思思. 牛初乳粉制备中稳定性保护关键技术研究[D]. 长春: 吉林大学, 2016.

    XUE S S. Key technologies of the stability protection in the preparation of colostrum powder[D]. Changchun: Jilin University, 2016.
    [14] 李雪, 王丽, 刘光宪, 等. 光谱技术分析尿素对BSA糖基化反应的影响[J]. 光谱学与光谱分析,2021,41(2):478−483. [LI X, WANG L, LIU G X, et al. Effect of urea on glycosylation of BSA based on spectral techniques[J]. Spectroscopy and Spectral Analysis,2021,41(2):478−483.
    [15] 王晓霞, 吴昊, 聂智华, 等. 多光谱法和分子对接模拟法研究黄腐植酸和牛血清白蛋白的相互作用[J]. 光谱学与光谱分析,2021,41(9):2904−2910. [WANG X X, WU H, NIE Z H, et al. Study on the interaction between fulvic acid and bovine serum albumin by multispectral and molecular docking[J]. Spectroscopy and Spectral Analysis,2021,41(9):2904−2910.
    [16] 潘明喆. 环境因素和糖醇化合物对大豆蛋白结构和功能特性的影响[D]. 沈阳: 沈阳农业大学, 2016.

    PAN M Z. Effects of Environmental factors and sugar alcohols on structural and functional properties of soybean protein[D]. Shenyang: Shenyang Agricultural University, 2016.
    [17] 王丽颖. 多酚与麦醇溶蛋白复合物的形成机制及结构表征[D]. 重庆: 西南大学, 2018.

    WANG L Y. Fabrication mechanism and structure characterization of polyphenols and gliadin complexes[D]. Chongqing: Southwest University, 2018.
    [18] LIU R, SHI C, SONG Y, et al. Impact of oligomeric procyanidins on wheat gluten microstructure and physicochemical properties[J]. Food Chemistry,2018,260:37−43. doi:  10.1016/j.foodchem.2018.03.103
    [19] 朱颖, 吴隆坤, 贾有青, 等. 超声处理对黑豆蛋白与可溶性多糖复合物功能性质及结构的影响[J]. 中国食品学报,2020,20(5):181−186. [ZHU Y, WU L K, JIA Y Q, et al. The effects of ultrasonic treatment on the physical properties and structure of black soybean protein and soluble polysaccharide complexes[J]. Journal of Chinese Institute of Food Science and Technology,2020,20(5):181−186. doi:  10.16429/j.1009-7848.2020.05.023
    [20] 李杨, 李明达, 王中江, 等. 基于光谱技术的维生素B12与大豆分离蛋白相互作用分析[J]. 农业机械学报,2020,51(1):341−348. [LI Y, LI M D, WANG Z J, et al. Spectroscopy analysis of interaction between vitamin B12 and soybean protein isolate[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(1):341−348. doi:  10.6041/j.issn.1000-1298.2020.01.037
    [21] 谭慧姣, 党睿. 拉曼光谱和色差法在丝质文物色彩损伤评估中的比较[J]. 光谱学与光谱分析,2021,41(8):2474−2479. [TAN H J, DANG R. Comparison of raman spectroscopy and color difference in the light-induced color damage evaluation of cultural heritages with silk[J]. Spectroscopy and Spectral Analysis,2021,41(8):2474−2479.
    [22] 罗珍. 核桃壳多糖的分离鉴定及消化代谢特性研究[D]. 秦皇岛: 燕山大学, 2021.

    LUO Z. Isolation and identification of polysaccha ride from Juglans regia L and its digestion and meta bolism characteristics[D]. Qinhuangdao: Yanshan University, 2021.
    [23] 张驰. 多酚与花生蛋白相互作用及其对花生蛋白致敏性的影响[D]. 重庆: 西南大学, 2021.

    ZHANG C. The Interaction of polyphenols with peanut protein and its effect on the allergenicity of peanut protein[D]. Chongqing: Southwest University, 2021.
    [24] 汲聪玲, 陆剑锋, 吕顺, 等. 不同提取温度对白鲢鱼皮明胶理化性质的影响[J]. 食品科学,2016,37(9):117−122. [JI C L, LU J F, LÜ S, et al. Effect of extraction temperature on physical and chemical properties of gelatin from silver carp skin[J]. Food Science,2016,37(9):117−122. doi:  10.7506/spkx1002-6630-201609022
    [25] 郑海英. 利用微胶囊化提高牛乳免疫球蛋白稳定性的研究[D]. 哈尔滨: 东北农业大学, 2000.

    ZHENG H Y. Study on improving the stability of bovine milk immunoglobulins by microencapsulation[D]. Harbin: Northeast Agricultural University, 2000.
    [26] 杨红, 刘爱国, 刘立增, 等. 响应面法优化牛初乳免疫球蛋白热保护剂的配方[J]. 食品工业科技,2022,43(12):108−116. [YANG H, LIU A G, LIU L Z, et al. Optimization of formula of bovine colostrum immunoglobulin thermal protective agent by response surface methodology[J]. Science and Technology of Food Industry,2022,43(12):108−116. doi:  10.13386/j.issn1002-0306.2021090302
    [27] 罗磊. 猪血G型免疫球蛋白的分离提取研究[D]. 无锡: 江南大学, 2006.

    LU L. Studies on fractionation and extraction of immunoglobulinG from porcine blood[D]. Wuxi: Jiangnan University, 2006.
    [28] QIAO H, ZHANG S W, WANG W. Fluorescence spectroscopic and viscosity studies of hydrogen bonding in Chinese Fenjiu[J]. Journal of Bioscience and Bioengineering,2013,115:405−411. doi:  10.1016/j.jbiosc.2012.10.023
    [29] MALLIKA P, DEEPTI S, NAVNEET S, et al. Spectroscopic and thermodynamic studies of the binding mechanism of metformin to pepsin[J]. Journal of Molecular Structure,2018,1166:183. doi:  10.1016/j.molstruc.2018.04.032
    [30] 王晓霞, 李松波, 马力通, 等. 三维荧光光谱法和圆二色谱法研究氨基比林与牛血清白蛋白分子的相互作用[J]. 中国测试,2017,43(9):74−80. [WANG X X, LI S B, MA L T, et al. Study on the interaction between aminopyrine and bovine serum albumin by three-dimensional fluorescence spectrometry and circular dichroism spectrum[J]. China Measurement & Test,2017,43(9):74−80. doi:  10.11857/j.issn.1674-5124.2017.09.014
    [31] 刘丹, 靳宁, 杨婷, 等. 光谱法研究DDAB与人免疫球蛋白G的结合作用[J]. 山西医科大学学报,2018,49(7):773−778. [LIU D, JIN N, YANG T, et al. Spectroscopic study on the interaction between dimethyldioctadecylammonium bromide and human immunoglobulin G[J]. Journal of Shanxi Medical University,2018,49(7):773−778. doi:  10.13753/j.issn.1007-6611.2018.07.006
    [32] BRUSTEIN E A, VEDENKINA N S, IRKOV A M. Fluorescence and the location of tryptophan residues in proteinmolecules[J]. Photochem PhotobiolA,1973,18(4):263−279. doi:  10.1111/j.1751-1097.1973.tb06422.x
    [33] 赵刚, 李东玲, 王思宇, 等. 邻苯二甲酸二乙酯与牛血清白蛋白相互作用的光谱学研究[J]. 化学研究与应用,2019,31(6):1047−1051. [ZHAO G, LI D L, WANG S Y, et al. Spectroscopic analysis on the interaction of diethyl phthalate with bovine serum albumin[J]. Chemical Research and Application,2019,31(6):1047−1051. doi:  10.3969/j.issn.1004-1656.2019.06.008
    [34] YU X Y, JIANG B F, LIAO Z X, et al. Study on the interaction between besifloxacin and bovine serun albumin by spectroscopic techniques[J]. Spectrochim Acta A,2015,149:116. doi:  10.1016/j.saa.2015.04.023
    [35] 李波, 秦小茹, AJAB Khan, 等. 木犀草素与人免疫球蛋白G的作用机制研究[J]. 化学研究与应用,2021,33(11):2195−2202. [LI B, QIN X R, AJAB K, et al. Mechanism of interaction between luteolin and human immunoglobulin G[J]. Chemical Research and Application,2021,33(11):2195−2202.
    [36] 邓林波. 荧光光谱法研究不同溶液环境中牛血清白蛋白的变化[D]. 杭州: 中国计量大学, 2019.

    DENG L B. Fluorescence spectroscopy study on the changes of bovine serum albumin in different solution environments[D]. Hangzhou: China Jiliang University, 2019.
    [37] LV Y, LIANG Q, LI Y, et al. Study of the binding mechanism between hydroxytyrosol and bovine serum albumin using multispectral and molecular docking[J]. Food Hydrocolloids,2022,122:107072. doi:  10.1016/j.foodhyd.2021.107072
    [38] CHEN Y, MA M. Foam and conformational changes of egg white as affected by ultrasonic pretreatment and phenolic binding at neutral pH[J]. Food Hydrocolloids,2020,102:105568. doi:  10.1016/j.foodhyd.2019.105568
    [39] 王晓霞, 聂智华, 李松波, 等. 多光谱法与分子对接法研究盐酸四环素与牛血清白蛋白的相互作用[J]. 光谱学与光谱分析,2018,38(8):2468−2476. [WANG X X, NIE Z H, LI S B, et al. Study on the interaction between tetracycline hydrochloride and bovine serum albumin by multispectral and molecular docking[J]. Spectroscopy and Spectral Analysis,2018,38(8):2468−2476.
    [40] LIU F, MA C, MCCLEMENTS D J, et al. A comparative study of covalent and non-covalent interactions between zein and polyphenols in ethanol-water solution[J]. Food Hydrocolloids,2017,63:625−634. doi:  10.1016/j.foodhyd.2016.09.041
    [41] KONG J, SHAO N Y. Fourier transform infrared spectroscopic analysis of protein secondary structures[J]. Acta Biochimicaet Biophysica Sinica,2007,39(8):549−559. doi:  10.1111/j.1745-7270.2007.00320.x
    [42] ALAVI F, EMAM D Z, Yarmand M S, et al. Cold gelation of curcumin loaded whey protein aggregates mixed with k-carrageenan: Impact of gel microstructure on the gastrointestinal fate of curcumin[J]. Food Hydrocolloids,2018,85:267−280. doi:  10.1016/j.foodhyd.2018.07.012
    [43] PU H L, JIANG H, CHEN R R, et al. Studies on the interaction between vincamine and human serum albumin: A spectroscopic approach[J]. Luminescence,2014,29(5):471−479. doi:  10.1002/bio.2572
    [44] LIU R, WU L, FENG H, et al. The study on the interactions of two 1, 2, 3-triazoles with several biological macromolecules by multiple spectroscopic methodologies and molecular docking[J]. Spectrochim Acta A,2020,243:118795. doi:  10.1016/j.saa.2020.118795
    [45] ZOU Y, SHI H, CHEN X, et al. Modifying the structure, emulsifying and rheological properties of water-soluble protein from chicken liver by low-frequency ultrasound treatment[J]. International Journal of Biological Macromolecules,2019,139:810−817. doi:  10.1016/j.ijbiomac.2019.08.062
    [46] 李可, 李三影, 杜曼婷, 等. 超声处理对类PSE鸡肉分离蛋白结构和乳化特性的影响[J]. 食品科学,2021,42(23):114−122. [LI K, LI S Y, DU M T, et al. Effect of ultrasonic treatment on the structure and emulsifying properties of PSE (pale, soft and exudative)-like chicken meat protein isolate[J]. Food Science,2021,42(23):114−122. doi:  10.7506/spkx1002-6630-20201218-217
    [47] ZHAO X, BAI Y, XING T, et al. Use of an isoelectric solubilization/precipitation process to modity the functional properties of PSE (pale, soft, exudative)-like chicken meat protein: A mechanistic approach[J]. Food Chemistry,2018,248:201−209. doi:  10.1016/j.foodchem.2017.12.048
    [48] 李可, 李三影, 扶磊, 等. 低频高强度超声波对鸡胸肉肌原纤维蛋白性质的影响[J]. 食品科学,2020,41(23):122−129. [LI K, LI S Y, FU L. Effect of low-frequency and high-intensity uitrasound treatment on characteristics of chicken breast myofibrillar protein[J]. Food Science,2020,41(23):122−129. doi:  10.7506/spkx1002-6630-20191205-067
    [49] AGNIESZKA N, MONIKA S C, ANTONI M, et al. Effect of dietary fibre polysaccharides on structure and thermal properties of gluten proteins-A study on gluten dough with application of FT-Raman spectroscopy, TGA and DSC[J]. Food Hydrocolloids,2017,69:410−421. doi:  10.1016/j.foodhyd.2017.03.012
    [50] 谢凤英, 马岩, 王晓君, 等. 拉曼光谱分析荞麦多酚对米糠蛋白结构的影响[J]. 食品科学,2017,38(3):32−36. [XIE F Y, MA Y, WANG X J, et al. Effect of buckwheat polyphenols on the structure of rice bran proteins analyzed by raman spectroscopy[J]. Food Science,2017,38(3):32−36.
    [51] NOISUWANA A, BRONLUNDB J, WILKNSON B, et al. Effect of milk protein products on the rheological and thermal (DSC) properties of normal rice starch and waxy rice starch[J]. Food Hydrocolloids,2008(22):174−183.
  • 加载中
图(7) / 表(7)
计量
  • 文章访问数:  133
  • HTML全文浏览量:  26
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-11
  • 网络出版日期:  2023-04-05
  • 刊出日期:  2023-06-01

目录

    /

    返回文章
    返回